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Abstract: The technique of simulated annealing
combined with various greedy methods is applied to
random bipartite graphs of different sizes and densi-
ties in order to reduce the number of edge crossings.
Experimental results demonstrate that when random
moves are combined with systematic steps within
simulated annealing, the edge intersections in bipar-
tite graphs can be reduced considerably in a reason-
able amount of execution time. In particular, one of
the cooling techniques used during the experiments
reduces the execution time by half without sacrificing
the quality of the layouts. Finally, we conclude by
discussing work-in-progress of a prototype tool,
which can facilitate the process of visualizing various
layouts of bipartite graphs during the experiments.

1. Introduction
The problem of minimizing the number of edge inter-
sections in bipartite graphs has been shown to be NP-
complete [Garey 83]. Many greedy heuristics have
been proposed and experimentally tested to find sub-
optimal solutions within polynomial time [Junger 95,
Linos 91, Eades 94, Battista 94]. One of the main dis-
advantages of the greedy heuristics is that they may
get trapped in a local minimum which may be far
worse than the global one, and have no way of leaving
to that local minimum. As a possible remedy to this
problem, the method of simulated annealing has been
studied in order to address the general layout problem
of graphs [Davidson 89]. This approach allows for
more drastic steps to be taken, based on a probability,
from a given state to a worse one in hopes of eventu-
ally arriving at or getting closer to the global mini-
mum. Simulated annealing permits movements from a
local minimum to help avoid getting trapped in an
undesirable position. So far,

experimental results demonstrate that simulated an-
nealing can provide a promising approach, although
slow, for producing aesthetically pleasing graph
drawings [Coleman 96].The main objective of this
work is to apply the technique of simulated annealing
with a focus on minimizing edge intersections in bi-
partite graphs. More specifically, the combination of
simulated annealing with various greedy methods and
its effect on bipartite graphs is experimentally studied.

The rest of this paper is organized as follows:
the second section presents some necessary terminol-
ogy and the third presents the proposed multi-strategy
simulated annealing method. The fourth section de-
scribes the experimental study, and the fifth one dis-
cusses some research issues that are currently under
further investigation.

2. Terminology
A graph G(V,E) with a vertex set V and an edge set E
is called a bipartite graph if V can be partitioned into
two nonempty sets V1 and V2 such that  V = V1 ∪ V2
and E ⊆ V1 x V2 . The bipartite graphs considered in
this paper all have the property that |V1| =  |V2|, but
that is not necessary in general. If  |V1| = n  then a bi-
partite graph can be drawn in the following manner.
Each vertex is a point (i,b) in the plane where
1 ≤ ≤i n and b = 0 or 1. Each edge is a line segment
from (i,b1) to (j,b2) where 1 ≤ ≤i j n,  and b1 and b2 are
either 0 or 1 but not equal. Two edges are said to
cross or intersect if their line segments intersect at
some point other than at a vertex. The set of vertices
that have the same second coordinate is called a level.
A bipartite graph can be represented by an n x n ma-
trix in which the (i,j)-th entry is 1 if there is an edge
from i V∈ 1  to j V∈ 2 , and 0 if no such edge exists.

3. Multi-Strategy Simulated Annealing



The technique of simulated annealing has been ap-
plied to several optimization problems including the
problem of producing aesthetically pleasing graph
drawings [Davidson 89]. Some of the history of
simulated annealing as well as its applications to other
areas are described in [McLaughlin 89, Johnson 89].
In the case of minimizing edge intersections in bipar-
tite graphs, if a heuristic rearranges a graph into one
that has fewer intersections, the new graph is always
accepted. An arrangement with more intersections is
accepted whenever a randomly-generated probability
taken from the uniform distribution between 0 and 1

is less than e T−∆
 where ∆  is the increase in the num-

ber of intersections and T is what is called the tem-
perature of the system. So, if the increase in the num-
ber of intersections is very large, the new graph is un-
likely to be accepted. Also, the higher the tempera-
ture, the more likely that a configuration with more
intersections is accepted.

In this work, we present six different varia-
tions (or strategies) of simulated annealing which are
summarized in Table I. In this table, each row con-
tains a simulated annealing strategy in which two dif-
ferent layout methods are combined. For each strat-
egy, the drastic step describes how vertices are rear-
ranged when the temperature is decreased during the
annealing process. The modest step shows how verti-
ces are rearranged while the temperature is being held
constant. The terms Averaging, Greedy Adjacent Pair
Switching and Greedy Insertion used in Table I refer
to three classic heuristics described in [Eades 89].
Briefly, we explain them here. In the averaging heu-
ristic a vertex i is placed in position j, where j is the
average of the positions of its adjacent vertices on the
opposite level. The greedy adjacent pair switching
heuristic considers consecutive vertices i and i+1 on
the same level. The two vertices are switched. If the
graph has fewer intersections after the switch, that
new configuration is accepted. Otherwise, the vertices
are returned to their original positions. The process of
rearrangement continues on the same level until no
consecutive switches yield improvement. The method
is then applied to the opposite level. The greedy in-
sertion method involves placing each vertex, one at a
time, in each of the positions 1 through n on the same

level and selecting the position for that vertex that
gives the fewest number of intersections. The process
of insertion is then performed on the opposite level.
For all the above described heuristics, the overall pro-
cess is repeated between levels until no further im-
provement is accomplished.

The rest of the heuristics follow a more ran-
dom approach. Specifically, the random pair switch-
ing heuristic switches pairs of vertices randomly. The
number of pairs to be switched is chosen at random as
are the pairs themselves. The random rearrangement
is a permutation, chosen at random, on all n vertices
on a level. The limited random insertion involves
choosing k random vertices on which to perform
greedy insertion. In this case, both the number of ver-
tices and the vertices themselves are chosen at ran-
dom. Finally, the random insertion approach chooses
the vertices as done in the limited random insertion
but inserts each into a position chosen at random.

4. An Experimental Study
An experimental study is set up in order to study how
the simulated annealing technique can improve the
layouts of bipartite graphs. In particular, the main ob-
jective of the experiments is to compare the perform-
ance, with respect to the reduction of edge intersec-
tions, of the six different variations of simulated an-
nealing described in the previous section.

4.1. Framework
Two performance metrics are used during the experi-
ments; the reduction of edge intersections as a per-
centage of the original number of intersections and
the execution time needed. The experiments are per-
formed for different combinations of graph sizes and
densities. The size n corresponds to the number of
vertices on either level of the graph and the density
represents the number of edges in the given graph di-
vided by n2. A summary of the experimental planning
is shown in Table II. Specifically, we run experiments
for bipartite graphs with size no greater than 100 ver-
tices. For each size and density we randomly generate
twenty different graphs.



TABLE I : Description of multi-strategy simulated annealing
DRASTIC STEP MODEST STEP

STRATEGY I Averaging Greedy Adjacent Pair Switching
STRATEGY II Averaging Greedy Insertion
STRATEGY III Random Pair Switching Greedy Adjacent Pair Switching
STRATEGY IV Random Rearrangement Limited Random Insertion
STRATEGY V Random Rearrangement Random Pair Switching
STRATEGY VI Random Rearrangement Random Insertion

TABLE II : Summary of the experimental planning
Metrics 1.  Reduction of edge intersections as a percentage

1.  Execution time
Input Parameters

Input Parameters,
(contd.)

1.    Size = {10, 20, 30, 40, 50, 60, 80, 100}
2.    Density = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
3.  Initial temperature = {0.8}
4.  Temperature length = {.5n}
5.  Temperature cooling method = {geometric, standard deviation, symmetric

swap}
6.  Definition of frozen ={temperature=0.05}

Graphs Per Strategy 20 graphs x 48 (from 1 and 2 above) x 3 cooling methods = 2880 graphs
Total Experiments 6 heuristics x 2880 graphs = 17,280 graphs

For each graph, the overall reduction of edge inter-
sections is measured and the average of the reduction
of the twenty graphs is computed. Three decisions
that must be made when implementing simulated an-
nealing are how high the initial temperature should
be, how the temperature should be reduced, and how
low the temperature should be allowed to go before
quitting. In our experiments, we set the temperature
function to be initially high at 0.8 and then let it de-
crease gradually. When the temperature is initially
high, it is more likely at the beginning of the experi-
ments that a graph with more intersections will be ac-
cepted. All six simulated annealing strategies are
tested using three different cooling methods. The first
one is the geometric method in which the temperature
is decreased by multiplying the previous temperature
by .95. The second method is described in
[McLaughlin 89] and it uses a standard deviation in
order to determine the temperature decrease. In the
symmetric swap method, the temperature is decreased
by multiplying by one of three numbers. The multi-
plier is chosen based on the most recent improvement

in the number of intersections. A large reduction in
the number of intersections results in using the largest
multiplier, so the system “cools” more. A small re-
duction leads to the use of the smallest multiplier so
the system cools only a little. A reduction in the mid-
dle results in the use of the middle multiplier. In all
three cooling methods, the simulated annealing proc-
ess terminates when the temperature reaches 0.05. All
six strategies are implemented in C++ and the ex-
periments are performed on a dedicated high-speed
PC platform.  The implementation also includes a
random generator for bipartite graphs.

4.2. Discussion of Particular Results when the
Density is 0.4
In this section, we discuss some results of the experi-
ments using the three cooling methods on graphs with
density 0.4 and size from n = 10 to n = 60. In these
experiments, we measure both the execution time
(Figures 1-3), and the reduction of intersections as a
percentage with respect to the initial number of
crossings (Figures 4-6). Each point on the following



six charts represents an average time/improvement of
the twenty graphs experimented on for that particular
size and cooling method. With regard to execution
time, the average time taken by the symmetric swap
cooling method is about half that of the other two
cooling methods without any loss in improvement.
Thus, it appears to be the best cooling method of the
three tested. With regard to improvement, both the
range and the shape of all improvement graphs for all
cooling methods are very similar. For all three cooling
methods, Strategy IV takes the longest amount of time
and Strategy II takes the next longest. Also for all
cooling methods experimented on, the other four
strategies are clustered together, requiring the same
amount of time. In each cooling method, Strategy IV
takes about 2.5 times as long and Strategy II takes
about 1.5 times as long as the other four strategies do,
on average. Each improvement chart shows two
strategies separate from the other four. The top two
strategies are Strategies I and III, with improvement
ranging from 30% for n = 10 to 11% for n = 60. Since
both these strategies are in the group of four strategies
having minimal time, Strategies I and III are the pre-
ferred strategies for all cooling methods. The other
four strategies in decreasing order of improvement are
Strategy IV, Strategies V and VI (very close together)
and Strategy II. In each cooling method, the percent-
age of improvement of these four strategies converges
to about 5% as the size of the graphs experimented on
increases, but still maintains separation from the im-
provement of the top two strategies. Although Strat-
egy IV is the closest to the top two strategies in im-
provement, it also has the greatest execution time.
Since Strategy II is worst in improvement and takes
the second greatest amount of time, it is the least de-
sirable method. All of the data in this section refer to
graphs with a density of 0.4, but the data are repre-
sentative of all densities tested as evidenced in the
next section.

4.3. Relative Comparison of the Experimental Re-
sults
Tables III through VIII on the following page summa-
rize the average execution times and average per cent
improvement for all six strategies and all three cool-

ing methods for d = .1 through .4 and from n = 10 to n
= 60. Each strategy is compared to Strategy III both in
time and improvement. Each individual number in the
table is the ratio of the time/improvement for that
strategy to the time/improvement of Strategy III for a
particular cooling method, density and size. The two
numbers separated by a hyphen represent the lower
and upper bounds for that ratio for the two densities
and three sizes that determine the individual cell. For
example, in Table III the entry 1.03-1.25 in the
Size=20-30 and Density=0.3-0.4 cell for Strategy I
means that Strategy I on the average, took at least
1.03 times as long and at most 1.25 times as long as
Strategy III for those sizes and densities. The execu-
tion time ratios for graphs with 10 vertices per level
have been omitted because the total execution time
for the 20 graphs was less than 1.00 seconds. As with
the particular density discussed in the previous sec-
tion,  Strategies I and III  are very close to one an-
other and while the execution times for both are
similar to those for Strategies V and VI, Strategies I
and III are better in improvement than all other strate-
gies. That is, Strategies I (averaging and greedy adja-
cent pair switching) and III (random pair switching
and greedy adjacent pair switching) are the best
strategies when both time and improvement are taken
into account. Strategy IV (random rearrangement and
limited random insertion) is the slowest of the strate-
gies and Strategy II (averaging and greedy insertion)
is the least desirable of the six strategies.

5. Work in Progress
Currently, we are working towards various improve-
ments of our simulated annealing strategies. These
efforts include attempts to reduce the execution time
by either reducing the initial temperature or in more
drastic cases, terminating the whole process when in-
significant improvement is made. Moreover, we are
experimenting with smaller limits on the number of
iterations and/or passes on each level of the bipartite
graph. In addition, a prototype tool for visualizing
layouts of bipartite graphs is under development. It is
implemented using Tcl/Tk which is a programming
environment that includes a scripting language for
developing graphical user interfaces [Welch 95].
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Figure 1: Average Execution Time
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Figure 3: Average Execution Time
Standard Deviation Cooling method
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 Figure 5: Average Execution Time
Symmetric Swap Cooling method
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Figure 2: Average Improvement
Geometric Cooling method
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Figure 4: Average Improvement
Standard Deviation Cooling method
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 Figure 6: Average Improvement
Symmetric Swap Cooling method



TABLE III : Relative comparison of execution time for geomet-
ric cooling

Density
0.1-0.2

Density
0.3-0.4

Size=20-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.78-1.46
1.43-1.77
2.56-3.15
0.78-1.46
1.11-1.46

1.03-1.25
1.40-1.63
2.24-2.71
0.95-1.08
1.04-1.08

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

1.03-1.07
1.50-1.56
2.62-3.05
1.00-1.07
1.07-1.24

1.01-1.02
1.49-1.51
2.38-2.50
1.00-1.01
1.01-1.07

TABLE IV : Relative comparison of performance for geometric
cooling
Density
0.1-0.2

Density
0.3-0.4

Size=10-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.89-1.00
0.50-0.76
0.66-0.81
0.58-0.77
0.58-0.74

1.00-1.00
0.41-0.61
0.63-0.81
0.53-0.74
0.57-0.73

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.94-1.06
0.35-0.52
0.45-0.66
0.41-0.60
0.43-0.62

1.00-1.07
0.40-0.49
0.52-0.61
0.48-0.55
0.51-0.57

TABLE V : Relative comparison of execution time for standard
deviation cooling

Density
0.1-0.2

Density
0.3-0.4

Size=20-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

1.05-1.14
1.24-1.55
2.63-3.06
0.95-1.08
1.10-1.48

1.01-1.13
1.44-1.49
2.37-2.55
0.99-1.02
1.03-1.13

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

1.02-1.08
1.50-1.54
2.64-3.06
1.00-1.06
1.07-1.27

1.01-1.03
1.49-1.51
2.37-2.52
0.99-1.00
1.02-1.06

TABLE VI : Relative comparison of performance for standard
deviation cooling

Density
0.1-0.2

Density
0.3-0.4

Size=10-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.92-1.00
0.56-0.79
0.65-0.80
0.60-0.86
0.58-0.77

0.99-1.00
0.44-0.64
0.70-0.99
0.57-0.76
0.61-0.76

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.93-1.07
0.35-0.54
0.43-0.67
0.40-0.58
0.42-0.62

1.00-1.06
0.40-0.50
0.53-0.58
0.48-0.56
0.40-0.59

TABLE VII : Relative comparison of execution time for sym-
metric swap  cooling

Density
0.1-0.2

Density
0.3-0.4

Size=20-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.67-1.22
0.83-1.63
1.50-3.17
0.67-1.22
0.88-1.83

0.98-1.09
1.37-1.67
2.26-2.92
0.95-1.08
0.92-1.09

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

1.02-1.08
1.48-1.94
2.60-3.72
1.00-1.31
1.07-1.51

1.01-1.02
1.47-1.51
2.35-2.49
0.98-1.01
1.02-1.07

TABLE VIII : Relative comparison of performance for symmet-
ric swap cooling

Density
0.1-0.2

Density
0.3-0.4

Size=10-30 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.91-1.01
0.46-0.78
0.64-0.78
0.54-0.83
0.53-0.69

0.99-1.00
0.40-0.60
0.61-0.89
0.51-0.66
0.52-0.70

Size=40-60 STRATEGY I
STRATEGY II
STRATEGY IV
STRATEGY V
STRATEGY VI

0.96-1.03
0.40-0.49
0.41-0.63
0.41-0.55
0.41-0.61

1.01-1.05
0.39-0.45
0.47-0.55
0.44-0.53
0.45-0.58

The tool facilitates the process of visualizing and
comparing the original and improved layouts pro-
duced by the various simulated annealing strategies.



The rationale behind the use of such a tool is to allow
the user to decide whether the improvement of the
layout is aesthetically pleasing. Typical graph opera-
tions such as scale, load, save and highlight are cur-
rently supported. Finally, the graph visualization tool
is being expanded to allow the user to maintain con-
trol over the experiments. The person who conducts
the experimental study would be able to use the tool
in order to set the experimental framework (e.g. select
the desired combinations of strategies to run). Also,
he/she can set values to appropriate parameters (e.g.
size, density) or change the metrics (e.g. measure only
execution time or final number of intersections). Fi-
nally, the user may be given the option to actively in-
teract with the experimental system and have the
ability to interrupt the experiments. For instance, if
the user considers a layout to be legible and aestheti-
cally pleasing, he/she can terminate the overall proc-
ess of the experiment and accept that layout as a final
one.
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