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ON THE SEPARATING IDEALS OF SOME
VECTOR-VALUED GROUP ALGEBRAS

RAMESH V. GARIMELLA

Abstract. For a locally compact Abelian group G, and a commutative Banach
algebra B, let L1(G,B) be the Banach algebra of all Bochner integrable func-
tions. We show that if G is noncompact and B is a semiprime Banach algebras
in which every minimal prime ideal is contained in a regular maximal ideal, then
L1(G,B) contains no nontrivial separating ideal. As a consequence we deduce
some automatic continuity results for L1(G,B).

1. INTRODUCTION. For any locally compact Abelian group G, and commutative

Banach algebra B, let L1(G,B) denote the convolution algebra of all integrable functions

on G with values in B. As one might expect, there are some interesting similarities between

B and L1(G,B). For instance, L1(G,B) is semi-simple if and only if B is semi-simple, and

the regular maximal ideals of L1(G,B) are closely related in a natural way with the regular

maximal ideals of both L1(G,B) and B. Also, L1(G,B) is Tauberian if and only if B is

Tauberian. Refer to [8,9] for the proofs of the above results. Also it is easy to note that

L1(G,B) is semiprime when B is semiprime. The question whether the zero ideal is the

only separating ideal in a semiprime Banach algebra still seems to be open. However, in

this paper we prove that when G is a noncompact locally compact Abelian group, and B is

a commutative semiprime Banach algebra (not necessarily unital) in which every minimal

prime ideal is contained in a regular maximal ideal, then L1(G,B) contains no non-trivial

separating ideal. As a consequence we deduce some automatic continuity results for the

algebra L1(G,B). Our results extend some of the results in [11] for non unital Banach

algebras, and also extend some results in [7] for semiprime Banach algebras. For relevant

information on L1(G,B) and for related results in harmonic analysis on Abelian groups,
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see [5,8,9,12].

2. PRELIMINARIES. Let B be a commutative Banach algebra (not necessarily

unital), and let G be a locally compact Abelian group with Haar measure m. Throughout

the following, the dual group of G is denoted by Γ and the spectrum of B is denoted by

∆(B). Let L1(G,B) denote the Banach algebra of all integrable function from G into B,

(f ∗ g)(t) :=
Z
G

f(t− s)g(s)dm for all f, g ∈ L1(G,B) and t ∈ G,

and let kfk1 :=
R
G
kf(t)kdm(t) for all f ∈ L1(G,B). Recall that for any f ∈ L1(G,B), and

γ in the dual group Γ of G, �f(γ) =
R
G
γ(t)f(t)dm(t) is known as the vector-valued Fourier

transform of f at γ. Furthermore for any γ ∈ Γ, let Mγ := {f ∈ L1(G,B) : �f(γ) = θ}
where θ is the zero vector of B. Clearly, Mγ is a closed ideal of L

1(G,B). If B has no

non-trivial zero divisors, then Mγ is a closed prime ideal of L
1(G,B). Recall that an ideal

I of a commutative Banach algebra is said to be prime if the product xy ∈ I only if either
x ∈ I or y ∈ I. It is an easy consequence of the Hahn-Banach theorem that ∩

γ∈Γ
Mγ is the

zero ideal in L1(G,B). For any γ ∈ Γ, φ ∈ ∆(B), let

Mγ,φ := {f ∈ L1(G,B)|φ( �f(γ)) = 0}.

The regular maximal ideals of L1(G,B) are given by Mγ,φ for some γ ∈ Γ, and φ ∈ ∆(B)
([8]).

For each f ∈ L1(G), and x ∈ B, we let

(f ⊗ x)(s) = f(s)x for all s ∈ G.

We recall some of the properties of the product f ⊗ x in the following proposition.
Proposition 2.1. Let G be a locally compact Abelian group, and let B be a commutative

Banach algebra. Let x, y ∈ B; f, g ∈ L1(G); and γ a non-trivial continuous character on
G. Then,
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(i) f ⊗ x ∈ L1(G,B), and kf ⊗ xk1 = kfk1kxk

(ii) (f ± g)⊗ x = f ⊗ x± g ⊗ x

(iii) \f ⊗ x(γ) = �f(γ)x

(iv) (f ⊗ x) ∗ (g ⊗ x) = (f ∗ g)⊗ xy

(v) If B has the multiplicative identity 1, then (f∗g)⊗x = (f⊗x)∗(g⊗1) = (f⊗1)∗(g⊗x)

(vi) If fn → f in L1(G) and xn → x in B, then fn ⊗ xn → f ⊗ x in L1(G,B).

3. Main Results

Before we get to the main results, we need the following lemmas.

Lemma 3.1. Let G be a noncompact locally compact Abelian group, B a commutative

Banach algebra, and f a non-zero function in L1(G,B). For a given γ in the dual group Γ

of G and a positive number ε, there exist f1, f2, . . . , fn in L
1(G) with compactly supported

Fourier transforms and x1, x2, . . . , xn in B such that kf −
nX
i=1

fi⊗xik < ²+k �f(γ)k, where
�fi(γ) = 0 for 1 ≤ i ≤ n.

Proof. Since Þnite linear combinations of the elements of the form h⊗ x where
h ∈ L1(G), and x ∈ B are dense in L1(G), and the functions in L1(G) with compactly

supported Fourier transforms are dense in L1(G), there exist h1, h2, . . . , hn in L
1(G) with

compactly supported Fourier transforms and x1, x2, . . . , xn in B such that

kf −
nX
i=1

hi ⊗ xik < ε

2
. For 1 ≤ i ≤ n, let Supp �hi = {α ∈ Γ : �hi(α) 6= 0}. For each

1 ≤ i ≤ n, we deÞne

g(t) =
χ(∪nj=1Supp �hj)

m(∪nj=1Supp �hi)
γ(t),

where χ(∪nj=1Supp �hj) is the characteristic function of (∪
n
j=1Supp

�hi), and fi = hi− �hi(γ)g.
Clearly g and the fi�s belong to L

1(G). It is easy to see that �g(γ) = 1, �fi(γ) = 0 for each
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i, and kgk1 = 1. We have

kf −
nX
i=1

(fi ⊗ xi)− g ⊗ �f(γ)k

= kf −
nX
i=1

(hi ⊗ xi) +
nX
i=1

(hi ⊗ xi)−
nX
i=1

(fi ⊗ xi)− g ⊗ �f(γ)k

≤ kf −
nX
i=1

(hi ⊗ xi)k+ k
nX
i=1

(hi − fi)⊗ xi − g ⊗ �f(γ)k . . . (A)

Furthermore,

k
nX
i=1

(hi − fi)⊗ xi − g ⊗ �f(γ)| = k
nX
i=1

�hi(γ)g ⊗ si − g ⊗ �f(γ)k

=

Z
G

k
nX
i=1

�hi(γ)g(t)xi − g(t) �f(γ)kdm(t)

=
1

m(∪nj=1Supp �hj)

Z
G

k
nX
i=1

�hi(γ)χ(∪nj=1Supp �hj)γ(t)xi − χ(∪nj=1Supp �hj)γ(t)
�f(γ)kdm(t)

=
1

m(∪nj=1Supp �hj)

Z
(∪nj=1Supp hj)

k
nX
i=1

�hi(γ)xi − �f(γ)kdm(t)

= k
nX
i=1

�hi(γ)xi − �f(γ)k ≤ kf −
nX
i=1

hi ⊗ xik < ε

2
. . . (B)

From (A) and (B) it follows that kF −
nX
i=1

fi ⊗ xi − g ⊗ �f(γ)k < ². Hence

kf −
nX
i=1

fi ⊗ xik < ²+ k �f(γ)k. This completes the proof of the Lemma. ¥

Lemma 3.2. Let G be a noncompact locally compact Abelian group, B a commutative

Banach algebra, and f a non-zero function in L1(G,B). For a given γ in the dual group Γ

of G and a given positive number ² > 0, there exist g1, g2, . . . , gn in L
1(G), a neighborhood

V of γ, and x1, x2, . . . , xn in B such that

kf −
nX
i=1

gi ⊗ xik < ²+ k �f(γ)k

where �gi = 0 on V for 1 ≤ i ≤ n.
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Proof. By Lemma 3.1, there exist f1, f2, . . . , fn in L
1(G) with compactly supported

Fourier transforms, and x1, x2, . . . , xn in B such that

kf −
nX
i=1

fi ⊗ xik < ²

2
+ k �f(γ)k

where �fi(γ) = 0. Since L
1(G) satisÞes the Ditkin�s condition ([12]), there exist

g1, g2, . . . , gn in L
1(G), and a neighborhood V of γ such that �gi = 0 on V , and

kfi − gik1 < ²

2(1 +
nX
i=1

kxik)

for 1 ≤ i ≤ n. Now

kf −
nX
i=1

gi ⊗ xik1 ≤ kf −
nX
i=1

fi ⊗ xik1 + k
nX
i=1

(fi − gi)⊗ xik1

≤ ²

2
+ k �f(γ)k+

nX
i=1

kfi − gik1kxik

<
²

2
+ k �f(γ)k+ ²

2(1 +
nX
i=1

kxik)
(
nX
i=1

kxik)

= ²+ k �f(γ)k. ¥

Corollary 3.3. Let f ∈ L1(G,B), and γ ∈ Γ such that �f(γ) = θ. Given ² > 0, there

exist g1, g2, . . . gn in L
1(G) with a vanishing Fourier transform in a neighborhood V of γ,

and x1, x2, . . . , xn in B such that kf −
nX
i=1

gi ⊗ xik < ².

Proof. Obviously follows from the Lemma 3.2. ¥

Now we are ready for the main results of the section.

Theorem 3.4 Let G be a locally compact Abelian group, γ a continuous character on G,

and P a prime ideal contained in Mγ . Then P is dense in Mγ .

Proof. Let P be a prime ideal of L1(G,B) contained in Mγ . Let f be a function with

�f identically equal to the zero vector in a neighborhood V of γ. We claim that f belongs
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to P . For, if g belongs to L1(G) with �g(γ) 6= 0, �g = 0 on Γ− V , and x a non-zero vector
in B, then (g ⊗ x) ∗ f = Θ (the zero vector of L1(G,B)). Since P is a prime ideal of

L1(G,B), either g ⊗ x ∈ P or f ∈ P. But �g ⊗ x(γ) = �g(γ)x 6= θ. Hence f ∈ P . Thus
all the functions f in L1(G,B) with vanishing Fourier transforms in a neighborhood of γ

belong to P . Hence by Lemma 3.2, it follows that P is dense in Mγ . This completes the

proof of the theorem. ¥

Theorem 3.5. Let G be a noncompact locally compact Abelian group, and B be a

commutative Banach algebra. If P is a closed prime ideal of L1(G,B) contained in Mγ,φ

for some γ ∈ Γ, and φ ∈ ∆(B), then P contains Mγ . Furthermore P does not contain Mσ

for any σ 6= γ.

Proof. Let f ∈Mγ . By Corollary 3.3, f can be approximated by a function g in L
1(G,B)

with vanishing Fourier transform in a neighborhood V of γ. By an argument similar to

the one given in Theorem 3.4, we can show g ∈ P. Since P is a closed ideal, it follows

that f ∈ P . Thus Mγ is contained in P. Let σ ∈ Γ such that σ 6= γ. Suppose Vσ and Vγ
are compact neighborhoods of σ and γ respectively such Vσ ∩ Vγ = ∅. Then there exist
functions fσ and fγ from G into the complex plane with the support of �fσ contained in Vσ

and the support of �fγ contained in Vγ such that �fσ(σ) = 1 and �fγ(γ) = 1. Let x, y ∈ B
such that φ(x)φ(y) 6= 0. Then fσ⊗x, fγ⊗y ∈ L1(G,B) such that (fσ⊗x)∗ (fσ⊗y) = Θ.
Since P is a prime ideal contained in Mγ,σ, we get fσ ⊗ x ∈ P. Obviously fγ ⊗ y 6∈ P.
However fγ ⊗ y ∈Mσ. Therefore Mσ is not contained in P . ¥

4. Applications.

Recall that a closed ideal S of a commutative Banach algebra A is called a separating

ideal ([3]) if it satisÞes the following condition: For each sequence {ak}k≥1 in A there is a
positive integer n such that a1a2 · · · anS = a1a2 · · · akS (k ≥ n). For any derivation D on

A, let =(D) =: {a ∈ A| there is a sequence {an} in A with an → 0 and Dan → a}. For any
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epimorphism h form a commutative Banach algebra X onto A, let =(h) =: {a ∈ A| there
is a sequence {xn} in X with xn → 0 and h(xn) → a}. It is easy to show that =(D),and
=(h) are closed ideals of A. By the closed graph theorem D is continuous if and only if

=(D) is zero. Similarly h is continuous if and only if =(h) is zero. It is well known that
=(D) and =(h) are separating ideals of A ([13]). For further information on separating

ideals, their relation to the prime ideals of the Banach algebra, and for related results on

automatic continuity theory, see [1,2,3,4,6,10].

Now we are ready to state one of the main results of the section.

Theorem 4.1. Let G be a noncompact locally compact Abelian group G, and B a

commutative semiprime Banach algebra in which every minimal prime ideal is contained

in a regular maximal ideal. Then L1(G,B) contains no nontrivial separating ideal.

Lemma 4.2. Let G be a noncompact locally compact Abelian group G, and B a com-

mutative semiprime Banach algebra. For any γ ∈ Γ, Mγ = ∩
P∈Iγ

P where Iγ is the set of
all minimal prime ideals of L1(G,B) containing Mγ .

Proof. Let f ∈ ∩
P∈Iγ

P . Since there is a one-to-one correspondence between the prime
ideals of the quotient algebra L1(G,B)/Mγ and the prime ideals of the algebra L

1(G,B)

containingMγ , there exists a positive integer n such that f ∗ f ∗ · · · ∗ f| {z }
n times

∈Mγ . This implies

( �f(γ))n = θ. Since B is semiprime, �f(γ) = θ. Hence f ∈Mγ . ¥

Proof of Theorem 4.1. If possible assume that = is a nontrivial separating ideal in

L1(G,B).

Claim. = is contained in all but Þnitely many Mγ for γ ∈ Γ.
Proof of the claim. Let M be the set of all minimal prime ideals of L1(G,B) not

containing =. By [3]M is a Þnite set. Let

M∆ = {P ∈M|P ⊆Mγ,φ for some (γ,φ) ∈ Γ×∆(B)}

andM∆0 =M−M∆. By Theorem 3.5, each member ofM∆ contains a unique Mγ for
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some γ ∈ Γ. Let ΓM∆ = {γ ∈ Γ|Mγ ⊆ P for some P ∈M∆}. Obviously ΓM∆ is a Þnite

set. Since = is contained in all but Þnitely many closed prime ideals of L1(G,B) ([3]), and
since any prime ideal contains a minimal prime ideal, it follows that ΓM∆ is not empty.

Let γ ∈ Γ − ΓM∆ . By Lemma 4.2, Mγ = ∩
P∈Iγ

P where Iγ is the set consisting of all
minimal prime ideals of L1(G,B) containing Mγ . Write Iγ = I∆ ∪ I∆0 ∪ I∆00 where

I∆ = {P ∈ Iγ |P ⊆Mγ,φ for some φ ∈ ∆(B)},

I∆0 = {P ∈ Iγ |P contains =, and P 6⊆Mγ,φ for each φ ∈ ∆(B)}

and

I∆00 = {P ∈ Iγ |P does not contain = and P 6⊆Mγ,φ for each φ ∈ ∆(B)}.

Notice that I∆00 is almost a Þnite set, and each P in I∆ contains =. Obviously

M = ( ∩P
P∈I∆∪I∆0

) ∩ ( ∩P
P∈I∆00

).

In the above, if I∆00 is empty then ∩P
P∈I∆00

is taken to be L1(G,B). Since I∆00 is utmost a

Þnite set, and Mγ,φ is a prime ideal for each φ ∈ ∆(B), ∩PP∈I∆00
6⊆Mγ,φ. Let f ∈ ∩P

P∈I∆∪I∆0
.

Choose g ∈ ( ∩P
P∈I∆00

\Mγ,φ). Then fg ∈ Mγ . Since φ(�g(γ)) 6= 0 for each φ ∈ ∆(B), by the
assumption on B, �f(γ) belongs to every minimal prime ideal of B. Since B is semiprime,

�f(γ) = θ. Thus Mγ = ∩P
P∈I∆∪I∆0

. This implies = ⊂ Mγ . This completes the proof of the

claim.

For the remainder of the proof, the argument is similar to Theorem 3.3 of [7].

Let ΓM∆
= {γ1, γ2, · · · , γn}. Let h ∈ (G ∩ (∩ni=2Mγi))\Mγ1 . Since there exists a minimal

prime ideal P ∈M contains Mγ1 but not any of the Mγi �s for 2 ≤ i ≤ n, such a function
h exists. Since �h(γ1) 6= θ, there exists a continuous linear functional λ on B such that

λ( �f(γ1)) 6= 0. Consider the basic open set

N = {γ ∈ Γ : |λ(�h(γ))− λ(�h(γ1))| < |λ(�h(γ1))|}
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of Γ containing γ1. Since G is a noncompact Abelian group, γ1 is not an isolated point in Γ.

By the choice of h, the characters γ2, γ3, · · · , γn do not belong to N . Hence there exists a
character γ0 ∈ Γ\{γ1, γ2, · · · , γn} such that γ0 ∈ N . Since = is contained inMγ0 ,

�h(γ0) = θ.

Hence |λ(�h(γ1))| = |λ(�h(γ1))− λ(�h(γ0))| < |λ(�h(γ1))|. This is a contradiction. Therefore
L1(G,B) does not contain a non-trivial separating ideal. ¥

The following result extends Theorem 3.3 of [7] (which in turn extends Theorem 5 of

[11]) to some semiprime Banach algebras which do not posses the multiplicative identity.

Theorem 4.3. Let G be a noncompact locally compact Abelian group, and B be a

commutative semiprime Banach algebra in which every minimal prime ideal is contained

in a regular maximal ideal. Then every derivation on L1(G,B) is continuous. Also every

epimorphism form a commutative Banach algebra onto L1(G,B) is continuous.

Proof. Obviously follows from Theorem 4.1 and the closed graph theorem. ¥

Remark. If B has the multiplicative identity then every proper prime ideal is contained

in a maximal ideal of B. Even if B does not have the multiplicative identity, in most of the

algebras every minimal prime ideal is contained in a regular maximal ideal. Therefore the

assumption in the above theorem that every minimal prime ideal contained in a regular

maximal ideal of the algebra is not too restrictive.
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