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PERFECT BINARY MATROIDS

ALLAN D. MILLS

Abstract. In this paper a definition of perfect binary matroids is considered
and it is shown that, analogous to the Perfect Graph Theorem of Lovász and
Fulkerson, the complement of a perfect matroid is also a perfect matroid.
In addition, the classes of critically imperfect graphic matroids and critically
imperfect graphs are compared.

1. Introduction

The matroid notation and terminology used here will follow Oxley [7], and only
simple graphs and matroids will be considered. Since being introduced by Berge [1],
the concept of a perfect graph has been a fruitful area of research in graph theory.
In this paper, we investigate a deÞnition of perfect binary matroids analogous to
the deÞnition of perfect graphs. Recall that a graph G is said to be perfect if
ω(H) = χ(H) for all vertex-induced subgraphs H of G. Therefore, in order to
extend the notion of a perfect graph to matroid theory, matroidal analogues for the
clique number, ω(G), and the chromatic number, χ(G), of a graph G are needed.
Since the clique number of a graph G is the maximum cardinality of a set of

vertices that induces a complete subgraph of G, a matroidal analogue can be iden-
tiÞed by exploiting an analogy between projective geometries in matroid theory and
complete graphs in graph theory. In particular, since every rank-r simple matroid
representable overGF (q) can be obtained from the projective geometry PG(r−1, q)
by deleting elements, just as every graph on n vertices can be obtained from the
complete graph Kn by deleting edges, we make the following deÞnition.

Definition 1.1. Let M be a rank-r matroid representable over GF (q). The clique
number ofM , denoted ω(M ; q), is given by ω(M ; q) = max{r(M |K) : K ∼= PG(n−
1, q)} where 1 ≤ n ≤ r.
Thus, for a matroid M representable over GF (q), the clique number of M is

the rank of the largest projective geometry PG(n − 1, q) that is a restriction of
M . In particular, as PG(1, 2) is a circuit on 3 elements, ω(M ; 2) ≥ 2 for a binary
matroid having a 3-circuit. Moreover, if M is the polygon matroid of a graph G,
then ω(M ; 2) ≤ 2 since the rank-3 Fano matroid, PG(2, 2), is an excluded minor
for graphic matroids.
There are several ways one may attempt to deÞne the chromatic number of a

simple matroid. We shall use the critical exponent of a matroid, introduced by
Crapo and Rota [4], as the matroidal analogue of the chromatic number of a graph.
Recall that for a postive integer k and a graph G, a proper k-coloring of G is a
function f from the vertices of G into {1, 2, . . . , k} such that if uv is an edge of
G, then f(u) 6= f(v). It is well-known that the number of such colorings, denoted
χG(k), is a polynomial in k called the chromatic polynomial of G and that the
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chromatic number of G may be deÞned by χ(G) = min{k : χG(k) > 0}. The
characteristic polynomial (see, for example, [9, p. 120]) of a matroid M in the
variable λ, denoted p(M ;λ), generalizes the chromatic polynomial of a graph.

Definition 1.2. The critical exponent of a loopless matroid M representable over
GF (q) is deÞned by c(M ; q) = min{j ∈ N : p(M ; qj) > 0}.
Therefore the critical exponent of a simple binary matroid M is the smallest

positive integer j such that p(M ; 2j) > 0, just as the chromatic number of a graph
G is the smallest possible integer k such that χG(k) > 0. We now list several useful
facts about the critical exponent of a matroid (see, for example, [3, p. 163] or [9,
p. 129]).

Lemma 1.3. c(M ; q) = min{j ∈ N : p(M ; qk) > 0 for all integers k ≥ j}.
We will often use the following interpretation of the critical exponent of a graphic

matroid.

Lemma 1.4. If M is the polygon matroid of a graph G, then c(M ; 2) is the least
integer c such that the chromatic number of G does not exceed 2c.

For a matroid representable over GF (q), the next result [3, Corollary 6.4.13]
provides an alternative characterization of the critical exponent.

Lemma 1.5. If M is isomorphic to the restriction of PG(n − 1; q) to the set E,
then

c(M ; q) = min{j ∈ N : PG(n− 1, q) has hyperplanes H1, H2, . . . , Hj such that

(∩ji=1Hi) ∩ E = ∅}
= min{j ∈ N : PG(n− 1, q) has a ßat of rank n− j having empty

intersection with E}.
Thus a GF (q)-representable rank-r matroid M with critical exponent one can

be embedded in the complement of a hyperplane of PG(r − 1, q); that is, M is
affine. This useful geometric interpretation of the critical exponent is part of the
next result (see, for example, [9, Corollary 7.6.3] or [3, Exercise 6.50]).

Lemma 1.6. The following are equivalent for a simple binary matroid M .

(i) Every circuit of M has even cardinality.
(ii) M is a binary affine matroid.
(iii) c(M) = 1.

From Lemma 1.5 it is evident that if M is simple and T is a subset of E(M),
then c(M |T ; q) ≤ c(M ; q). On combining this with the fact that both the rank and
critical exponent of PG(n− 1, ; q) equal n, we have the following lemma.
Lemma 1.7. If M is a simple matroid, then ω(M ; q) ≤ c(M ; q).
The next result [7, Propostion 9.3.4] gives useful information about the circuits

of binary matroids.

Lemma 1.8. Let C be a circuit of a simple binary matroid M and let e be an
element of cl(C) − C. Then there is a partition of C into non-empty subsets X1

and X2 so that X1 ∪ e and X2 ∪ e are circuits of M , and M has no other circuits
that contain e and are contained in C ∪ e.
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2. Perfect Binary Matroids

The availability of matroidal analogues for the chromatic number and clique
number of a graph naturally leads to the following deÞnition.

Definition 2.1. A simpleGF (q)-representable matroidM is perfect if ω(M |F ; q) =
c(M |F ; q) for each ßat F of M .
We shall abbreviate ω(M ; 2) and c(M ; 2) to ω(M) and c(M), respectively when

considering only binary matroids.

Example 2.2. Since ω(PG(n − 1, 2)) = c(PG(n − 1, 2)) = n and each ßat of a
projective geometry is also a projective geometry, it follows that PG(n− 1, 2) is a
perfect binary matroid.

Example 2.3. M(K4) is a perfect matroid. Since χ(K4) = 4, it follows from
Lemma 1.4 that c(M(K4)) = 2. Moreover, as K4 contains a 3-cycle as a restriction,
ω(M(K4)) = 2. Furthermore, for each proper ßat F of M(K4), we have

ω(M(K4)|F ) = c(M(K4)|F ) =
½
2, if F contains a 3-circuit
1, otherwise.

(2.1)

Thus K4 is a perfect graph and M(K4) is a perfect matroid. However, not all
perfect graphs yield perfect graphic matroids. For instance, the perfect graph K5

yields an imperfect matroid since c(M(K5)) = 3, while ω(M(K5)) = 2. In fact,
any graph G such that χ(G) ≥ 5 will yield an imperfect matroid M(G).
An elementary result in graph theory characterizes a bipartite graph as a graph

having no odd cycles. Since the bipartite graphs are an example of a class of perfect
graphs, an attractive part of the next result is that the binary matroids having no
odd circuits are perfect matroids. Let C be a circuit of a matroid M . An element
e of the matroid is a chord of the circuit C if e ∈ clM (C)\C.
Theorem 2.4. Let M be a simple binary matroid such that c(M) ≤ 2.
(i) If c(M) = 1, then M is perfect.
(ii) M is perfect if and only if every odd circuit C of M such that |C| ≥ 5 has a

chord.

Proof. If c(M) = 1, then M is affine and Lemma 1.6 implies that M has no odd
circuits. Hence ω(M) = 1. It follows that M is perfect and (i) holds.
We now prove statement (ii). Suppose M is perfect and c(M) ≤ 2. If c(M) = 1,

then M has no odd circuits and the result holds. Now assume c(M) = 2 and C is
an odd circuit of M such that |C| ≥ 5. If C has no chord, then c(cl(C)) = 2, since
the ßat cl(C) is an odd circuit. However, as cl(C) has no 3-circuit as a restriction,
ω(cl(C)) = 1. This contradicts the assumption that M is perfect and we conclude
C has a chord.
Now suppose every odd circuit of M has a chord and c(M) ≤ 2. By (i), the

matroid M is perfect if c(M) = 1, so we may assume c(M) = 2. Let F be a non-
empty ßat ofM . If c(M |F ) = 1, then F contains no odd circuits, and ω(M |F ) = 1.
If c(M |F ) = 2, then F contains an odd circuit. Since each odd circuit of F has a
chord, it follows from Lemma 1.8 that F has a 3-circuit. Then ω(M |F ) = 2. Hence
M is a perfect matroid.

The complement G of a simple graph G is the graph with vertex set V (G) such
that two distinct vertices are adjacent in G if and only if they are non-adjacent in G.
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The analogy between projective geometries in matroid theory and complete graphs
in graph theory allows one to consider complements for simple matroids that are
uniquely representable over GF (q). If M is a simple uniquely GF (q)-representable
matroid such that M ∼= PG(k − 1, q)|T , then the (GF (q), k)-complement of M is
the matroid PG(k − 1, q)\T . For example, U2,3 is the (GF (2), 3)-complement of
U3,4.
The well-known Perfect Graph Theorem of Lovász [6] and Fulkerson [5] states

that G is perfect if and only if G is perfect. An analogous theorem for perfect
matroids is proved next.

Theorem 2.5. A simple rank-r binary matroid M is perfect if and only if its
(GF (2), r)− complement is perfect.
Proof. LetM be a simple rank-r perfect binary matroid. ThenM can be embedded
in a projective geometry PG(r − 1, 2) and has a (GF (2), r)-complement which we
shall denote by M c. Let W1 and W2 be largest rank binary projective geometries
that are restrictions of M and M c, respectively. Then Lemma 1.5 implies that
c(M) + r(W2) = r and c(Mc) + r(W1) = r. Hence c(M) + ω(M c) = r and
c(Mc) + ω(M) = r. Now, as M is perfect, ω(M) = c(M). Thus the fact that
c(M) + ω(M c) = c(Mc) + ω(M) implies ω(M c) = c(Mc).
Now let F1 be a non-empty ßat of M

c. Then F1 = F − E(M) for some ßat F
of PG(r − 1, 2). Since F ∼= PG(k − 1, 2) for some k, the ßat F1 has a (GF (2), k)-
complement F2 that is a subset of E(M). Moreover, as M is perfect, ω(M |F2) =
c(M |F2). Since F1 is the (GF (2), k)-complement of F2, it follows from the above
argument that ω(M c|F1) = c(M

c|F1). We conclude that M
c is perfect.

The next lemma lists two useful properties of the characteristic polynomial. The
Þrst follows from the fact that the characteristic polynomial is a Tutte�Grothendieck
invariant [3, Proposition 6.2.5] and the second was proven by Brylawski [2, Theorem
7.8].

Lemma 2.6. Let M1, M2, and M be matroids.

(i) If M =M1 ⊕M2, then p(M ;λ) = p(M1;λ)p(M2;λ).
(ii) If M is the generalized parallel connection of the matroids M1 and M2 across

the modular ßat X, then p(M ;λ) = p(M1;λ)p(M2;λ)
p(M |X;λ) .

The next two results concern ways of combining perfect matroids to form larger
perfect matroids.

Theorem 2.7. If M1 and M2 are perfect matroids representable over GF (q), then
the direct sum of M1 and M2 is also perfect.

Proof. Suppose M1 and M2 are perfect GF (q)-representable matroids and let N =
M1 ⊕M2 be the direct sum of M1 and M2. Then

c(N) = min{j ∈ N : p(N, qj) > 0}
= min{j ∈ N : p(M1, q

j)p(M2, q
j) > 0}

= min{j ∈ N : p(M1, q
j) > 0 and p(M2, q

j) > 0}
= max{c(M1), c(M2)}

(2.2)

where the second equality follows from Lemma 2.5(i) and the last equality follows
from Lemma 1.3. Moreover, as M1 and M2 are perfect, we have ω(M1) = c(M1)
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and ω(M2) = c(M2). On combining this with Lemma 1.7, we have that

max{ω(M1),ω(M2)} = max{c(M1), c(M2)}
= c(N)

≥ ω(N)

≥ max{ω(M1),ω(M2)}.
Hence c(N) = ω(N).
Now let F be a non-empty proper ßat of N . Then F = F1 ∪ F2 where F1 is a

ßat of M1 and F2 is a ßat of M2. Thus ω(M1|F1) = c(M1|F1) and ω(M2|F2) =
c(M2|F2). Moreover, as N |F = (M1|F1) ⊕ (M2|F2), it follows from (2.2) that
max{c(M1|F1), c(M2|F2)} = c(N |F ). On combining this with Lemma 1.7 we obtain

max{ω(M1|F1),ω(M2|F2)} = max{c(M1|F1), c(M2|F2)}
= c(N |F ) ≥ ω(N |F ) ≥ max{ω(M1|F1),ω(M2|F2)}.

Hence c(N |F ) = ω(N |F ) for all ßats F of N , and we conclude that N =M1 ⊕M2

is a perfect matroid.

Theorem 2.8. If M1 and M2 are perfect matroids representable over GF (q), then
the parallel connection of M1 and M2 with basepoint p is also perfect.

Proof. Suppose M1 and M2 are perfect GF (q)-representable matroids and let N =
P (M1,M2; p) be the parallel connection of M1 and M2 with basepoint p. Then

c(N) = min{j ∈ N : p(N ; qj) > 0}
= min{j ∈ N : p(M1;qj)p(M2;qj)

qj−1 > 0}
= min{j ∈ N : p(M1, q

j)p(M2, q
j) > 0}

= max{c(M1), c(M2)}
(2.3)

where the second equality follows from Lemma 2.5(ii) and the Þnal equality fol-
lows from Lemma 1.3. From Lemma 1.7 we deduce that max{ω(M1),ω(M2)} =
max{c(M1), c(M2)} = c(N) ≥ ω(N) ≥ max{ω(M1),ω(M2)}. Thus c(N) = ω(N).
Now let F be a non-empty proper ßat of N . DeÞne F1 to be the ßat F ∩E(M1)

of M1 and F2 to be the ßat F ∩ E(M2) of M2. We now consider two cases.
If F is a ßat of N not containing the basepoint p, then F = (M1|F1)⊕ (M2|F2).

Moreover, asM1 andM2 are perfect matroids,M1|F1 andM2|F2 are perfect. Then
Theorem 2.6 implies that N |F is perfect and hence c(N |F ) = ω(N |F )
Now suppose F is a ßat of N containing the basepoint p. Then F is the parallel

connection of M1|F1 andM2|F2 over the basepoint p. Moreover, as M1 andM2 are
perfect, ω(M1|F1) = c(M1|F1) and ω(M2|F2) = c(M2|F2). On combining this with
(2.3) and Lemma 1.7 we have that

max{ω(M1|F1),ω(M2|F2)} = max{c(M1|F1), c(M2|F2)}
= c(N |F ) ≥ ω(N |F ) ≥ max{ω(M1|F1),ω(M2|F2)}.

Hence c(N |F ) = ω(N |F ). Therefore c(N |F ) = ω(N |F ) for all ßats F of N and we
conclude that N is a perfect matroid.
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3. Critically Imperfect Graphs and Matroids

Recall that an imperfect graph G is said to be critically imperfect if each of its
proper induced subgraphs is perfect.

Definition 3.1. A simple binary matroidM is critically imperfect ifM is imperfect
and M |F is perfect for each proper ßat F of M .
Example 3.2. Let Cn denote a cycle on n vertices. If n is odd and exceeds three,
then, as Cn is not a two-colorable graph, c(M(Cn)) = 2. Moreover, as Cn contains
no 3-cycle as a restriction, ω(M(Cn)) = 1. Since c(M(Cn)|F ) = ω(M(Cn)|F ) = 1
for all proper ßats F of M(Cn), we see that the matroids derived from odd cycles
are critically imperfect.

The matroid M(K5) is another example of a critically imperfect matroid since
c(M(K5)) = 3 and ω(M(K5)) = 2, while, for each proper ßat F ,

ω(M(K5)|F ) = c(M(K5)|F ) =
½
2, if F contains a 3-circuit
1, otherwise.

(3.1)

Therefore the matroid M(C5) and its (GF (2), 4)-complement, M(K5), are an ex-
ample of the next result which follows from Theorem 2.5

Theorem 3.3. A simple rank-r binary matroid M is critically imperfect if and
only if its (GF (2), r)-complement is critically imperfect.

A graph G is said to be k-vertex-critical if χ(G) = k and χ(G− v) < k for each
vertex v of G.

Theorem 3.4. Let M be a simple binary matroid.

(i) M is critically imperfect and c(M) = 2 if and only if M ∼= Un−1,n for an odd
integer n such that n ≥ 5.

(ii) M is graphic, critically imperfect, and c(M) = 3 if and only if M ∼= M(G)
where G is 5-vertex-critical and every odd cycle of length exceeding 3 has a
chord.

Proof. It was shown in Example 3.2 that if M ∼= Un−1,n for an odd integer n ≥ 5,
then M is critically imperfect and c(M) = 2. Suppose M is a critically imperfect
matroid such that c(M) = 2. Now, as M is not affine, it has an odd circuit C.
Since M is critically imperfect and c(clM (C)) = 2, the ßat clM (C) must equal M .
Thus C is a spanning set ofM . If x ∈ E(M)\C, then Lemma 1.8 implies that there
is a partition of C into nonempty subsets X1 and X2 such that X1 ∪ x and X2 ∪ x
are circuits of M , and M has no other circuits that contain x and are contained in
C ∪ x. Moreover, as C is an odd circuit, we may assume that |X1| is even and |X2|
is odd. Thus X1 ∪ x is an odd circuit and a proper ßat of M contrary to the fact
that c(M |F ) = ω(M |F ) ≤ 1 for each proper ßat F of M . Therefore E(M)\C = ∅
and we conclude that M ∼= Un−1,n for an odd integer n ≥ 5.
We now prove (ii). Suppose M(G) is critically imperfect and c(M(G)) = 3.

SinceM(G−v) is a proper ßat ofM(G), we have c(M(G−v)) = ω(M(G−v)) ≤ 2.
Thus, although G is not 4-colorable, G − v is 4-colorable for each vertex v of G.
Therefore G is 5-vertex-critical.
Now suppose C is an odd cycle of G having length at least 5 and no chords.

Then C is a ßat of M(G). However, ω(M(G)|C) = 1 and c(M(G)|C) = 2, contrary
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to the fact that M(G) is critically imperfect. Thus every odd cycle of length at
least 5 has a chord.
Now assume G is a 5-vertex-critical graph and every odd cycle of length at least

5 has a chord. Then c(M(G)) = 3 and c(M(G)|F ) < 3 for each proper ßat F of
M(G). Moreover, ω(M(G)) ≤ 2, as M(G) is graphic. Let F be a proper ßat of
M(G). If F has no odd circuits, then c(M(G)|F ) = 1 and ω(M(G)|F ) = 1. If F
has an odd circuit, then c(M(G)|F ) = 2. As every odd cycle of G of length at least
Þve has a chord, it follows that F has a 3-circuit. Hence ω(M(G)|F ) = 2 and we
conclude that M(G) is a critically imperfect matroid.

The following lemma, due to Tucker [8], characterizes the critically imperfect
graphs having no K4-restriction.

Lemma 3.5. The only critically imperfect graphs having no K4-restriction are the
odd circuits of length at least 5 or their complements.

The next two theorems describe the relationship between the set of critically
imperfect graphs and the set of graphs G such that M(G) is a critically imperfect
matroid. The graph C7 mentioned in the following results is shown in Figure 1.

Figure 1. The graph C7.

Theorem 3.6. If G is a critically imperfect graph such that M(G) is not critically
imperfect as a matroid, then χ(G) ≥ 6 or G ∼= C7.

Proof. SupposeG is a critically imperfect graph butM(G) is not critically imperfect
as a matroid. Since G is critically imperfect, χ(G) ≥ 3. Moreover, as the only
critically imperfect graphs with chromatic number 3 are the odd cycles Cn for
n ≥ 5, Theorem 3.4(i) implies that χ(G) ≥ 4.
Suppose that χ(G) = 4. Then, as G is critically imperfect, ω(G) < χ(G) = 4.

Thus G has no K4-restriction, and Lemma 3.5 implies that G is an odd cycle or
the complement of an odd cycle. It follows that G ∼= C7.
Now suppose that χ(G) = 5. Then every odd cycle of G of length 5 or more has

a chord and c(M(G)) = 3 but ω(M(G)) = 2. HenceM(G) is an imperfect matroid.
Therefore M(G) contains a proper ßat F =M(G1) that is critically imperfect as a
matroid. Now, as G1 is a vertex-induced subgraph of G, we have χ(G1) ≤ 4. Since
M(G1) is critically imperfect, χ(G1) ≥ 3. Hence c(M(G1)) = 2 and G1 is an odd
cycle of length at least 5. However, this contradicts the fact that vertex-induced
subgraph of G perfect, and we conclude that the theorem holds.
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Theorem 3.7. If M(G) is a critically imperfect matroid and G is not critically
imperfect as a graph, then either G ∼= K5 or G has C7 as a proper induced subgraph.

Proof. Suppose M(G) is a critically imperfect matroid, but G is not a critically
imperfect graph. Theorem 3.4(i) implies that c(M(G)) ≥ 3. Moreover, as PG(2, 2)
is an excluded minor for graphic matroids, ω(M(G)) ≤ 2. Thus c(M(G)) = 3
and ω(M(G)) = 2. Furthermore, G is 5-vertex-critical and every odd cycle of
length at least 5 has a chord. If |V (G)| = 5, then clearly G ∼= K5. Now suppose
|V (G)| > 5. As G is a 5-vertex-critical graph, it has no K5-restriction. Hence G
is an imperfect graph and it follows that G has a proper vertex-induced critically
imperfect subgraph G0 such that χ(G0) ≤ 4. If χ(G0) = 3, then Lemma 3.5 implies
that G0 is an odd cycle or the complement of an odd cycle. Now, as χ(Cn) ≥ 4 for
odd integers n ≥ 7 and C5 = C5, we deduce that G

0 is an odd cycle of length at least
5. However, this contradicts the fact that G has no chordless odd cycles of length
at least 5 as induced subgraphs. Hence we may assume that χ(G0) = 4. Since G0 is
critically imperfect it has no K4-restriction. Then Lemma 3.5 implies that G

0 is an
odd cycle or the complement of an odd cycle, and the fact that χ(G0) = 4 implies
that G0 is C7. Thus G is a 5-vertex-critical graph that has C7 as a proper induced
subgraph and is not critically imperfect.

It follows from the previous results thatM(C7) is a perfect matroid although C7

is a critically imperfect graph. Three examples of graphs which are not critically
imperfect, have C7 as an induced subgraph, and yield critically imperfect matroids
are shown in Figure 2.

Figure 2.
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