DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

Ramesh Garimella February 1999 No. 1999-2

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

RAMESH V. GARIMELLA

Abstract. For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1(G, B)$ be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is contained in a regular maximal ideal, then $L^1(G, B)$ contains no nontrivial separating ideal. As a consequence we deduce some automatic continuity results for $L^1(G, B)$.

INTRODUCTION. For any locally compact Abelian group G, and commutative 1. Banach algebra B, let $L^1(G, B)$ denote the convolution algebra of all integrable functions on G with values in B. As one might expect, there are some interesting similarities between B and $L^1(G, B)$. For instance, $L^1(G, B)$ is semi-simple if and only if B is semi-simple, and the regular maximal ideals of $L^1(G, B)$ are closely related in a natural way with the regular maximal ideals of both $L^1(G, B)$ and B. Also, $L^1(G, B)$ is Tauberian if and only if B is Tauberian. Refer to [8,9] for the proofs of the above results. Also it is easy to note that $L^{1}(G, B)$ is semiprime when B is semiprime. The question whether the zero ideal is the only separating ideal in a semiprime Banach algebra still seems to be open. However, in this paper we prove that when G is a noncompact locally compact Abelian group, and B is a commutative semiprime Banach algebra (not necessarily unital) in which every minimal prime ideal is contained in a regular maximal ideal, then $L^1(G, B)$ contains no non-trivial separating ideal. As a consequence we deduce some automatic continuity results for the algebra $L^1(G, B)$. Our results extend some of the results in [11] for non unital Banach algebras, and also extend some results in [7] for semiprime Banach algebras. For relevant information on $L^1(G, B)$ and for related results in harmonic analysis on Abelian groups,

¹⁹⁹¹ Mathematical Subject Classification: 46J05, 46J20, 43A10, 43A20

Key words and phrases: Locally compact abelian groups, Banach algebras, Separating ideal.

see [5,8,9,12].

2. PRELIMINARIES. Let *B* be a commutative Banach algebra (not necessarily unital), and let *G* be a locally compact Abelian group with Haar measure *m*. Throughout the following, the dual group of *G* is denoted by Γ and the spectrum of *B* is denoted by $\Delta(B)$. Let $L^1(G, B)$ denote the Banach algebra of all integrable function from *G* into *B*,

$$(f * g)(t) := \int_{G}^{L} f(t - s)g(s)dm \text{ for all } f, g \in L^{1}(G, B) \text{ and } t \in G,$$

and let $||f||_1 := {\mathsf{R} \atop G} ||f(t)|| dm(t)$ for all $f \in L^1(G, B)$. Recall that for any $f \in L^1(G, B)$, and γ in the dual group Γ of G, $\hat{f}(\gamma) = {\mathsf{R} \atop G} \overline{\gamma(t)} f(t) dm(t)$ is known as the vector-valued Fourier transform of f at γ . Furthermore for any $\gamma \in \Gamma$, let $M_{\gamma} := \{f \in L^1(G, B) : \hat{f}(\gamma) = \theta\}$ where θ is the zero vector of B. Clearly, M_{γ} is a closed ideal of $L^1(G, B)$. If B has no non-trivial zero divisors, then M_{γ} is a closed prime ideal of $L^1(G, B)$. Recall that an ideal I of a commutative Banach algebra is said to be prime if the product $xy \in I$ only if either $x \in I$ or $y \in I$. It is an easy consequence of the Hahn-Banach theorem that $\bigcap_{\gamma \in \Gamma} M_{\gamma}$ is the zero ideal in $L^1(G, B)$. For any $\gamma \in \Gamma$, $\phi \in \Delta(B)$, let

$$M_{\gamma,\phi} := \{ f \in L^1(G,B) | \phi(\hat{f}(\gamma)) = 0 \}.$$

The regular maximal ideals of $L^1(G, B)$ are given by $M_{\gamma,\phi}$ for some $\gamma \in \Gamma$, and $\phi \in \Delta(B)$ ([8]).

For each $f \in L^1(G)$, and $x \in B$, we let

$$(f \otimes x)(s) = f(s)x$$
 for all $s \in G$.

We recall some of the properties of the product $f \otimes x$ in the following proposition. Proposition 2.1. Let G be a locally compact Abelian group, and let B be a commutative Banach algebra. Let $x, y \in B$; $f, g \in L^1(G)$; and γ a non-trivial continuous character on G. Then,

- (i) $f \otimes x \in L^1(G, B)$, and $||f \otimes x||_1 = ||f||_1 ||x||$
- (ii) $(f \pm g) \otimes x = f \otimes x \pm g \otimes x$
- (iii) $\mathfrak{F} \otimes x(\gamma) = \hat{f}(\gamma)x$
- (iv) $(f \otimes x) * (q \otimes x) = (f * q) \otimes xy$
- (v) If B has the multiplicative identity 1, then $(f*g) \otimes x = (f \otimes x)*(g \otimes 1) = (f \otimes 1)*(g \otimes x)$
- (vi) If $f_n \to f$ in $L^1(G)$ and $x_n \to x$ in B, then $f_n \otimes x_n \to f \otimes x$ in $L^1(G, B)$.

3. Main Results

Before we get to the main results, we need the following lemmas.

Lemma 3.1. Let G be a noncompact locally compact Abelian group, B a commutative Banach algebra, and f a non-zero function in $L^1(G, B)$. For a given γ in the dual group Γ of G and a positive number ε , there exist f_1, f_2, \ldots, f_n in $L^1(G)$ with compactly supported Fourier transforms and x_1, x_2, \ldots, x_n in B such that $\|f - \int_{\alpha}^{\infty} f_i \otimes x_i\| < \epsilon + \|\hat{f}(\gamma)\|$, where $\hat{f}_i(\gamma) = 0$ for $1 \le i \le n$.

Proof. Since finite linear combinations of the elements of the form $h \otimes x$ where $h \in L^1(G)$, and $x \in B$ are dense in $L^1(G)$, and the functions in $L^1(G)$ with compactly supported Fourier transforms are dense in $L^1(G)$, there exist h_1, h_2, \ldots, h_n in $L^1(G)$ with compactly supported Fourier transforms and x_1, x_2, \ldots, x_n in B such that $\|f - \overset{\varkappa}{}^{h_i} \otimes x_i\| < \frac{\varepsilon}{2}$. For $1 \le i \le n$, let $Supp \ \hat{h}_i = \{ lpha \in \Gamma : \hat{h}_i(lpha) \ne 0 \}$. For each

 $1 \le i \le n$, we define

$$g(t) = \frac{\chi_{(\bigcup_{j=1}^n Supp \ \hat{h}_j)}}{m(\bigcup_{j=1}^n Supp \ \hat{h}_i)}\gamma(t),$$

where $\chi_{(\bigcup_{i=1}^{n} Supp \ \hat{h}_{j})}$ is the characteristic function of $(\bigcup_{j=1}^{n} Supp \ \hat{h}_{i})$, and $f_{i} = h_{i} - \hat{h}_{i}(\gamma)g$. Clearly g and the f_i 's belong to $L^1(G)$. It is easy to see that $\hat{g}(\gamma) = 1$, $\hat{f}_i(\gamma) = 0$ for each i, and $||g||_1 = 1$. We have

$$\begin{aligned} \|f - \bigwedge_{i=1}^{\mathcal{N}} (f_i \otimes x_i) - g \otimes \hat{f}(\gamma)\| \\ &= \|f - \bigwedge_{i=1}^{\mathcal{N}} (h_i \otimes x_i) + \bigwedge_{i=1}^{\mathcal{N}} (h_i \otimes x_i) - \bigwedge_{i=1}^{\mathcal{N}} (f_i \otimes x_i) - g \otimes \hat{f}(\gamma)\| \\ &\leq \|f - \bigwedge_{i=1}^{\mathcal{N}} (h_i \otimes x_i)\| + \| \bigwedge_{i=1}^{\mathcal{N}} (h_i - f_i) \otimes x_i - g \otimes \hat{f}(\gamma)\| \dots (A) \end{aligned}$$

Furthermore,

$$\begin{aligned} & \| \stackrel{\mathbf{X}}{\overset{i=1}{Z}} (h_i - f_i) \otimes x_i - g \otimes \hat{f}(\gamma) \| = \| \stackrel{\mathbf{X}}{\overset{i=1}{Z}} \hat{h}_i(\gamma)g \otimes s_i - g \otimes \hat{f}(\gamma) \| \\ &= \int_{a=1}^{a=1} \hat{h}_i(\gamma)g(t)x_i - g(t)\hat{f}(\gamma) \| dm(t) \\ &= \frac{1}{m(\bigcup_{j=1}^n Supp \ \hat{h}_j)} \int_{G}^{Z} \| \stackrel{\mathbf{X}}{\overset{i=1}{B}} \hat{h}_i(\gamma)\chi_{(\bigcup_{j=1}^n Supp \ \hat{h}_j)}\gamma(t)x_i - \chi_{(\bigcup_{j=1}^n Supp \ \hat{h}_j)}\gamma(t)\hat{f}(\gamma) \| dm(t) \\ &= \frac{1}{m(\bigcup_{j=1}^n Supp \ \hat{h}_j)} \int_{(\bigcup_{j=1}^n Supp \ h_j)}^{Z} \| \stackrel{\mathbf{X}}{\overset{i=1}{B}} \hat{h}_i(\gamma)x_i - \hat{f}(\gamma) \| dm(t) \\ &= \| \stackrel{\mathbf{X}}{\overset{i=1}{B}} \hat{h}_i(\gamma)x_i - \hat{f}(\gamma) \| \leq \| f - \stackrel{\mathbf{X}}{\underset{i=1}{B}} h_i \otimes x_i \| < \frac{\varepsilon}{2} \dots (B) \end{aligned}$$

From (A) and (B) it follows that $||F - \sum_{i=1}^{N} f_i \otimes x_i - g \otimes \hat{f}(\gamma)|| < \epsilon$. Hence $||f - \sum_{i=1}^{N} f_i \otimes x_i|| < \epsilon + ||\hat{f}(\gamma)||$. This completes the proof of the Lemma. \forall Lemma 3.2. Let G be a noncompact locally compact Abelian group, B a commutative

Banach algebra, and f a non-zero function in $L^1(G, B)$. For a given γ in the dual group Γ of G and a given positive number $\epsilon > 0$, there exist g_1, g_2, \ldots, g_n in $L^1(G)$, a neighborhood V of γ , and x_1, x_2, \ldots, x_n in B such that

$$\|f - \bigotimes_{i=1}^{\mathbf{X}^{\mathbf{i}}} g_i \otimes x_i\| < \epsilon + \|\widehat{f}(\gamma)\|$$

where $\hat{g}_i = 0$ on V for $1 \leq i \leq n$.

Proof. By Lemma 3.1, there exist f_1, f_2, \ldots, f_n in $L^1(G)$ with compactly supported Fourier transforms, and x_1, x_2, \ldots, x_n in B such that

$$\|f - \sum_{i=1}^{\infty} f_i \otimes x_i\| < \frac{\epsilon}{2} + \|\hat{f}(\gamma)\|$$

where $\hat{f}_i(\gamma) = 0$. Since $L^1(G)$ satisfies the Ditkin's condition ([12]), there exist g_1, g_2, \ldots, g_n in $L^1(G)$, and a neighborhood V of γ such that $\hat{g}_i = 0$ on V, and

$$\|f_i - g_i\|_1 < \frac{\epsilon}{2(1 + \frac{\lambda^i}{i=1} \|x_i\|)}$$

for $1 \leq i \leq n$. Now

$$\begin{split} \|f - \bigotimes_{i=1}^{\mathcal{N}} g_i \otimes x_i\|_1 &\leq \|f - \bigotimes_{i=1}^{\mathcal{N}} f_i \otimes x_i\|_1 + \|\bigotimes_{i=1}^{\mathcal{N}} (f_i - g_i) \otimes x_i\|_2 \\ &\leq \frac{\epsilon}{2} + \|\hat{f}(\gamma)\| + \bigotimes_{i=1}^{\mathcal{N}} \|f_i - g_i\|_1 \|x_i\| \\ &< \frac{\epsilon}{2} + \|\hat{f}(\gamma)\| + \frac{\epsilon}{2(1 + \bigotimes_{i=1}^{\mathcal{N}} \|x_i\|)} (\bigotimes_{i=1}^{\mathcal{N}} \|x_i\|) \\ &= \epsilon + \|\hat{f}(\gamma)\|. \quad \end{split}$$

Corollary 3.3. Let $f \in L^1(G, B)$, and $\gamma \in \Gamma$ such that $\hat{f}(\gamma) = \theta$. Given $\epsilon > 0$, there exist g_1, g_2, \ldots, g_n in $L^1(G)$ with a vanishing Fourier transform in a neighborhood V of γ , and x_1, x_2, \ldots, x_n in B such that $\|f - \bigvee_{i=1}^{\mathbf{X}^k} g_i \otimes x_i\| < \epsilon$.

Proof. Obviously follows from the Lemma 3.2. \downarrow

Now we are ready for the main results of the section.

Theorem 3.4 Let G be a locally compact Abelian group, γ a continuous character on G, and \mathcal{P} a prime ideal contained in M_{γ} . Then \mathcal{P} is dense in M_{γ} .

Proof. Let \mathcal{P} be a prime ideal of $L^1(G, B)$ contained in M_{γ} . Let f be a function with \hat{f} identically equal to the zero vector in a neighborhood V of γ . We claim that f belongs

to \mathcal{P} . For, if g belongs to $L^1(G)$ with $\hat{g}(\gamma) \neq 0$, $\hat{g} = 0$ on $\Gamma - V$, and x a non-zero vector in B, then $(g \otimes x) * f = \Theta$ (the zero vector of $L^1(G, B)$). Since \mathcal{P} is a prime ideal of $L^1(G, B)$, either $g \otimes x \in \mathcal{P}$ or $f \in \mathcal{P}$. But $g \otimes x(\gamma) = \hat{g}(\gamma)x \neq \theta$. Hence $f \in \mathcal{P}$. Thus all the functions f in $L^1(G, B)$ with vanishing Fourier transforms in a neighborhood of γ belong to \mathcal{P} . Hence by Lemma 3.2, it follows that \mathcal{P} is dense in M_{γ} . This completes the proof of the theorem. \mathbf{a}

Theorem 3.5. Let G be a noncompact locally compact Abelian group, and B be a commutative Banach algebra. If \mathcal{P} is a closed prime ideal of $L^1(G, B)$ contained in $M_{\gamma,\phi}$ for some $\gamma \in \Gamma$, and $\phi \in \Delta(B)$, then \mathcal{P} contains M_{γ} . Furthermore \mathcal{P} does not contain M_{σ} for any $\sigma \neq \gamma$.

Proof. Let $f \in M_{\gamma}$. By Corollary 3.3, f can be approximated by a function g in $L^{1}(G, B)$ with vanishing Fourier transform in a neighborhood V of γ . By an argument similar to the one given in Theorem 3.4, we can show $g \in \mathcal{P}$. Since \mathcal{P} is a closed ideal, it follows that $f \in \mathcal{P}$. Thus M_{γ} is contained in \mathcal{P} . Let $\sigma \in \Gamma$ such that $\sigma \neq \gamma$. Suppose V_{σ} and V_{γ} are compact neighborhoods of σ and γ respectively such $V_{\sigma} \cap V_{\gamma} = \emptyset$. Then there exist functions f_{σ} and f_{γ} from G into the complex plane with the support of \hat{f}_{σ} contained in V_{σ} and the support of \hat{f}_{γ} contained in V_{γ} such that $\hat{f}_{\sigma}(\sigma) = 1$ and $\hat{f}_{\gamma}(\gamma) = 1$. Let $x, y \in B$ such that $\phi(x)\phi(y) \neq 0$. Then $f_{\sigma} \otimes x$, $f_{\gamma} \otimes y \in L^{1}(G, B)$ such that $(f_{\sigma} \otimes x) * (f_{\sigma} \otimes y) = \Theta$. Since \mathcal{P} is a prime ideal contained in $M_{\gamma,\sigma}$, we get $f_{\sigma} \otimes x \in \mathcal{P}$. Obviously $f_{\gamma} \otimes y \notin \mathcal{P}$. However $f_{\gamma} \otimes y \in M_{\sigma}$. Therefore M_{σ} is not contained in \mathcal{P} .

4. Applications.

Recall that a closed ideal S of a commutative Banach algebra A is called a separating ideal ([3]) if it satisfies the following condition: For each sequence $\{a_k\}_{k\geq 1}$ in A there is a positive integer n such that $\overline{a_1a_2\cdots a_nS} = \overline{a_1a_2\cdots a_kS}$ $(k\geq n)$. For any derivation D on A, let $\Im(D) =: \{a \in A | \text{ there is a sequence } \{a_n\} \text{ in } A \text{ with } a_n \to 0 \text{ and } Da_n \to a\}$. For any

epimorphism h form a commutative Banach algebra X onto A, let $\Im(h) =: \{a \in A | \text{ there} is a sequence <math>\{x_n\}$ in X with $x_n \to 0$ and $h(x_n) \to a\}$. It is easy to show that $\Im(D)$, and $\Im(h)$ are closed ideals of A. By the closed graph theorem D is continuous if and only if $\Im(D)$ is zero. Similarly h is continuous if and only if $\Im(h)$ is zero. It is well known that $\Im(D)$ and $\Im(h)$ are separating ideals of A ([13]). For further information on separating ideals, their relation to the prime ideals of the Banach algebra, and for related results on automatic continuity theory, see [1,2,3,4,6,10].

Now we are ready to state one of the main results of the section.

Theorem 4.1. Let G be a noncompact locally compact Abelian group G, and B a commutative semiprime Banach algebra in which every minimal prime ideal is contained in a regular maximal ideal. Then $L^1(G, B)$ contains no nontrivial separating ideal.

Lemma 4.2. Let G be a noncompact locally compact Abelian group G, and B a commutative semiprime Banach algebra. For any $\gamma \in \Gamma$, $M_{\gamma} = \bigcap_{\mathcal{P} \in \mathcal{I}_{\gamma}} \mathcal{P}$ where \mathcal{I}_{γ} is the set of all minimal prime ideals of $L^{1}(G, B)$ containing M_{γ} .

Proof. Let $f \in \bigcap_{\mathcal{P} \in \mathcal{I}_{\gamma}} \mathcal{P}$. Since there is a one-to-one correspondence between the prime ideals of the quotient algebra $L^{1}(G, B)/M_{\gamma}$ and the prime ideals of the algebra $L^{1}(G, B)$ containing M_{γ} , there exists a positive integer n such that $\underbrace{f * f * \cdots * f}_{n \text{ times}} \in M_{\gamma}$. This implies $(\widehat{f}(\gamma))^{n} = \theta$. Since B is semiprime, $\widehat{f}(\gamma) = \theta$. Hence $f \in M_{\gamma}$. \mathbb{Y}

Proof of Theorem 4.1. If possible assume that \Im is a nontrivial separating ideal in $L^1(G, B)$.

Claim. \Im is contained in all but finitely many M_{γ} for $\gamma \in \Gamma$.

Proof of the claim. Let \mathcal{M} be the set of all minimal prime ideals of $L^1(G, B)$ not containing \mathfrak{S} . By [3] \mathcal{M} is a finite set. Let

 $\mathcal{M}_{\Delta} = \{ \mathcal{P} \in \mathcal{M} | \mathcal{P} \subseteq M_{\gamma,\phi} \text{ for some } (\gamma,\phi) \in \Gamma \times \Delta(B) \}$

and $\mathcal{M}_{\Delta^0} = \mathcal{M} - \mathcal{M}_{\Delta}$. By Theorem 3.5, each member of \mathcal{M}_{Δ} contains a unique M_{γ} for

some $\gamma \in \Gamma$. Let $\Gamma_{\mathcal{M}_{\Delta}} = \{\gamma \in \Gamma | M_{\gamma} \subseteq \mathcal{P} \text{ for some } \mathcal{P} \in \mathcal{M}_{\Delta}\}$. Obviously $\Gamma_{\mathcal{M}_{\Delta}}$ is a finite set. Since \Im is contained in all but finitely many closed prime ideals of $L^{1}(G, B)$ ([3]), and since any prime ideal contains a minimal prime ideal, it follows that $\Gamma_{\mathcal{M}_{\Delta}}$ is not empty. Let $\gamma \in \Gamma - \Gamma_{\mathcal{M}_{\Delta}}$. By Lemma 4.2, $M_{\gamma} = \bigcap_{\mathcal{P} \in \mathcal{I}_{\gamma}} \mathcal{P}$ where \mathcal{I}_{γ} is the set consisting of all minimal prime ideals of $L^{1}(G, B)$ containing M_{γ} . Write $\mathcal{I}_{\gamma} = \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta^{0}} \cup \mathcal{I}_{\Delta^{0}}$ where

$$\mathcal{I}_{\Delta} = \{ \mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \subseteq M_{\gamma,\phi} \text{ for some } \phi \in \Delta(B) \},\$$

 $\mathcal{I}_{\Delta^0} = \{ \mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \text{ contains } \Im, \text{ and } \mathcal{P} \not\subseteq M_{\gamma,\phi} \text{ for each } \phi \in \Delta(B) \}$

and

$$\mathcal{I}_{\Delta^{00}} = \{ \mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \text{ does not contain } \Im \text{ and } \mathcal{P} \not\subseteq M_{\gamma,\phi} \text{ for each } \phi \in \Delta(B) \}.$$

Notice that $\mathcal{I}_{\Delta^{00}}$ is almost a finite set, and each \mathcal{P} in \mathcal{I}_{Δ} contains \mathfrak{S} . Obviously

$$\mathcal{M} = (\underset{\mathcal{P} \in \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta^{0}}}{\cap \mathcal{P}}) \cap (\underset{\mathcal{P} \in \mathcal{I}_{\Delta^{00}}}{\cap \mathcal{P}}).$$

In the above, if $\mathcal{I}_{\Delta^{00}}$ is empty then $\underset{\mathcal{P}\in\mathcal{I}_{\Delta^{00}}}{\cap\mathcal{P}}$ is taken to be $L^1(G, B)$. Since $\mathcal{I}_{\Delta^{00}}$ is utmost a finite set, and $M_{\gamma,\phi}$ is a prime ideal for each $\phi \in \Delta(B)$, $\underset{\mathcal{P}\in\mathcal{I}_{\Delta^{00}}}{\cap\mathcal{P}} \not\subseteq M_{\gamma,\phi}$. Let $f \in \underset{\mathcal{P}\in\mathcal{I}_{\Delta}\cup\mathcal{I}_{\Delta^{0}}}{\cap\mathcal{P}}$. Choose $g \in (\underset{\mathcal{P}\in\mathcal{I}_{\Delta^{00}}}{\cap\mathcal{P}} \setminus M_{\gamma,\phi})$. Then $fg \in M_{\gamma}$. Since $\phi(\hat{g}(\gamma)) \neq 0$ for each $\phi \in \Delta(B)$, by the assumption on B, $\hat{f}(\gamma)$ belongs to every minimal prime ideal of B. Since B is semiprime, $\hat{f}(\gamma) = \theta$. Thus $M_{\gamma} = \underset{\mathcal{P}\in\mathcal{I}_{\Delta}\cup\mathcal{I}_{\Delta^{0}}}{\cap\mathcal{P}}$. This implies $\Im \subset M_{\gamma}$. This completes the proof of the claim.

For the remainder of the proof, the argument is similar to Theorem 3.3 of [7].

Let $\Gamma_{\mathcal{M}_{\Delta}} = \{\gamma_1, \gamma_2, \cdots, \gamma_n\}$. Let $h \in (G \cap (\bigcap_{i=2}^n M_{\gamma_i})) \setminus M_{\gamma_1}$. Since there exists a minimal prime ideal $\mathcal{P} \in \mathcal{M}$ contains M_{γ_1} but not any of the M_{γ_i} 's for $2 \leq i \leq n$, such a function h exists. Since $\hat{h}(\gamma_1) \neq \theta$, there exists a continuous linear functional λ on B such that $\lambda(\hat{f}(\gamma_1)) \neq 0$. Consider the basic open set

$$N = \{\gamma \in \Gamma : |\lambda(\hat{h}(\gamma)) - \lambda(\hat{h}(\gamma_1))| < |\lambda(\hat{h}(\gamma_1))|\}$$

of Γ containing γ_1 . Since G is a noncompact Abelian group, γ_1 is not an isolated point in Γ . By the choice of h, the characters $\gamma_2, \gamma_3, \dots, \gamma_n$ do not belong to N. Hence there exists a character $\gamma_0 \in \Gamma \setminus \{\gamma_1, \gamma_2, \dots, \gamma_n\}$ such that $\gamma_0 \in N$. Since \Im is contained in $M_{\gamma_0}, \hat{h}(\gamma_0) = \theta$. Hence $|\lambda(\hat{h}(\gamma_1))| = |\lambda(\hat{h}(\gamma_1)) - \lambda(\hat{h}(\gamma_0))| < |\lambda(\hat{h}(\gamma_1))|$. This is a contradiction. Therefore $L^1(G, B)$ does not contain a non-trivial separating ideal. Υ

The following result extends Theorem 3.3 of [7] (which in turn extends Theorem 5 of [11]) to some semiprime Banach algebras which do not posses the multiplicative identity. Theorem 4.3. Let G be a noncompact locally compact Abelian group, and B be a commutative semiprime Banach algebra in which every minimal prime ideal is contained in a regular maximal ideal. Then every derivation on $L^1(G, B)$ is continuous. Also every epimorphism form a commutative Banach algebra onto $L^1(G, B)$ is continuous.

Proof. Obviously follows from Theorem 4.1 and the closed graph theorem. ¥

Remark. If B has the multiplicative identity then every proper prime ideal is contained in a maximal ideal of B. Even if B does not have the multiplicative identity, in most of the algebras every minimal prime ideal is contained in a regular maximal ideal. Therefore the assumption in the above theorem that every minimal prime ideal contained in a regular maximal ideal of the algebra is not too restrictive.

REFERENCES

- W.G. Bade and P.C. Curtis, Jr. Prime ideals and automatic continuity for Banach algebras. J. Funct. Anal., vol. 29, 1978, pp 88-103.
- P.C. Curtis Jr. Derivations on commutative Banach algebras. in Proceedings, Long Beach, 1981, Lecture Notes in Math. (Springer-Verlag, Berlin, Heidelberg, New York), 975, 1983, pp 328-333.
- J. Cusack. Automatic continuity and topologically simple radical Banach algebras. J. London Math. Soc., vol 16, 1977, pp 493-500.
- H.G. Dales. Automatic continuity: A survey. Bull. London Math. Soc., vol 10, 1978, pp 129-183.
- J. Diestel and J.J. Uhl. Vector measures. Math Surveys (Amer. Math. Soc., Providence, RI, vol 15, 1977.
- R. Garimella. On nilpotency of the separating ideal of a derivation. Proc. Amer. Math. Soc., vol 117, 1993, pp 167-174.
- R. Garimella. On continuity of derivations and epimorphisms on some vector-valued group algebras. Bull. Austral. Math. Soc., vol 56, 1997, pp 209-215.
- A. Hausner. The Tauberian Theorem for Group algebras of vector-valued functions. Pacific J. Math., vol 7, 1957, pp 1603-1610.
- G.P. Johnson. Space of function with values in a Banach algebra. Trans. Amer. Math. Soc., vol 92, 1959, pp 411-429.
- M.M. Neumann.Automatic continuity of linear operations in Functional analysis, surveys and recent results II, North-Holland math. Studies (North-Holland, Amsterdam, New York), vol 38, 1980, pp 269-296.
- 11. M.M. Neumann and M.V. Velasco. Continuity of epimorphisms and derivations on vector-valued group algebras. Arch. Math. (Basel), vol 68, 1997, pp no.2 151-158.

- 12. W. Rudin. Fourier analysis on groups. Interscience, New York, London, 1962.
- A.M. Sinclair. Automatic continuity of linear operators. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, London/New York, vol 21, 1976.

Department of Mathematics Tennessee Technological University Cookeville, TN 38505 USA e-mail: RGarimella@tntech.edu