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ABSTRACT.  In two previous studies we investigated the non-routine problem-
solving abilities of students just finishing their first year of a traditionally taught
calculus sequence. This paper1 reports on a similar study, using the same non-
routine first-year differential calculus problems, with students who had completed
one and one-half years of traditional calculus and were in the midst of an ordinary
differential equations course.   More than half of these students were unable to
solve even one problem and more than a third made no substantial progress toward
any solution.  A routine test of associated algebra and calculus skills indicated that
many of the students were familiar with the key calculus concepts for solving these
non-routine problems; nonetheless, students often used sophisticated algebraic
methods rather than calculus in approaching the non-routine problems.  We
suggest a possible explanation for this phenomenon and discuss its importance for
teaching.

1.  Introduction

Two previous studies demonstrated that C and A/B students from a traditional first
calculus course had very limited success in solving non-routine problems [12, 13].  Further,
the second study showed that many of these students were unable to solve non-routine
problems for which they appeared to have an adequate knowledge base.  This raised the
question of whether more experienced students, those towards the end of a traditional
calculus/differential equations sequence, would have more success; in particular, would they
be better able to use their knowledge in solving non-routine problems?  Folklore has it that
one only really learns material from a mathematics course in subsequent courses.  The results
reported here in part support and in part controvert this notion.  As will be discussed, the
differential equations students in this study often used algebraic methods (ideas first
introduced to them several years before their participation in the study) in preference to
those of calculus courses taken more recently. These students, who had more experience
with calculus than those in the first two studies, appealed to sophisticated arithmetic and
algebraic arguments more frequently than students in the earlier studies.  While somewhat
more accomplished in their problem-solving ability, slightly more than half of them still
failed to solve a single non-routine problem, despite many having an apparently adequate
knowledge base.

As in the previous two studies, what we are calling a non-routine or novel problem is
simply called a problem, as opposed to an exercise, in problem-solving studies [10].    A
problem  can be seen as comprised of two parts: a task and a solver.  The solver comes

                                                          
1We would like to acknowledge partial support from the Exxon Education Foundation and Chapman and
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equipped with information and skills and is confronted with a cognitively non-trivial task;
that is, the solver does not already know a method of solution.  Seen from this perspective, a
problem cannot be solved twice by the same person, nor is a problem independent of the
solver’s background. In traditional calculus courses most tasks fall more readily into the
category of exercise than problem. However, experienced teachers can often predict that
particular tasks will be problems for most students in a particular course, and tasks that
appear to differ only slightly from traditional textbook exercises can become problems in
this sense.

In this study we used the same two tests as before: a five-problem non-routine test and a
ten-question routine test (see Sections 2.3.1 and 2.3.2).  The second, routine, test was
intended to assess basic skills sufficient to solve the corresponding non-routine problems on
the first test.  This allowed some distinction to be made between the lack of routine skills
and the inability to access such skills in order to develop a solution method for the
associated non-routine problem.

2.  The Course, the Students, and the Tests

2.1 The Calculus/Differential Equations Sequence
The setting is a southeastern comprehensive state university having an engineering

emphasis and enrolling about 7500 students -- the same university of the earlier studies of C
and A/B first-term calculus students [12, 13].  The annual average ACT composite score of
entering freshman is slightly above the national average for high school graduates, e. g., in
the year the data was collected the university average was 21.1, compared to the national
average of 20.6.

A large majority of students who take the calculus/differential equations sequence at this
university are engineering majors.  The rest are usually science or mathematics majors.  A
separate, less rigorous, three-semester-hour calculus course is offered for students majoring
in other disciplines.

Until Fall Semester 1989, the calculus/differential equations sequence was offered as a
five-quarter sequence of five-hour courses.  Since then, it has been offered as a four-
semester sequence.  Under both the quarter and the semester system it has been taught, with
very few exceptions, by traditional methods with limited, if any, use of technology and with
standard texts (Swokowski, Berkey, or Stewart, for calculus and Zill for differential equations
[2, 14, 15, 18]).  Class size was usually limited to 35-40 students, but some sections were
considerably smaller and a few considerably larger.  All but three sections were taught by
regular, full-time faculty of all ranks; the three exceptions were taught by a part-time
associate professor who held a Ph.D. in mathematics.  All instructors taught according to
their normal methods and handled their own examinations and grades.

2.2  The Students
The pool of 128 differential equations students considered in this study came from all

five sections of differential equations taught in Spring 1991, omitting only a few students
who had taken an experimental calculator-enhanced calculus course or who were
participants in the previous two studies.  All students in this pool had passed their  first term
of calculus with a grade of at least C.

In the middle of the Spring semester, all of the 128 beginning differential equations
students were contacted by mail and invited to participate in the study.   As with the
previous study of A/B calculus students [13], each student was offered $15 for taking the
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two tests and told he or she need not, in fact should not, study for them.  The students were
told that three groups of ten students would be randomly selected according to their first
calculus grades (A, B, C), and in each group there would be four prizes of $20, $15, $10, and
$5.  The latter was an incentive to ensure that all students would be motivated to do their
best.  Altogether 11 A, 14 B, and 12 C students volunteered and ten were randomly selected
from each group.  Of those, 28 students (10 A, 9 B, and 9 C) actually took the tests: three
mathematics majors and twenty-five engineering majors (nine mechanical, five chemical,
four civil, four electrical, two industrial, and one undeclared engineering concentration).
These majors reflected the usual clientele for the calculus/differential equations sequence.

At the time of the study, all but one of the 28 students tested had taken the third
semester of calculus at this university; the one exception was enrolled in Calculus III and
Differential Equations simultaneously.  Their grades in Calculus III were 5 A, 8 B, 8 C, 4 D,
and 2 F.  Of these, one D student and one F student were repeating Calculus III while taking
Differential Equations.  Twenty-three of the students took Calculus III in the immediately
preceding semester (Fall 1990).  Their grades and the grades of all students who took
Calculus III that semester are given in Table 1, which indicates that the better mathematics
students are over-represented in this study.

Grade Participants All Students
A 4  (17%) 8  (5%)
B 6  (27%) 24  (15%)
C 7  (30%) 49  (30%)
D 4  (17%) 41  (25%)
F 2  (9%) 33  (20%)
W                              0  (0%)                         10  (6%)
Total 23 (100%) 165  (100%)

TABLE 1.  Calculus III grades for the participants compared with those of all
students taking the course the previous semester

In Table 2 we give the mean ACT scores and the mean cumulative grade point averages
(GPA) at the time they took the test for the 28 students in this study.  The same information
is given for the students in our two earlier studies [12, 13].  The numbers for the Differential
Equations (DE) students are quite close to those of the A/B calculus students [13] but
considerably above those of the C calculus students [12].

Study Mean ACT Mean Math ACT Cumulative GPA
DE           26.26 27.74 3.145
(A/B) Calculus   27.12 28.00 3.264
(C)  Calculus   24.18 25.65 2.539

TABLE 2.  Mean ACT and GPA of students in all three studies

Eleven of the 28 differential equations students in this study had already taken additional
mathematics courses.  Of the three math majors, two had completed, and the third was
currently taking, a “bridge to proof” course, and the third had also taken discrete structures.
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In addition, five students had taken complex variables, and another was enrolled in that
course at the time of the study.  One of these five had also taken an introductory matrix
algebra course, as had two other students.  Except for one C, all grades for these students in
these additional mathematics courses were at least B.  In our analysis of the results we will
compare the students who had studied mathematics beyond the calculus/differential
equations sequence with those who had not.

Of the 28 students in this study, 22 (79%) graduated within six years of their admission
to the university as freshmen.  In comparison, for the university as a whole over the same
time period, the average graduation rate within six years of admission was 41%.

As of May 1999, it is known that all but two of the 28 students tested had earned
bachelor’s degrees at this university, three in math and the others in engineering.  In
addition, it is known that five students had earned master’s degrees in engineering and one
had earned an MBA, all at this university.  One student had earned a master’s degree in
mathematics at this university and a Ph.D. in mathematics at another university. There may
be additional accomplishments of these kinds among the 28 students, but they could not all
be traced.2

The students in this study represented 33% of the A’s, 26% of the B’s, and 6 % of the
C’s awarded in Differential Equations that semester, and none of the 30 D’s, F’s and W’s.
In addition, after a minimum of three semesters at this university, these 28 students had a
mean GPA of 3.145 for all courses taken.  Their graduation rate was almost double that of
the university as a whole, and at least 25% of them went on to complete a graduate degree.
By all these indicators, at the time of the study and subsequently, these students were among
the most successful at the university.

2.3  The Tests
Students were  allowed one hour to take the five-problem non-routine test, followed by

half an hour for the ten-part routine test comprised of associated algebra and calculus
exercises. Prior to the non-routine test, the students were told they might find some of the
problems a bit unusual.  No calculators were allowed.  They were asked to write down as
many of their ideas as possible because this would be helpful to us and to their advantage.
They were told A students (in first calculus) would only be competing against other A
students for prizes, and similarly, for B and C students.  They were assured all prizes would
be awarded and partial credit would be given.

Each non-routine problem was printed on its own page, on which student work was to
be done.  All students appeared to be working diligently for the entire hour.  As in the
previous studies [12, 13], each problem was assigned 20 points and graded by one of the
authors and checked by the others.  The mean score on the non-routine test was 21.3, as
compared with 20.4 for the A/B and 10.2 for the C calculus students [12, 13].  The lowest
non-routine score in all three studies was 0.

                                                          
2 Because the data were laid aside for some time, we are able to include this long-range information.
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2.3.1 The Non-routine Test

1. Find values of a and b so that the line 2x+3y=a is tangent to the graph of
2)( bxxf =  at the point where x=3.

2.    Does x21 + x19 - x -1 + 2 = 0 have any roots between –1 and 0? Why or why not?

3.    Let f(x)=
��

�
�

�

>++

≤

1,1

1,
2 xxbx

xax
. Find a and b so that f is differentiable at 1.

4.    Find at least one solution to the equation 4x3 – x4 = 30 or explain why no such
      solution exists.

5.    Is there an a such that 
32

132lim 2

2

3 −−
−−+−

→ xx
axaxx

x
 exists?  Explain your answer.

2.3.2  The Routine Test

1.  (a)   What is the slope of the line tangent to y=x2 at x=1?
     (b)   At what point does the tangent line touch the graph of y=x2?

2.  Find the slope of the line x+3y=5.
3.  If xxxf += 5)( , where is f increasing?

4.  If 1)( −= xxf , find )(xf ′ .

5.  (a)    Suppose f is a differentiable function.  Does f  have to be continuous?   

     (b)   Is =)(xf
�
�
�

≤
>

0,2
0,

x
xx

  continuous?

6.  Find the maximum value of 222)( xxxf −+−= .

7.  Find 
1
1lim

2

1 −
−

→ x
x

x
.

8.  Do the indicated division:  11 23 −+−− xxxx .

9.  If 5 is a root of 0)( =xf , at what point (if any) does the graph of )(xfy =
cross the x-axis?

10. Consider 
��

�
�
�

>+
≤=

1,3
1,)(

2

xx
xxxf .

(a) Find )(lim
1

xf
x +→

.

(b) What is the derivative of )(xf  from the left at x=1 (sometimes
called the left-hand derivative)?
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As soon as the non-routine tests were collected, the students were given the two-page
routine test.  They were told answers without explanations would be acceptable, but they
could show their work if they wished.  Most students worked quickly, taking from 12 to 17.5
minutes to complete their routine exercises.  None stayed the allotted half hour.  Each
question was assigned 10 points.  The highest score was 100 (out of 100) and the lowest
score was 50, as compared to a high score of 90 and a low score of 53 for the A/B calculus
students [13].  The mean score on the routine test was 75.3.

Each problem on the non-routine test could be solved using a combination of basic
calculus and algebra skills.  The correspondence between routine questions and non-routine
problems is given in Table 3.

          Non-routine Problem:                    1            2              3           4            5       
Corresponding Routine Questions: 1, 2 3, 4, 9 5, 10 6,9 7, 8

TABLE 3.  Correspondence between routine questions and non-routine problems

3.  The Results

We present the test results from several different perspectives.  We examine the
students' ability to solve non-routine problems, their knowledge base (of associated basic
calculus and algebra skills) and whether they used their resources effectively.

3.1  Non-Routine Problem-Solving Ability
Slightly more than half (57%) of the differential equations students (16 of 28) failed to

solve a single non-routine problem.  This is somewhat better than the two-thirds of A/B,
and all of C, first-year calculus students who failed to solve a single non-routine problem in
the previous studies [12, 13].

In order to analyze the non-routine test results, we make a distinction between a solution
attempt, a page containing written work submitted in response to a non-routine problem, and
a solution try, any one of several distinct approaches to solving the problem contained within
a single solution attempt.  In only four instances did a student not attempt a non-routine
problem; thus there were 136 attempts by the 28 students on the five non-routine problems.
On these attempts there were a total of 243 solution tries.  Of the 136 attempts, 20 were
judged completely correct, that is, correct except possibly for a minor computational error.
Twelve other solution attempts were found to be substantially correct because they exhibited
substantial progress toward a solution, that is, the proposed solution could have been altered
or completed to arrive at a correct solution.

Of the 20 completely correct solutions, five were for Problem 1, three for Problem 2,
five for Problem 3, none for Problem 4,  and seven for Problem 5.  These completely
correct attempts were from 12 of the 28 students; the 12 substantially correct attempts came
from 11 students.  Altogether, 18 of the 28 students provided at least one substantially or
completely correct solution attempt.  That is, 36% of the differential equations  students  (10
of  28)  were  unable to make substantial progress on any  non-routine problem; this is lower
than the 71% and 42% reported previously for C and A/B first-calculus students [12, 13].
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Thus, the differential equations students did perform somewhat better than the first-year
calculus students.

3.2 Comparison of Non-Routine and Routine Test Results:  Did
Students Have Adequate Resources and Use Them?

The routine test was designed to determine whether the students' inability to do the non-
routine problems was related to an inadequate knowledge base of calculus and algebra skills
(i.e., "resources" [10, 11]).  Did the students lack the necessary factual knowledge or did they
have it without being able to access it effectively?  Scores on the corresponding routine
questions (Table 3) were taken as indicating the extent of a student’s factual knowledge
regarding a particular nonroutine problem.  As in [13], a student was considered to have
substantial factual knowledge  for solving a nonroutine problem if that student scored at least
66% on the corresponding routine questions.  A student was considered to have full factual
knowledge for solving a nonroutine problem if that student's answers to the corresponding
routine questions were correct, except possibly for notation, for example, answering (1, -1)
instead of -1 to Question 6.  All others were considered as having less than substantial
factual knowledge.

In Table 4 we give the number of students who exhibited substantial or full factual
knowledge on the corresponding routine questions with the number of students whose
solution to a particular non-routine problem was completely correct or substantially correct.
For example, on Problem 1, 15 (of 28) students had full factual knowledge; of these 5 gave
completely correct and 2 gave substantially correct solutions. An additional ten (of 28)
students had substantial factual knowledge for Problem 1, but none of them gave completely
or substantially correct solutions.  That is, the performance of these ten students on the
routine questions seemed to indicate they had sufficient factual knowledge to solve, or at
least make substantial progress on, Problem 1; yet they either did not access it or were
unable to use their knowledge effectively to make progress.  The remaining three students
demonstrated less than substantial factual knowledge, making a total of 7 students giving
completely or substantially correct solutions on Problem 1.

Taking another perspective, in the 59 routine question solution attempts in which
students demonstrated full factual knowledge, they were able to solve the corresponding
non-routine problem 14 times (24%) or make substantial progress towards its solution 6
times (10%).  Thus, on slightly more than a third of their attempts (34%), these students
accessed their knowledge effectively.  Students with substantial, but not full factual
knowledge, did so on less than a quarter of their attempts.  These results are summarized in
Table 5.  Furthermore, six students showed no factual knowledge of the components
necessary for a non-routine problem and they each had a score of zero on the corresponding
non-routine problem.
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                                                                       Non-Routine Problem
 1  2  3  4  5

Full Factual Knowledge           15  3  5        14 22

Non-Routine Problem
Completely Correct   5  1  1   0   7
Substantially Correct   2  0  1   0   3

Substantial Factual Knowledge            10 19 12  1   2

   Non-Routine Problem
        Completely Correct    0   2   4   0   0

    Substantially Correct   0   3   1   0   0

Less than Substantial
Factual Knowledge              3  6 11 13   4

   Non-Routine Problem
        Completely Correct    0   0   0   0   0

    Substantially Correct   0   0   1   0   1

     Total Completely or
                        Substantially Correct                 7            6          8         0         11

TABLE 4. A problem-by-problem view of the number of students having full, substantial,
or less than substantial factual knowledge along with the number who either completely

or substantially correctly solved each non-routine problem.
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         Full Factual     Substantial, but not full
              Knowledge (59)     Factual Knowledge (44)

      Completely correct     24%   (14/59) 14%   (6/44)
      non-routine solution

      Substantially correct     10%  (6/59)   9%   (4/44)
       non-routine solution

TABLE 5. Overview, giving the percentage of correct solutions by those having the
requisite factual knowledge

In order to compare overall student performances on the routine and non-routine tests,
we introduce the notion of a score pair, denoted {a, b}, where a  is the student's score on the
routine test and b is the student's score on the non-routine test.  In every case, a >b.  Figure
1 shows students' routine test scores in descending order (from left to right); superimposed
below each student’s routine test score is her/his non-routine test score.

The three students with the highest non-routine scores had score pairs of {90, 69}, {85,
59},  and {83, 59}; the first of these subsequently obtained a B.S. in civil engineering,
summa cum laude with a cumulative grade point average of 3.948.  The three mathematics
majors in the study, all of whom had completed at least one additional mathematics course
at the time of the study, had score pairs {95, 34}, {89, 18} and {87, 21}.  That is, they
scored in the top quarter on the routine test, but the latter two scored slightly below than the
mean non-routine score of 21.3.  The last of these three subsequently obtained a Ph.D. in
mathematics from a major state university.

Student performance on the routine and non-routine tests was not improved by having
studied additional mathematics.  The respective mean scores for the eleven students who
had done so were 73.1 (vs. 75.3 for all of the students) and 15.3 (vs. 21.3 for all of the
students).

Figure 1 shows a generally positive relationship between factual knowledge (resources)
and the ability to solve novel problems.  Nonetheless, having the resources for a particular
problem is not enough to assure that one will be able to solve it.  Two students had score
pairs of {86, 4} and {80, 3}suggesting that having a reasonably good knowledge base of
calculus and algebra skills (resources) is not sufficient to make substantial progress on novel
calculus problems.  One student, score pair {83, 59}, lacked substantial factual knowledge
on only those routine questions associated with Problems 2 and 4 (on which he scored zero)
and solved the  three remaining non-routine problems (1, 3 and 5) completely correctly.
This student and one other, the {90, 69}score pair, were the only students whose
performance on the routine tests could have predicted precisely which non-routine problems
they would be able to solve.  In addition, the literature [1, 7] suggests that misconceptions
are more likely to surface during non-routine problem solving, a phenomenon observed in
this study and discussed below.
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FIGURE 1.  Upper score is for routine/factual knowledge test.
Lower score is for non-routine test.

4.  Favored Solution Methods

4.1  Non-routine Problem 1.
Find values of a and b so that the line 2x+3y=a is tangent to the graph of  2)( bxxf =  at the point

where x=3.
Fifteen students set the equation of the line equal to that of the parabola and solved for

either a or b.  Eight of these ignored the tangency of the line to the curve.  The remaining
seven also set the derivative of f equal to the slope of the line to obtain a second equation so
a and b could be fully determined.  These were the seven with completely or substantially
correct solutions.  An additional seven students took a derivative, but abandoned it at some
point.

The two most frequently occurring misconceptions on Problem 1 involved the meaning
of tangent line.  Six students conflated the ideas of the equation of the tangent line, the slope
of the tangent line, and the derivative of the function.  Two other students incorrectly
claimed that the tangent line was perpendicular to the curve at the point of tangency and
used the negative reciprocal of the derivative for the slope of the tangent line.  Missing
among these students was the error found among A/B calculus students of confusing a
secant line, calculated using two points on the parabola, with a tangent line [13].
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4.2  Non-routine Problem 2.
Does x21 + x19 - x -1 + 2 = 0 have any roots between –1 and 0? Why or why not?
On Problem 2, the three correct, and three substantially correct, solutions made no use

of calculus.  Instead, they all used sophisticated arithmetic and algebraic reasoning to
compare the relative sizes of the component terms in the given polynomial.  The correct
solutions made use of the observation that, for values of x in (-1, 0), both -x-1 and x21 + x19

+ 2 would be positive and hence their sum must be positive.  This type of first-principles
argument was also used, although less successfully, by about the same proportion of the
A/B first-calculus students [13].

Other solution attempts on Problem 2 suggest that these differential equations students
were relatively comfortable with, and knowledgeable about, algebraic techniques.  Yet their
knowledge included some common misconceptions.  Two students inappropriately applied
Descartes' Rule of Signs, and eight erroneously concluded that no roots could exist when the
Rational Root Test produced no solutions.  Even this flawed use of algebra is an
improvement upon the favored solution method of the C calculus students [12]:  substitute
values for x until becoming convinced that no guess is ever going to work and hence no root
can exist (a method also used by four of the differential equations students).  Only five of
the differential equations students used any calculus on Problem 2, four taking derivatives
but not using them.  The fifth student did make effective use of the derivative but made an
unrelated error.

4.3  Non-routine Problem 3.

Let f(x)=
��

�
�

�

>++

≤

1,1

1,
2 xxbx

xax
. Find a and b so that f is differentiable at 1.

Ten students set ax = bx2+x+1, eight of them substituting x = 1 to get the relationship a
= b+2, and then stopped.  Two of these ten students expressed doubts about the
completeness of their solutions.  One student had seven solution tries, all variations on the
theme of matching for continuity.  Eleven of the 26 who attempted a solution to Problem 3
took a derivative.  Several differentiated ax and got x.  Of the eleven who used calculus,
eight made at least substantial progress towards a solution; five used the derivative to arrive
at a completely correct solution and three used it to obtain a substantially correct solution.

4.4 Non-routine Problem 4.
Find at least one solution to the equation 4x3 – x4 = 30 or explain why no such solution exists.
There were no completely correct or substantially correct solutions.  (Since these

traditionally-taught calculus students were not allowed to use graphing, or other,  calculators
in this study, no easy graphical methods were available to them.)  Twelve of the 27 students
who attempted this problem used the same method: narrow the domain of possible x values
by eliminating those for which 4x3 – x4 cannot be close to 30.  Most of these students
determined that no solutions could exist outside of the interval (1, 4) and some also
eliminated x = 1, 2, 3.  Thus 44% of the students in this study used this method, as
compared to only 26% (5 of 19) of the A/B calculus students [13], and their algebraic and
arithmetic reasoning was quite sophisticated.

The next most popular solution method, used by six students (22%), was the Rational
Roots Test. However, all six students incorrectly concluded that if a rational root could not
be found from the factors of 30 then no roots existed. In our earlier study of A/B calculus
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students, this approach was also used by 20% of the students. Only two students used the
method favored by C calculus students in the earliest study [12]:  factor 4x3 – x4 and set each
factor equal to 30.  Four students took the first derivative, set it equal to zero and stopped.
Several students used synthetic division to check whether particular values were roots.

4.5  Non-routine Problem 5.

Is there an a such that  
32

132lim 2

2

3 −−
−−+−

→ xx
axaxx

x
 exists?  Explain your answer.

On Problem 5, there were 39% (11 of 28) substantially or completely correct solutions,
whereas for the A/B calculus students, 37% (7 of 19) made substantial progress towards a
solution. Of the 28 attempts, 15 involved the use of L'Hôpital's Rule.  Nine of these
attempts were at least partially successful. In the other six instances students failed to note
that the numerator as well as the denominator must have limit zero before applying
L'Hôpital's Rule.  Five students substituted 3 for x, found the denominator of the expression
to be zero and asserted that no limit could exist since the denominator was zero at the
limiting value of the variable (two of these were math majors).  This was the favored method
of the C calculus students (47% of them used it) and was used by 26% of the A/B calculus
students [12, 13].  Here it was found in just 18% (5 of 28) of the solution attempts.  Six
students struggled, algebraically, with finding a way to factor the numerator so that the (x-3)
in the factored denominator could be cancelled and the limit taken; two of these resulted in
completely correct solutions.

4.6  Summary

4.6.1 Use of calculus
Since Non-routine Problem 5 involved evaluating a limit, so that any solution attempt

could be considered as involving calculus, we omit it from the following analysis.  On the
first four non-routine problems, the differential equations students used calculus on fewer
than half (39%) of all solution attempts (42 of 108), for example, taking a derivative.
Furthermore in fewer than half of these attempts (16 of the 42), they used calculus to
produce useful information which enabled them to make progress, but these led to 15
substantially correct or completely correct solutions.  That is, about three-fourths of the 21
completely or substantially correct solutions to Problem 1 through Problem 4 made effective
use of calculus.

We observe that the differential equations students were no more inclined to use
calculus than were the A/B and C calculus students of the previous two studies [12, 13].
They failed to use calculus on 61% of these attempts (66 of 108); this is essentially the same
percentage as in the previous studies (61% for the A/B and 59% for the C calculus
students).

However, it appears that as students proceed through calculus to differential equations,
the number of calculus misconceptions decreases.  Slowly they become more proficient (or
perhaps the less competent students drop out).  For example, incorrectly asserting on
Problem 5 that the limit of a quotient cannot exist when the denominator is 0 went from
47% for C calculus students, to 26% for the A/B calculus students, to just 18% for the
differential equations students.

4.6.2  More sophisticated, but still flawed, use of algebra
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On 56% of the solution attempts calculus was not used; rather a combination of
guessing, trial-and-error, arithmetic techniques, and algebra was used.  Eleven of the 32
substantially or completely correct solutions were almost purely algebraic, seven on Problem
2 and three (once the student observed the need to reduce the fraction in order to take the
limit) on Problem 5.  While these solutions demonstrated a level of algebraic competence
not found in the first-year calculus students of our earlier studies [12, 13], quite a few other
attempts to use algebra were flawed.  For example, fourteen attempts made improper use of
the Rational Root Test and two attempts used Descartes' Rule of Signs in an inappropriate
setting.

4.6.3 Use of graphs
Most graphing was done by students on Problem 1 -- only four other graphs, three

incorrect, appeared in all of the solution attempts for the other problems. Of the 27 students
who attempted to solve Problem 1, 22 (81%) sketched at least one graph and six (22%)
sketched three or more; this is substantially higher than the 12 of 19 (63%) who used graphs
in the A/B study, [13], where only 1 (5%) sketched more than two graphs. Fourteen of the
22 who used graphs in the present study first drew some version of the graph pictured in
Figure 2.  Of those 14 students, six also produced a correct graph,  Figure 3.   Three of these
six rejected the incorrect  graph  (by striking through it)  and  gave  one  substantially correct

     FIGURE 2.  Example of a frequently                FIGURE 3.  Example of a correctly
   sketched incorrect graph for Problem 1.                 sketched graph for Problem 1.

and two completely correct solutions to Problem 1, perhaps an example of monitoring their
work [10, 11]. The fourth completely correct solution for Problem 1 came from a student
who drew no graphs at all.  Hence, three of the four completely correct solutions showed a
graph in this study while only one of the three completely correct solutions in the previous
study of A/B students was accompanied by a graph.  The other three who drew both graphs
used little calculus and did not indicate any rejection of incorrect graphs; in fact, all three
seemed to be considering various cases for values of a and b by drawing a variety of graphs
(between them, these three students produced ten graphs).  The others who drew graphs
were either misled by the assumption that the parabola was concave up (Figure 2) or gained
no useful information from their graphs.
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Where students who successfully solved Problem 1 in the present study were willing to
draw and reject graphs, those in the A/B study who chose to use graphs generally had only
one -- either it was the right one and the solution was substantially or completely correct or
it was an incorrect graph and the solution was incorrect. In the A/B study, 16 graphs were
produced by 12 students on Problem 1 whereas in the present study, 37 graphs were drawn
by 22 students.  Three of the 12 A/B students who used graphs (25%) rejected (crossed out)
one of their graphs (including one who rejected a graph which was correct) while six of the
22 (27%) who used graphing on Problem 1 in this study rejected a graph.  It would appear,
then, that though the more experienced students were more willing to posit graphical ideas
(81% versus 63%) than the less experienced students they were about equally likely to reject
the graphs they produced.
     DeFranco's paper on expert problem solvers with Ph.D.s in mathematics suggests that
the skills possessed by the experts which are often lacking in the non-experts might include a
willingness to create and abandon (reject) and revisit many ideas in the solution process [5].
Thus it might be useful to know how students develop the willingness to risk commiting
graphical and other ideas to paper and to reject such ideas once they have been given life on
paper.

5. Analysis

Reflecting on the three studies, one wonders when, if ever, students learn to use calculus
flexibly enough to solve more than a few nonroutine problems. Furthermore, how could it
happen that students, who were more successful than average by a variety of traditional
measures and who demonstrated full factual knowledge for a non-routine problem, failed to
access and use their knowledge successfully on 76% of their attempts (Table 5)?  Many of
these students (the engineering majors) had almost completed their formal mathematical
educations, except possibly for one or two upper-division mathematics courses, leaving them
limited opportunity in future mathematics courses to improve their non-routine problem-
solving abilities.  Finally, does it matter whether students can solve such non-routine
problems?

5.1.  When do students finally learn to apply calculus flexibly?
It would appear from this sequence of three studies that, at least for traditionally-taught

calculus students in classes of 35-40 students, the ability to solve non-routine calculus
problems develops only slowly.  Performance for the best students went from one third who
could solve at least one non-routine beginning calculus problem toward the end of their first
year of college calculus to slightly less than half who could do so toward the end of the two-
year calculus/differential equations sequence.  In addition, the percentage of correct
solutions increased modestly over the three studies (Table 6).

On the other hand, by the time these students were coming to the end of their
calculus/differential equations sequence their algebra skills seem to be relatively
sophisticated   and  readily  accessible,   albeit  somewhat  flawed.    Such  slow,  incremental
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Study Completely Correct Solutions Substantially Correct Solutions
DE      14% (20/140) 9% (12/140)
(A/B) Calculus  9% ( 9/95) 9% ( 9/95)
(C) Calculus    0% ( 0/85)  7%( 6/85)

TABLE 6.  Percent of correct solution attempts in all three studies

growth in mathematical capabilities may not be unusual.  In a cross-sectional study of
students' development of the function concept, Carlson investigated students who had just
received A's in college algebra, second-semester calculus, or first-year graduate mathematics
courses.  She found that "even our best students do not completely understand concepts
taught in a course, and when confronted with an unfamiliar problem, have difficulty
accessing recently taught information. . . . Second-semester calculus students had a much
more general view of functions [than college algebra students, but]  . . . they were unable to
use information taught in early calculus . . . ".  [3]

In addition, it is not unusual for students to fall back on earlier mathematical techniques
with which they are perhaps more familiar and more comfortable.  In a study of 900
Australian high school students in Years 9 and 10 ("in their third or fourth year of algebra
learning"), Stacey and MacGregor found that when asked to solve three simple word
problems, a large proportion wrote no equations, even though specifically asked to, and
others tried to write equations but then switched to non-algebraic methods including trial-
and-error and arithmetic reasoning to solve the problems [9].

In an analogous fashion, the differential equations students in this study relied more
often  (in 76 of 136 solution attempts) on a variety of arithmetic and algebraic techniques
than on calculus.  Taken together, our three studies suggest the folklore that one only really
learns a course's material in the next course appears to be not quite accurate, rather several
courses may be necessary.  The differential equations students seemed most comfortable
with algebraic methods -- ideas first introduced to them several years before.  As in the
previous two studies [12, 13] over half of them made no use whatever of calculus.  This
negatively answers the question posed in [13]:  Would students at the end of a traditional
calculus/differential equations sequence be more inclined to use calculus techniques in
solving problems? Most of the students in this study had not learned to apply beginning
calculus flexibly by the end of the calculus-differential equations sequence and many might
well never do so.3

                                                          
3A. Robert and colleagues have introduced three levels of applying mathematical knowledge to tasks:  (1).
A technical level in which students are asked to apply calculus skills and use definitions, properties, and
theorems directly.  (2).  A mobilizable level in which students adapt their knowledge to tasks which are not
direct applications, require several steps, require some transformation or recognition that a property or
theorem is to be applied.  (3).  An available level in which students solve problems without being given an
indication of methods, or must change representations.

They tested one hundred French university students who had graduated (Licence) and were preparing
for the CAPES competitive examination for teaching at secondary level (which just 1 in 8 pass); the
curriculum of the exam is the same as that of mathematics majors in the first two years of university.  They
found that whenever problems were at anything but the technical level, the success rate was under 10% [6].
These findings seem comparable to those in this study regarding students, who at the end of their calculus-
differential equations sequence, produced just 14% completely correct solutions to our non-routine
problems (Table 6).
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5.2  How does it happen that students can have the knowledge, but not be able to
effectively use it to solve non-routine problems?

Part of the rationale for having the students take the routine test after the non-routine
test was to determine whether they had the requisite algebra and calculus skills to solve the
non-routine problems, but were unable to think of or use them; this was a concern raised by
the study done with C calculus students [13].  Adding together the numbers in Table 4, one
sees that, for most non-routine problem attempts (103 out of a possible 140), the differential
equations students had an adequate knowledge base (i.e., full or substantial factual
knowledge), yet just 32 of these attempts were successful (i.e., produced completely or
substantially correct solutions to non-routine problems).  The inability of many otherwise
successful students to access and effectively use their factual knowledge in non-routine
problem solving is perhaps the most striking feature of our data.

Editorial comment on our second study [13] of A/B calculus students raised the
question of whether the parameterizations in some of these non-routine problems might
have caused them to be viewed as questions about families of functions, thereby rendering
them inordinately difficult.  Indeed, three of the five problems could be viewed in this way
(Problems 1, 3, and 5).  However, rather than being interpreted as indicating families of
functions, the letters a and b appeared to have been interpreted by these students as fixed
unknowns whose values they were expected to find.  Much of their written work supports
this idea.  The a and b seemed to play much the same "arbitrary constant" role for these
students as m and b do in the slope-intercept form of a line, y = mx + b.  In fact, it was on
these three problems (especially Problem 5) that the students did the best.  Problems 1, 3,
and 5 accounted for 85% (17 of 20) of the completely correct solutions.

We conclude that these problems were no more difficult for our students than Problems
2 and 4.  If anything, Problems 2 and 4 proved to be the most difficult ones, and it was on
these problems that students used algebraic and numerical trial-and-error methods.  While it
was possible to solve Problem 2 without calculus and three students did so completely
correctly, Problem 4 was particularly intractable without calculus.  Some students may not
initially have accessed their calculus knowledge because this problem brought to mind
algebraic techniques for solving an equation, namely 4x3 – x4 = 30.  Developing a calculus-
based solution would have entailed considering 4x3 – x4, alternatively 4x3 – x4 – 30, as a
function to be maximized, something they did not do.  This might suggest the students were
lacking some general metacognitive abilities of expert problem solvers, e.g., control [10, 11].
However solutions to our non-routine problems are relatively "straightforward." For
example, there is no need to consider multiple sub-problems and the unfruitfulness of false
starts, such as attempting to factor 4x3 – x4 – 30  in Problem 4, are not especially hidden.
Thus we do not see metacognitive abilities, or lack thereof, as accounting for all, or perhaps
even most, of our data.  We suspect that for some of these students even seeing that a new
idea is needed and having full factual knowledge may not bring the requisite knowledge to
mind.

The question of access appears not to be a simple one.  One can have the knowledge,
but not think of using it.  Doing so may often be supported by an additional kind of
knowledge beyond what we have called full factual knowledge, i.e., beyond mathematical
knowledge that is logically adequate to solve a given problem.

The nature of this additional knowledge cannot be fully established from an analysis of
data such as ours, which does not emphasize the process aspect of problem solving.
However, we will frame a discussion of it in terms that might be useful in later, more
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process-oriented research.   A person who has reflected on a number of problems is likely to
have seen (perhaps tacitly) similarities between some of them.  He or she might be regarded
as recognizing (not necessarily explicitly or consciously) several overlapping problem
situations, each arising from problems with similar features.  For example, after much
exposure many students will recognize a problem as one involving factoring, several linear
equations, or integration by parts, etc.4  Such problem situations act much like concepts.
While these situations may lack names, for a given individual they are likely to be associated
with images, i.e., strategies, examples, non-examples, theorems, judgments of difficulty, and
the like.  Following Tall and Vinner's idea of concept image [16],  we will call this kind of
mental structure a problem situation image and suggest that some such images may, and others
may not, contain what we will call tentative solution starts:  tentative general ideas for beginning
the process of finding a solution. The linking of problem situations with one or more
tentative solution starts is a kind of (perhaps tacit) knowledge.  For instance, the image of a
problem situation asking for the solution to an equation might include "try getting a zero on
one side and then factoring the other."  It might also include "try writing the equation as f(x)
= 0 and looking for where the graph of f(x) crosses the x-axis," or even "perhaps the max of
f is negative so f(x) = 0 has no solution."  We suggest that the problem-solving process is
likely to include the recognition of a problem as belonging to one or more problem
situations, and hence, to bring to mind a tentative solution start contained in one's image of
one of those problem situations.  This may, in turn, mentally prime the recall of resources
from one's knowledge base.  Thus a  tentative solution start may link recognition of a
problem situation with recall of appropriate resources, i.e., what we have called full factual
knowledge.  For example, in this study a number of students tried factoring on Problem 4.
When this approach did not work, had those students' images of such problems included
"try looking at whether the graph crosses the x-axis," they might have recalled their
knowledge of graphs and calculus to discover that the maximum was too small for the
equation to be solvable.  In viewing our data from this perspective,  we are suggesting that
problem situations, their images, and the associated  tentative solution starts all vary from
student to student and that the process of mentally linking recognition (of a problem
situation) to recall (of requisite resources) through a problem situation image might occur
several times in solving a single problem.  We are not suggesting this is the only way access
might occur, just that it could play a role in solving the kind of moderately non-routine
problems discussed in this paper.

Except while taking tests the students in this study would have had worked examples
(from textbooks and lectures notes) available to them during most of their previous
problem-solving attempts.  Those who habitually consulted such worked examples before
attempting their own solutions would have had little occasion to reflect on multiple tentative
solution starts.  Such students might well have problem situation images with few tentative
solution starts, thereby reducing the usefulness of their situation images in priming the recall
of their factual knowledge; this could happen even if they realized a new idea is needed, that
is, even if they did not lack (metacognitive) control [10, 11].   In summary, we are suggesting
that some of the students who were unable to solve non-routine problems while having full
factual knowledge may have lacked a particular kind of knowledge, namely tentative solution

                                                          
4Although the kinds of features noticed by students in mathematical problem situations do not seem to have
been well studied, the features focused on in physics problem situations  have been observed to correspond
to degree of expertise.  Novices tend to favor surface characteristics (e.g., pulleys), whereas experts tended
to focus on underlying principles of physics (e.g., conservation of energy).   [4]
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starts, and this might be due to a combination of the way homework exercises had been
presented and the students' study habits.

Much of our data concerning those students who had adequate factual knowledge, but
did not access it to solve non-routine problems, is consistent with the above analysis.
However, our data do not adequately encode the problem-solving process for this proposed
explanation to be more than a conjecture which might be examined in a future study.

5.3  Does it matter whether students are able to solve non-routine problems?
Perhaps surprisingly, the answer seems to be both yes and no.  No, because the students

in this study were among the most successful at the university by a variety of traditional
indicators, both at the time of the study and subsequently, yet half of them could not solve a
single non-routine problem.  They had overall GPAs of just above 3.0 at the time of the
study and almost double the graduation rate of the university as a whole.  At least seven of
them subsequently earned a master's degree and one a Ph.D. in mathematics.  Furthermore,
the idea that traditional success may not require very much non-routine problem-solving
ability, including metacognitive control, is supported by De Franco's problem-solving study
comparing mathematicians of exceptional creativity (e.g., Fields medallists) with very
successful published Ph.D. mathematicians.  He found that while both were content experts,
only the former were problem-solving experts [4].  Thus, it seems possible to be
academically successful in mathematics and related subjects without being able to
consistently solve non-routine problems, especially the more difficult ones in which
Schoenfeld's problem-solving characteristics (heuristics, control, beliefs [10, 11]) play a large
role.

On the other hand, yes, it does matter.  Most mathematicians seem to regard this kind of
problem solving as a test of deep understanding and the ability to use knowledge flexibly.  In
addition, most applied problems that students will encounter later will probably be at least
somewhat different from the exercises found in calculus (and other mathematics) textbooks.
It seems likely that much original or creative work in mathematics would require novel
problem solving at least at the modest level of the problems in this study.

In addition mathematicians often appear to view students' mathematical ability through
the lens of problem solving, meant broadly to include a wide range from simple exercises to
non-routine problems and the construction of proofs.  They typically design problems
whose solution requires deeper understanding rather than gauging such understanding
directly, for example, through evaluating an essay on the nature of continuity and its
relationship to differentiability.

It may be helpful to consider problems arising in mathematics courses as arranged along
a continuum according to their novelty relative to the course.  At one end, we might have
very routine problems which mimic sample problems found in the text or lectures, except for
minor changes in wording, notation, coefficients, constants, or functions that students view
as incidental to the way the problems are solved.  Such problems are often referred to as
exercises (and might not be counted as problems at all in the problem solving literature).
Moving toward the middle of the continuum, we might place moderately routine problems
which, although not viewed as exactly like sample problems, can be solved by well-practiced
methods, e.g., ordinary related rates or change of variable integration problems in a calculus
course.  Sandra Marshall [8] has studied how schema can be developed to reliably guide the
solution of such problems.  Moving further along the continuum, one might have moderately
non-routine problems, which are not very similar to problems that students have seen before
and require known facts or skills to be combined in a novel way, but are "straightforward" in
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not requiring, for example, the consideration of multiple sub-problems.  The non-routine
test in this study consisted of problems of this kind.  Finally, at the opposite end of the
continuum from routine problems, one might place very non-routine problems which, while
dependent on knowledge of the course, may involve more insight, the consideration of
several sub-problems or constructions, and use of Schoenfeld's behavioral problem-solving
characteristics (heuristics, control, beliefs [10, 11]). For such problems a large supply of
tentative solution starts, built up from experience, might not be adequate to bring to mind
the knowledge needed for a solution, while for moderately novel problems it probably
would.   Often the Putnam Examinations [17]  include such very non-routine problems.5

Most university mathematics teachers would probably like students who pass their
courses to be able to work a wide selection of routine, or even moderately routine, problems.
In addition, we believe that many such teachers would expect their better students to be able
to work moderately non-routine problems, and think of this as functionally equivalent to
having a good conceptual grasp and understanding of the course.  In other words, the ability
to work moderately non-routine problems based on the material in a course is often part of
the implicit curriculum.  Thus, it matters if most students cannot work moderately non-
routine problems because in a sense that means the "essence" of the material in the course is
not being successfully mastered, even by good students.

The results reported here suggest that, at least in a traditional calculus/differential
equations sequence, many good students may not reach the level of understanding and
moderately non-routine problem-solving ability that their teachers expect.  In order that
good students reach this level, non-routine problem solving may need to become an explicit
part of the curriculum, that is, to be in some way explicitly taught.  Furthermore, our
conjectured explanation of our data, that is, that students' problem situation images tend to
lack a variety of tentative solution starts, suggests that the ability to solve moderately non-
routine problems may depend partly on a richer knowledge of problem situations as well as
on more general behavioral problem-solving characteristics (heuristics, control, beliefs [10,
11]).  This, in turn, suggests that teaching aimed at improving non-routine problem solving
ability should be integrated throughout a course, rather than saved for the end, and that
encouraging students to consider and reflect on tentative solution starts might be useful.

                                                          
5The following problem was on the 59th Annual William Lowell Putnam Mathematical Competition given
on December 5, 1998:  Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle
with one vertex at (a, b), one on the x-axis, and one on the line y = x.  You may assume that a triangle of
minimum perimeter exists.

This appears to be a calculus problem, but it only requires clever use of geometry.  An elegant
solution (posted by Iliya Bluskov to the sci.math newsgroup) involves extending the construction "outward"
by reflecting across both the lines y = x and the x- axis and noticing that the perimeter of the triangle equals
the distance along the path from (b, a) to (a, -b).  Probably only very experienced geometry problem solvers
could have previously constructed images of problem situations containing a tentative solution start that
would easily bring this method to mind.
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