
DEPARTMENT OF MATHEMATICS

TECHNICAL REPORT

HECKE ALGEBRAS, SVD, AND OTHER

COMPUTATIONAL EXAMPLES

WITH CLIFFORD

Rafal Ablamowicz

September 1999

No. 1999-9

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Hecke Algebras, SVD, and Other Computational Examples

with CLIFFORD∗

RafaÃl AbÃlamowicz
Department of Mathematics,

Tennessee Technological University
Cookeville, TN 38505

rablamowicz@tntech.edu

September 30

Abstract: CLIFFORD is a Maple package for computations in Clifford algebras C`(B) of an arbi-
trary symbolic or numeric bilinear form B. In particular, B may have a non-trivial antisymmetric
part. It is well known that the symmetric part g of B determines a unique (up to an isomorphism)
Clifford structure on C`(B) while the antisymmetric part of B changes the multilinear structure of
C`(B). As an example, we verify Helmstetter�s formula which relates Clifford product in C`(g) to
the Clifford product in C`(B). Experimentation with Clifford algebras C`(B) of a general form B is
highly desirable for physical reasons and can be easily done with CLIFFORD. One such application
includes a derivation of a representation of Hecke algebras in ideals generated by q -Young operators.
Any element (multivector) of C`(B) is represented in Maple as a multivariate Clifford polynomial in
the Grassmann basis monomials although other bases, such as the Clifford basis, may also be used.
Using the well-known isomorphism between simple Clifford algebras C`(Q) of a quadratic form Q
and matrix algebras through a faithful spinor representation, one can translate standard matrix al-
gebra problems into the Clifford algebra language. We show how the Singular Value Decomposition
of a matrix can be performed in a Clifford algebra. Clifford algebras of a degenerate quadratic form
provide a convenient tool with which to study groups of rigid motions in robotics. With the help
from CLIFFORD we can actually describe all elements of Pin(3) and Spin(3). Rotations in R3

can then be generated by unit quaternions realized as even elements in C`+0,3. Throughout this work
all symbolic computations are performed with CLIFFORD and its extensions.

Keywords: Contraction, reversion, Hecke algebra, Young operator, spinor representation, exterior
algebra, multilinear structure, quaternions, Singular Value Decomposition, rigid motions.

∗Extended version of a talk presented at �ACACSE�99:Applied Clifford Algebra in Cybernetics, Robotics, Image
Processing and Engineering�, International Workshop as a Special Parallel Session of the 5th International Conference
on Clifford Algebras and their Applications in Mathematical Physics, June 27-July 4, 1999, Ixtapa, Zihuatanejo,
Mexico

1

Contents

1 Introduction 2

2 VeriÞcation of the Helmstetter formula 3
2.1 Numeric example when n = 3 . 5
2.2 Symbolic computations when n = 3 . 6

3 Hecke algebra computations 7
3.1 Hecke Algebra HF(2, q) . 8
3.2 Hecke algebra HF(3, q) . 10
3.3 Automorphism αq and the Garnir elements in the Hecke algebra 16

4 Singular Value Decomposition 19
4.1 Singular Value Decomposition of a 2× 2 matrix of rank 2 20
4.2 Singular Value Decomposition of a 3× 2 matrix of rank 2 25
4.3 Additional comments . 29

5 Clifford algebras in robotics 31
5.1 Group Pin(3) . 32
5.2 Group Spin(3) . 36
5.3 Degenerate Clifford algebra and the proper rigid motions SE(3) 42

6 Summary 43

7 Acknowledgments 44

8 Appendix 1 44

9 Appendix 2 45

10 Appendix 3 47

1 Introduction

A Þrst working version of a Maple package CLIFFORD was presented in Banff in 1995 [1]. From
a modest program capable of symbolic computations in Clifford algebras of an arbitrary bilinear
form, CLIFFORD has grown to include 96 main procedures, 21 new Maple types, close to 4, 000
lines of code written in the Maple programming language, and an extensive on-line documentation.
There is a number of special-purpose extensions available to CLIFFORD such as suppl and asvd
used in this paper [6]. In fact, anyone who uses Maple can easily write additional procedures to
tackle speciÞc problems.

There are major advantages in using CLIFFORD on a Computer Algebra System. One is an
ability to solve equations and Þnd the most general elements in the Clifford algebra satisfying given
conditions. This approach has been presented in Sections 3 and 5. In Section 3 Young operators
in the Hecke algebra HF(3, q) are eventually found by systematically solving three equations that
deÞne them. Computations in this section were Þrst reported in [7] along with a physical motivation.

2

There, experimentation with CLIFFORD led to Þnding Young operators realized as idempotents in
the Hecke algebra which in turn had been embedded into the even part of a Clifford algebra C`(B)
of a suitable bilinear form B. Such embedding was Þrst given in [17] where the bilinear form B was
found so that the deÞning relations on Hecke generators were satisÞed. Furthermore, it was shown
in [7] that Young operators corresponding to conjugate tableaux were related through the operation
of reversion in the Clifford algebra, an idea that was Þrst proposed in [17]. Here, we only show the
mechanics of the search for such operators, Garnir elements, and bases in the representation spaces
as they were performed with CLIFFORD.

In the same spirit, in Section 5, we describe a search for the elements in Pin(3) considered as
a subgroup of the group of units in the Clifford algebra C`0,3. Seven general types, not entirely
exclusive, are eventually found through a systematic search and analysis. Then, the elements of
Spin(3) are computed and related to unit quaternions. Rotations in coordinate planes and in a
plane orthogonal to an arbitrary non-zero axis vector are described using quaternions realized as
elements of C`+0,3. A symbolic formula describing the most general rotation is derived. Finally,
using the ability of CLIFFORD to compute in Clifford algebras of a degenerate quadratic form,
the semi-direct product Spin(3)o R3 is shown to generate rigid motions on a suitable subspace of
the Clifford algebra C`0,3,1.

The second advantage of using symbolic program like CLIFFORD is its ability to compute
with expressions containing totally undeÞned symbolic coefficients. It is possible, of course, like
in Section 5 to impose additional conditions on these coefficients when needed (by deÞning aliases
for roots of polynomial equations). In Section 2 we verify one of Helmstetter�s formulas [19] that
relates Clifford product in C`(B), the Clifford algebra of an arbitrary bilinear form B, to the Clifford
product in C`(g) where g = gT is the symmetric part of B. A re-wording of the Helmstetter formula
presented to the Author by Pertti Lounesto [23] proved to be suitable for symbolic veriÞcation with
CLIFFORD. In fact, while this problem turned up to be a challenge for CLIFFORD in view of
its complexity, it also has helped to Þne-tune the program to make such computations feasible. We
will only illustrate computations in dimension 3; however, computations in dimension up to 9 have
been successfully completed.

The third major advantage of using CLIFFORD shows up in Section 4: here, we perform within
the same workspace not only symbolic computations with a Clifford algebra, but also with a linear
algebra package built into Maple. This way we can illustrate in two low-dimensional examples two
parallel approaches to the Singular Value Decomposition (SVD) of a matrix: one through the matrix
algebra, and one through the Clifford algebra. In Section 4.3 we comment on SVD based entirely
on the Clifford algebra approach.

2 VeriÞcation of the Helmstetter formula

In his paper [19] Helmstetter studies canonical isomorphisms between Clifford algebras C`(Q) and
C`(Q0) of two quadratic forms Q and Q0 deÞned on the same (real or complex) vector space V. The
forms are related via the identity Q0(x) = Q(x) +B(x,x) for every x ∈ V and some bilinear form
B on V (that is, B is an element in (V ⊗V)∗). Helmstetter constructs a deformed Clifford product
∗ on C`(Q) by extending the Clifford product xy of two elements x and y in V ,→ C`(Q)

x ∗ y = xy +B(x,y)

3

to all elements in C`(Q). Together with the new product ∗, the Clifford algebra C`(Q) becomes
a deformed Clifford algebra C`(Q,B). Given now two different bilinear forms B and B0 on the
quadratic space (V,Q) such that B(x,x) = B0(x,x) for every x ∈ V, Helmstetter proves that there
exists F ∈ V2

V ∗ such that
B0(x,y)−B(x,y) =< F, x ∧ y >

and the mapping
φ : C`(Q,B)→ C`(Q,B0), u 7→ e∧F u (1)

gives an isomorphism from C`(Q,B) to C`(Q,B0) which acts as an identity on V. In the above,
e∧F u denotes the left contraction of u by the exterior exponential of F (see [9], [22]). A special
case of (1) occurs when B is symmetric, that is, B = g = gT and B0 = g+A for some antisymmetric
form A.

Thus, with a slight change of notation, let B = g + A, gT = g, AT = −A and let us consider
two Clifford algebras C`(g) and C`(B) on the same vector space V. We have therefore three
contractions: x

B
y = B(x,y), x

A
y = A(x,y), and x

g
y = g(x,y). 1 Then, the B -dependent

Clifford product uv
B
of any two elements u and v in C`(B) can be written [23] solely in terms of

the operations in C`(g) as

uv
B
= ((u

g
e∧F)(v

g
e∧F))

g
e∧(−F) (2)

where u
g
e∧F denotes the right contraction of u by e∧F with respect to g. The product of

u
g
e∧F and v

g
e∧F in (2) is taken in C`(g). Let dim R(V) = n. Then, the element F ∈

V2
V ∗

is deÞned as
F =

X
K,L

(−1)|π(K,L)|AKeLj−1 (3)

where j−1 denotes the inverse of the unit pseudoscalar j = e1 ∧ e2 ∧ · · ·∧ en in C`(g), the product
eLj

−1 is taken in C`(g), and the summation is taken over all multi indices K = [k1, k2] and
L = [l1, l2, . . . , ls] satisfying the following relations:

K ∩ L = ∅, K ∪ L = {1, 2, . . . , n}, n = 2 + s, K and L are ordered by < .

π(K,L) denotes a permutation which puts the list [k1, k2, l1, l2, . . . , ls] in the standard order
[1, 2, . . . , n] and |π(K,L)| equals 0 or 1 depending whether π(K,L) is an even or odd element
of Sn. In (3) we have also adopted notation eL = el1l2...ls = el1 ∧ el2 ∧ · · · ∧ els .

Before we proceed to verify formula (2) with CLIFFORD [6], let�s observe the following prop-
erties of the left and right contraction:

u
g
v = j−1((ju) ∧ v), u

g
v = (u ∧ (vj))j−1, j−1 =

�j

det(g)
, (4)

1The symbols x
B

y, x
A

y, and x
g

y denote the left contraction of y by x with respect to B, A, and g

respectively.

4

where � is the g -dependent reversion in C`(g). 2 Observe also that since F ∈ V2
V ∗, we have

e∧F =
NX
k=0

F∧k

k!
, N = bn/2c (5)

where F∧k = F ∧ F ∧ · · · ∧ F is the exterior product of F computed k -times and b·c denotes the
ßoor function. For example, for different values of n, F has the following form:

n = 2, F = −A12 e
−1
12 , (6)

n = 3, F = −(A12 e3 −A13 e2 +A23 e1) e
−1
123, (7)

n = 4, F = −(A12 e34 −A13 e24 +A14 e23 +A23 e14 +A34 e12 −A24 e13) e
−1
1234, (8)

and so on. We will verify the validity of (2) in a numeric and a symbolic case. In the Maple symbolic
language, formula (2) becomes:3

cmul(u, v) = RCg(cmulg(RCg(u, wexp(F, N)), RCg(v, wexp(F, N)), wexp(−F, N)))
with the CLIFFORD procedures cmulg and RCg representing the Clifford product and the right
contraction in C`(g) and wexp giving the exterior exponential in

V
V. We limit our two examples

to dimension n = 3. Computations presented in the following two sections can be extended with
CLIFFORD to higher dimensions.

2.1 Numeric example when n = 3

Let�s Þrst assign an arbitrary matrix to B, split B into its symmetric and antisymmetric parts
g and A, and compute the bivector F with a procedure makeF:

> dim:=3:eval(makealiases(dim,’ordered’)):B:=matrix(dim,dim,[4,8,3,0,9,5,-2,1,7]);

B :=

 4 8 3
0 9 5

−2 1 7

> g,A:=splitB(B);

g, A :=

4 4

1

2

4 9 3
1

2
3 7

 ,

0 4
5

2

−4 0 2
−5
2

−2 0

> F:=makeF(dim);

F :=
2

91
e13 +

86

455
e12

Next, we Þnd the exterior exponentials of F and −F which we assign to Maple variables F1

and F2 respectively.

> N:=floor(dim/2):F1:=wexp(F,N);F2:=wexp(-F,N);

2From now on in this section we assume that det(g) 6= 0.
3In CLIFFORD, the Clifford product uv of two elements u and v can be entered as u &c v (the inÞx form) or

as cmul(u,v).

5

F1 := 1+
2

91
e13 +

86

455
e12 , F2 := 1− 2

91
e13 − 86

455
e12 .

Let u and v be two arbitrary elements in C`(B) :

> u:=2+e1-e23+e123;v:=3-e3+e12+e23;

u := 2 + e1 − e23 + e123 , v := 3− e3 + e12 + e23 .
The Clifford product uv

B
of u and v in C`(B), the left hand side of (2), is then equal to

> cmul(u,v);

−48 e3 + 79 Id + 13 e13 − 6 e12 + 81 e2 − 8 e123 − 81 e1
while the right hand side of (2) gives the same result:

> RCg(cmulg(RCg(u,F1),RCg(v,F1)),F2);

−48 e3 + 79 Id + 13 e13 − 6 e12 + 81 e2 − 8 e123 − 81 e1

2.2 Symbolic computations when n = 3

A purely symbolic computation when n = 3 will look as follows. Matrix B is now deÞned as an
arbitrary symbolic 3 × 3 matrix with a symmetric part g and an antisymmetric part A, and
F is again computed using the procedure makeF. The exterior exponentials of F and −F are
again denoted respectively by F1 and F2. All symbolic parameters in B are assumed to be real
or complex.

> dim:=3:eval(makealiases(dim)):
> B:=matrix(dim,dim,[g11,g12+A12,g13+A13,g12-A12,g22,g23+A23,g13-A13,g23-A23,g33]);

B :=

 g11 g12 + A12 g13 + A13
g12 − A12 g22 g23 + A23
g13 − A13 g23 − A23 g33

> g,A:=splitB(B);

g, A :=

 g11 g12 g13
g12 g22 g23
g13 g23 g33

 ,
 0 A12 A13
−A12 0 A23
−A13 −A23 0

> F:=map(normal,clicollect(makeF(dim)));

F := − (A23 g11 + A12 g13 − A13 g12) e23
%1

+
(−A23 g13 + A13 g23 − A12 g33) e12

%1

+
(A23 g12 − A13 g22 + A12 g23) e13

%1

%1 := −g33 g22 g11 + g22 g13 2 − 2 g13 g23 g12 + g33 g12 2 + g23 2 g11
> N:=floor(dim/2):F1:=wexp(F,N):F2:=wexp(-F,N):

We will now deÞne two general elements u and v in C`(B) by decomposing them over a
Grassmann basis (provided by a procedure cbasis). Coefficients in these two expansions are
assumed to be real or complex.4

> cbasis(dim);

4For technical reasons, in Maple these coefficients cannot be deÞned as ui and vi; that is why we use here uui
and vvi.

6

[Id , e1 , e2 , e3 , e12 , e13 , e23 , e123]

> u:=add(uu[k]*cbasis(dim)[k],k=1..2^dim);

u := uu1 Id + uu2 e1 + uu3 e2 + uu4 e3 + uu5 e12 + uu6 e13 + uu7 e23 + uu8 e123

> v:=add(vv[k]*cbasis(dim)[k],k=1..2^dim);

v := vv1 Id + vv2 e1 + vv3 e2 + vv4 e3 + vv5 e12 + vv6 e13 + vv7 e23 + vv8 e123

The Clifford product of u and v in C`(B) is then collected and assigned to a constant res1

which we won�t display due to its length.

> res1:=clicollect(cmul(u,v)):

As before, we Þnish by computing the right hand side of (2). By assigning it to res2, we can
then easily Þnd that res1 − res2 = 0 as expected.

> res2:=clicollect(RCg(cmulg(RCg(u,F1),RCg(v,F1)),F2)):res1-res2;

0

3 Hecke algebra computations

In [7] it was shown that the symmetric group Sn and its group deformation, the Hecke algebra
HF(n, q) could be constructed as a subalgebra of a Clifford algebra C`(B) for a suitably cho-
sen q -dependent non-symmetric bilinear form B. q -Young operators were constructed as Clifford
idempotents and the Hecke algebra representations in ideals generated by these idempotents were
computed. Appropriate q -Young diagrams and tableaux representing symmetrizers, antisymmetriz-
ers, and operators of mixed symmetries were realized inside the Hecke algebra, while the ordinary
case of the symmetric group was obtained in the limit q → 1.

The Hecke algebra is the generalization of the group algebra of the symmetric group Sn by
adding the requirement that transpositions of adjacent elements i, i + 1 are no longer involutions.
Following [7] we set t2i = (1 − q)ti + q which reduces to s2

i = 1 in the limit q → 1. The deÞning
relations of the Hecke algebra will be given according to Bourbaki [11]. Let {1, t1, . . . , tn} be a set
of generators which fulÞll these relations:

t2i = (1− q)ti + q, (9)

titj = tjti, |i− j| ≥ 2, (10)

titi+1ti = ti+1titi+1, (11)

then their algebraic span is the Hecke algebra HF(n, q). The algebra morphism ρ which maps
the Hecke algebra into the even part of an appropriate Clifford algebra was found in [17]. In
particular, ρ(ti) = bi := ei ∧ ei+n, i = 1, . . . , n, where e1, . . . , e2n are the generators of the
Clifford algebra C`(B, V), V = span {ei}, with the following non-symmetric bilinear form B :

> dim:=8:n:=dim/2:eval(makealiases(dim,’ordered’)):B:=defB(dim);

7

B :=

0 0 0 0 q −1− q 1 1
0 0 0 0 −1− q q −1− q 1
0 0 0 0 1 −1− q q −1− q
0 0 0 0 1 1 −1− q q
1 1 −1 −1 0 0 0 0
q 1 1 −1 0 0 0 0
−1 q 1 1 0 0 0 0
−1 −1 q 1 0 0 0 0

Then, the form of B guarantees that the following relations hold:

b2i = (1− q)bi + q, (12)

bibj = bjbi, |i− j| ≥ 2, (13)

bibi+1bi = bi+1bibi+1. (14)

Following [17], we deÞne the Hecke generators bi as balanced basis Grassmann monomials of
order 2 :

> for i from 1 to n do b.i:=(e.i) &w (e.(n+i)) od:

Using procedure cliexpand we can expand these generators in terms of the unevaluated Clifford
product which is denoted in Maple as &C :

> seq(cat(’b’,i)=cliexpand(b.i),i=1..4);

b1 = (e1 &C e5)− q Id , b2 = (e2 &C e6)− q Id , b3 = (e3 &C e7)− q Id , b4 = (e4 &C e8)− q Id .
Checking if the Hecke generators satisfy the deÞning relations can be done as follows:

> map(evalb,[seq(simplify(CS(cmul(b.i,b.i)-(1-q)*b.i-q))=0,i=1..n)]);

[true, true, true, true]

> map(evalb,[seq(seq(CS(cmul(b.i,b.j)-cmul(b.j,b.i))=0,i=j+2..n),j=1..n)]);

[true, true, true]
> map(evalb@factor@normal,[seq(CS(cmul(cmul(b.i,cat(b,i+1)),b.i)-
> cmul(cmul(cat(b,i+1),b.i),cat(b,i+1)))=0,i=1..n-1)]);

[true, true, true]

Let�s deÞne the remaining basis elements of the Hecke image ρ(HF(4, q)) in C`(B) :
> b12:=CS(cmul(b1,b2)):b21:=CS(cmul(b2,b1)):b23:=CS(cmul(b2,b3)):
> b32:=CS(cmul(b3,b2)):b34:=CS(cmul(b3,b4)):b43:=CS(cmul(b4,b3)):
> b121:=CS(cmul(b1,b21)):b123:=CS(cmul(b12,b3)):b234:=CS(cmul(b23,b4)):
> b321:=CS(cmul(b32,b1)):b432:=CS(cmul(b43,b2)):b4321:=CS(cmul(b432,b1)):
> b1234:=CS(cmul(b123,b4)):

Thus, ρ deÞnes a homomorphism from the Hecke algebra HF(4, q) into the Clifford algebra C`(B).
It was shown in [17] that ρ is not injective for n ≥ 4, and that its kernel contains all Young diagrams
which are not L -shaped.

3.1 Hecke Algebra HF(2, q)

We begin with the Hecke algebra HF(2, q) generated by {Id, b1} which reduces to S2 in the limit
q → 1. We have thus only one q -transposition b1 from which we can calculate a q -symmetrizer

8

R(12) and a q -antisymmetrizer C(12). One of the features of the construction presented in [7]
is that R(12) and C(12) are related by the reversion in C`(B) :

> R.12:=CS(q*Id+b1); #S_2 symmetrizer
> C.12:=CS(Id-b1); #S_2 antisymmetrizer
> evalb(reversion(C.12)=R.12);

R12 := e15 + q Id , c12 := Id − e15
true

Observe, that R(12) is the reversion of C(12), that is, R(12) = C(12)� where � is the reversion
in the Clifford algebra C`1,1. Operators C(12) and R(12) are almost idempotent and they
annihilate each other:

> factor(CS(R.12 &c R.12));

(q + 1) (q Id + e15)

> factor(CS(C.12 &c C.12));

(q + 1) (Id − e15)
> R.12 &c C.12, C.12 &c R.12;

0, 0

Upon normalization, the symmetrizer R(12) becomes the q -Young operator Y
(2)

1,2 while the

antisymmetrizer C(12) becomes Y
(11)

1,2 . The following computation veriÞes that Y
(2)

1,2 and Y
(11)

1,2

are mutually annihilating idempotents adding up to the identity element.

> Y2.12 := R.12/(1+q);Y11.12:= C.12/(1+q);

Y212 :=
q Id + e15

q + 1
, Y1112 :=

Id − e15
q + 1

> ybas:=[Y2.12,Y11.12]:
> f:=(i,j)->CS(cmul(ybas[i],ybas[j]));
> YM:=evalm(linalg[matrix](2,2,(i,j)->f(i,j)));
> CS(Y11.12+Y2.12);

f := (i, j)→ CS(climul(ybas i, ybasj))

YM :=

q Id

q + 1
+
e15

q + 1
0

0
Id

q + 1
− e15

q + 1

Id

In our construction, the Hecke algebra HF(2, q) is a subalgebra of the even part C`
+
1,1 of

C`1,1 and it is generated by {e1,e5}. That is, the bilinear form G on the vector space spanned
by {e1, e5} is

> G:=matrix(2,2,[B[1,1],B[1,5],B[5,1],B[5,5]]);

G :=

∙
0 q
1 0

¸
.

After symmetrization, diagonalization, and the limit q → 1, G becomes diag(1,−1). Therefore,
due to the isomorphism C`(B) ' C`(g) (as associative algebras) we can view HF(2, q) as the
subalgebra of C`+1,1. This embedding implies that any idempotent of the Hecke algebra HF(2, q)

9

must be an even Clifford element. The following computation shows that the Young operators
found above are the only two nontrivial mutually annihilating idempotents in HF(2, q).

> xx:=CS(a*Id+b*b1);

xx := a Id + b e15

> sol:=clisolve2(CS(cmul(xx,xx)-xx),[a,b]);

sol := [b = 0, a = 0, a = 1, b = 0, b = − 1

q + 1
, a =

1

q + 1
, b =

1

q + 1
, a =

q

q + 1
]

> f.1:=normal(subs(sol[4],xx));f.2:=normal(subs(sol[3],xx));

f1 :=
q Id + e15

q + 1
, f2 :=

Id − e15
q + 1

.

In this case, the Young operators happen to be the two even primitive idempotents f1, f2 in
C`+1,1. Notice, that in the case when q = 1, the idempotents f1 and f2 reduce to the well-known
primitive idempotents

> f11:=subs(q=1,f1);

f11 :=
1

2
Id +

1

2
e15

> f22:=subs(q=1,f2);

f22 :=
1

2
Id − 1

2
e15

in the Clifford algebra C`1,1.

3.2 Hecke algebra HF(3, q)

In [7] Young operators related to various symmetries were constructed as idempotent elements in
the Hecke algebra HF(3, q) embedded into the even subalgebra C`

+
2,2 of C`2,2. As one of the main

features of this construction, the Young operators corresponding to conjugate Young tableaux in the
sense of McDonald [24] were related through the reversion in the Clifford algebra. The goal was to
Þnd four Young operators known to exist from the general theory of the Hecke algebras for n = 3.
The four q -Young operators found had one parameter and generalized the four Young operators of
S3 described in Hamermesh [18] on p. 245. One of them was a full symmetrizer, one was a full
antisymmetrizer and two were of mixed symmetry.

The construction began with Þnding the most general element X in HF(3, q) such that5:

X + �X = Id (15)

X2 = X (16)

X �X = 0 (17)

In the Þrst step, the most general element in the Hecke algebra HF(3, q) was found that satis-
Þed (15)6:

> bset:=[Id,b1,b2,b12,b21,b121]:X:=bexpand(add(K[i]*bset[i],i=1..6)):
> sollist[1]:=clisolve2(X+reversion(X)-Id,[seq(K[i],i=1..6)]):
> X:=bexpand(subs(sollist[1],X));

5See formulas (24), (25) and (26) in [7].
6Procedure clisolve2 is capable of solving the equation X + �X − 1 = 0 for the free parameters K1, . . . ,K6

appearing in X. However, when used repeatedly, it randomly selects free parameters in the solution.

10

X := (−1
2
K6 q +

1

2
K3 q +

1

2
K6 q

2 +
1

2
K2 q +

1

2
− 1
2
K3 − 1

2
K2) Id +K2 b1 +K3 b2 +K4 b12

+ (−K6 +K6 q −K4) b21 +K6 b121
In the above, procedure bexpand expands elements in the Hecke algebra, which are normally ex-
pressed in the Grassmann basis of C`2,2, in terms of the Hecke basis {1, b1, b2, b12, b21, b121}.

Thus, the solution to (15) gives an element that belongs to a family parameterized by four
real or complex parameters. In order to simplify Maple output, we deÞne two aliases and then
we substitute X found above into the second equation (16) .

> alias(alpha=RootOf((1+q)*_Z^2+(-q^2*K[4]+K[4]+q*K[2]-1+K[2])*_Z+K[4]*K[2]+
> K[2]^2-K[4]-K[2]+q*K[4]-q^2*K[4]^2-q*K[4]^2-q^2*K[2]*K[4]+q*K[2]^2)):
> alias(kappa=RootOf((1+q)*_Z^2+(-q^2*K[4]+K[4]+q*K[2]+1+K[2])*_Z+K[4]*
> K[2]+K[2]^2+K[4]+K[2]-q*K[4]-q^2*K[4]^2-q*K[4]^2-q^2*K[2]*K[4]+q*K[2]^2));

I, α, κ
> sollistxx1:=clisolve2(cmul(X,X)-X,[seq(K[i],i=1..6)]):
> xxlist:=[seq(bexpand(subs(sollistxx1[i],X)),i=1..nops(sollistxx1))]:
> for i from 1 to nops(xxlist) do r.i:=bexpand(xxlist[i]) od:

The six representatives r1, . . . , r6 deÞned in this last Maple command are the same as the
elements displayed in [7] after formula (30). Using the command findbasis we can determine
that the set {ri}, i = 1, . . . , 6, is of rank 4 :

> nops(findbasis([r.(1..6)]));

4

Since the representatives are related by the reversion, we seek four linearly independent elements.
For example, r1, r2, r3 and r5 are linearly independent. From now on we assign them to
f1, f2, f3, f4.

> nops(findbasis([xxlist[1],xxlist[2],xxlist[3],xxlist[5]]));

4

> f1:=r.1:f2:=r.2:f3:=r.3:f4:=r.5:

We can easily verify that the four elements {f1, f2, f3, f4} satisfy equation (15):
> CS(f.1+reversion(f.1)-Id),CS(f.2+reversion(f.2)-Id),
> CS(f.3+reversion(f.3)-Id),CS(f.4+reversion(f.4)-Id);

0, 0, 0, 0

and equation (16):
> simplify(CS(f.1 &c f.1 - f.1)),simplify(CS(f.2 &c f.2 - f.2)),
> simplify(CS(f.3 &c f.3 - f.3)),simplify(CS(f.4 &c f.4 - f.4));

0, 0, 0, 0

Each of the four non-primitive idempotents fi generates a three-dimensional one-sided ideal in
HF(3, q). In order to split such ideal into a one-dimensional space and a two-dimensional space,
one had to Þnd a way of splitting at least one of these idempotents into a sum of two mutually
annihilating idempotents. It was observed in [7] that f1 contained a full symmetrizer. Since the

full symmetrizer Y
(3)

1,2,3 was deÞned there as

Y
(3)

1,2,3 :=
q31+ q2b1 + q

2b2 + qb12 + qb21 + b121

(1+ q + q2)(1+ q)
, (18)

11

the full antisymmetrizer Y
(111)

1,2,3 was, by construction, the reversion of the symmetrizer, that is,

Y
(111)

1,2,3 := Y
(3)

1,2,3�,

Y
(111)

1,2,3 :=
1− b1 − b2 + b12 + b21 − b121

(1+ q + q2)(1+ q)
. (19)

Therefore, by subtracting the full antisymmetrizer Y
(111)

1,2,3 from f1, the Þrst Young operator

Y
(21)

1,3,2 of a mixed type was found. Then, the second Young operator Y
(21)

1,2,3 of a mixed type was

computed by applying the reversion (conjugate) to Y
(21)

1,3,2, that is, Y
(21)

1,2,3 := Y
(21)

1,3,2�. Namely
7,

> Y21.132:=bexpand(f.1-Y111.123):Y21.123:=bexpand(reversion(Y21.132)):

Furthermore, Y
(111)

1,2,3 annihilates Y
(21)

1,3,2 when multiplied from both sides. This is a reßection of
the fact that the left ideal (the representation space) in the Hecke algebra HF(3, q) generated by
f1 decomposes into a direct sum of one-dimensional left ideal and a two-dimensional left ideal.

> simplify(Y.111.123+Y.21.132-f1);

0

> simplify(Y.21.123+Y.3.123-reversion(f1));

0

> CS(Y.111.123 &c Y.21.132),CS(Y.21.132 &c Y.111.123);

0, 0

> CS(Y.21.132 &c Y.3.123),CS(Y.3.123 &c Y.21.123);

0, 0

> CS(Y.111.123 &c Y.111.123 - Y.111.123),CS(Y.21.132 &c Y.21.132 - Y.21.132);

0, 0

In addition to the symmetrizer Y
(3)

1,2,3 and the antisymmetrizer Y
(111)

1,2,3 displayed in (18) and (19),

we have also two Young operators Y
(21)

1,2,3 and Y
(21)

1,3,2 of mixed symmetry:

> ’Y21.123’=bexpand(Y21.123);

Y21 .123 =
q Id

q + 1+ q2
+
(K4 q

3 + 2K4 q
2 − q2 + 2K4 q +K4) b1

(q + 1+ q2) (1+ q)

− (K4 q
3 + 2K4 q

2 + q + 2K4 q +K4) q b2

(q + 1+ q2) (1+ q)

− (K4 q
3 + 2K4 q

2 + q + 2K4 q +K4) b12

q3 + 2 q2 + 2 q + 1

+
(q5K4 + q

4K4 + q
3 +K4 q

3 − q2 +K4 q
2 +K4 q +K4 − 1) b21

q (q3 + 2 q2 + 2 q + 1)

+
(q4K4 +K4 q

3 + q2 −K4 q −K4 + 1) b121

(q + 1+ q2) q (1+ q)
> ’Y21.132’=bexpand(Y21.132);

7Due to lengthy displays, we refer Reader to formulas (33) and (34) in [7].

12

Y21 .132 =
q Id

q + 1+ q2
− (K4 q

3 + 2K4 q
2 + 2K4 q − 1+K4) b1

(q + 1+ q2) (1+ q)

+
(q4K4 + 2K4 q

3 + 2K4 q
2 +K4 q + 1) b2

(q + 1+ q2) (1+ q)

+
(K4 q

3 + 2K4 q
2 + 2K4 q − 1+K4) b12

q3 + 2 q2 + 2 q + 1

− (q
5K4 + q

4K4 +K4 q
3 + q3 +K4 q

2 +K4 q + q +K4 − 1) b21
q (q3 + 2 q2 + 2 q + 1)

− (q
4K4 +K4 q

3 + q2 −K4 q −K4 + 1) b121

(q + 1+ q2) q (1+ q)

In order to represent our Young operator Y
(21)

1,3,2 as a product of a row-symmetrizer R(13) and
a column-antisymmetrizer C(12) = f1, we use f1 deÞned above and compute R(13) from the
equation

Y
(21)

132 = R(13)f1. (20)

In order to solve the above equation in Maple for R(13), we need to Þnd an element Y in
the Hecke algebra which would not only satisfy equation (20) but also such that Y + Y�= 1.
This is because we want the column antisymmetrizer C(12) to remain related to R(12) through
the reversion. Notice also that we are justiÞed in deÞning C(12) as equal to f1 (modulo a
normalizing factor) because f1 generalizes the antisymmetrizer C(12) from S2 to S3 :

> bexpand(c12/(1+q));

Id

1+ q
− b1

1+ q
> bexpand(f1);

Id

1+ q
−K4 b1 +K4 q b2 +K4 b12 − (K4 q

3 + q +K4 − 1) b21
q (1+ q)

− (−K4 +K4 q
2 + 1) b121

q (1+ q)
That is, f1 is seen to contain C(12)/(1 + q) if we replace K4 with 1/(1 + q). Thus, we Þrst
express Y in the Hecke basis contained in the list bset below and then we make sure that
Y + Y�= 1 :

> bset:=[Id,b1,b2,b12,b21,b121]:
> Y:=bexpand(add(P[i]*bset[i],i=1..6)):
> Y:=bexpand(op(clisolve2(Y+reversion(Y)-Id,Y)));

Y := (
1

2
P3 q − 1

2
P6 q +

1

2
P6 q

2 +
1

2
P2 q − 1

2
P2 +

1

2
− 1
2
P3) Id + P2 b1 + P3 b2

+ (−P5 − P6 + P6 q) b12 + P5 b21 + P6 b121
Next we require that the above found element Y satisÞes equation (20):

> R.13:=bexpand(op(clisolve2(Y21.132-cmul(Y,f_1),Y)));

13

R13 :=
q Id

1+ q
− (−q

2 + q2 P3 + P3 q − 1+ P3) b1

(q + 1+ q2) q
+ P3 b2 +

(q2 P3 + P3 q + P3 − 1) b12
q (q + 1+ q2)

− (q
5 P3 + q

4 P3 + q
3 P3 − q2 + q2 P3 + P3 q − 1+ P3) b21

(1+ q) q2 (q + 1+ q2)

− (q
4 P3 + q

3 P3 − P3 q + 1− P3) b121

q2 (q3 + 2 q2 + 2 q + 1)
We verify that R(13) is an idempotent:

> CS(R13 &c R13-R13);

0

It was pointed out in [7] that when the Clifford product R(13)f1 is computed, the free parameter
P3 disappears:

> bexpand(cmul(R13,f1));

q Id

q + 1+ q2
− (K4 q

3 + 2K4 q
2 + 2K4 q − 1+K4) b1

%1

+
(q4K4 + 2K4 q

3 + 2K4 q
2 +K4 q + 1) b2

%1

+
(K4 q

3 + 2K4 q
2 + 2K4 q − 1+K4) b12

%1

− (q
5K4 + q

4K4 +K4 q
3 + q3 +K4 q

2 +K4 q + q +K4 − 1) b21
q%1

− (q
4K4 +K4 q

3 + q2 −K4 q −K4 + 1) b121

(q + 1+ q2) q (1+ q)

%1 := q3 + 2 q2 + 2 q + 1

which gives Y
(21)

1,3,2 computed above:

> CS(%-Y21.132);

0

In order to construct the representation spaces from the four Young operators, one needs to Þnd

at least one Garnir G
(λi)
i,j element in the Hecke algebra [7, 20]. All Garnir elements can be seen

to act as row or column cycles in Young tableaux thereby generating non-standard tableaux which
correspond to the basis vectors of the representation space. A Garnir element has the following
deÞning properties:

Y
(21)

1,2,3G
(21)
1,1 = 0, (21)

G
(21)
1,1 Y

(21)
1,2,3 6= 0. (22)

The reason for requiring (22) is that we want G
(21)
1,1 Y

(21)
1,2,3 to be a second basis element in the

left Hecke ideal generated by Y
(21)

1,2,3. In order to solve (21) and (22), we begin by assigning to
X a general element of the Hecke algebra, that is, X is a linear combination of the Hecke basis
elements with some undeÞned coefficients Ki, i = 1, . . . , 6 :

14

> X:=bexpand(K[1]*Id+K[2]*b1+K[3]*b2+K[4]*b12+K[5]*b21+K[6]*b121);

X = K1 Id +K2 b1 +K3 b2 +K4 b12 +K5 b21 +K6 b121

We use clisolve2 to solve equation (21). All three solutions returned by Maple are assigned to
a list sol.

> sol:=clisolve2(cmul(Y21.123,X),[seq(K[i],i=1..6)]):nops(sol);

3

> for i from 1 to nops(sol) do X.i:=bexpand(subs(sol[i],X)) od;

X1 := (K2 q −K6 q +K4) Id +K2 b1 +K3 b2 +K4 b12

+
(K6 q

2 +K4 q
2 −K3 q −K6 q −K4 q +K2 +K4) b21

q
+K6 b121

X2 := K1 Id +
(K6 q

3 + q2K1 +K6 q
2 + q K1 + 1) b1

q2 (1+ q)
+K3 b2 − b12

q (1+ q)

+
(q5K6 − q4K3 − q3K3 − q3 +K6 q

2 + q2K1 + q
2 + q K1 − q + 1) b21

q3 (1+ q)
+K6 b121

X3 := K1 Id

+
(q − 1+K6 q + 2K6 q

2 + 2K6 q
3 +K1 + 2 q K1 + q

4K6 + 2 q
2K1 + q

3K1) b1

q (q3 + 2 q2 + 2 q + 1)

+K3 b2 − (q − 1) b12
q3 + 2 q2 + 2 q + 1

+ ((q6K6 + q
5K6 − q5K3 − 2 q4K3 − q4 + q4K6

+ 2 q3 + q3K1 +K6 q
3 − 2 q3K3 +K6 q

2 + 2 q2K1 − q2K3 − 2 q2 +K6 q + 2 q K1

+ 2 q +K1 − 1)b21)/(q2 (q3 + 2 q2 + 2 q + 1)) +K6 b121
One way to Þnd out if the three solutions returned by Maple are really linearly independent
is to use a procedure findbasis which from the given list of Clifford polynomials extracts all
polynomials which are linearly independent.

> nops(findbasis([X.1,X.2,X.3]));

3

The three solutions X1, X2, X3 are therefore linearly independent. Another way to verify that fact
would be to try to Þnd three coefficients c1, c2, c3, not all equal to zero, that would satisfy the
following linear combination:

c1X1 + c2X2 + c3X3 = 0. (23)

Thus, we can use again the procedure clisolve2 and try to solve equation (23) as follows:

> clisolve2(c[1]*X.1+c[2]*X.2+c[3]*X.3,[c[1],c[2],c[3]]);

[{c1 = 0, c2 = 0, c3 = 0}]
As expected, all coefficients are zero. Thus, X1, X2, X3 are three linearly independent solutions of

(21), that is, Y
(21)

1,2,3Xi = 0 for i = 1, 2, 3.
We proceed now to verify whether the solutions we have just obtained satisfy also equa-

tion (22). In particular, we will try to see if there any non-zero values of the parameters

K2,K4,K5,K6 in X1 so that X1Y
(21)

1,2,3 would be 0. We will again use the procedure clisolve2.

15

> var1:=select(type,indets(X1),indexed);

var1 := {K2, K4, K5, K6}
> clisolve2(X.1 &c Y.21.123,vars1);

[]

As expected, Maple returns an empty solution set.

3.3 Automorphism αq and the Garnir elements in the Hecke algebra

In [7], an automorphism αq was introduced in the Hecke algebra via the formula (48). αq re-
places the reversion � and gives the inverse of the basis element bK for any multi-index K. The
automorphism αq is then extended to the whole Hecke algebra by the following deÞnition:

αq(bi1 . . . bis) = (−1
q)

s(bi1 · · · bis)�
= (−1

q)
s(�bis · · · �bi1)

= αq(bis) · · ·αq(bi1).
(24)

In CLIFFORD, the αq automorphism has been programmed as a Maple procedure alpha2.
For example, when s = 2, veriÞcation of (24) can be done as follows:8

> evalb(bexpand(alpha2(b1 &c b2))=bexpand(alpha2(b2) &c alpha2(b1)));
> evalb(bexpand(alpha2(b2 &c b1))=bexpand(alpha2(b1) &c alpha2(b2)));

true, true,

The following is a veriÞcation that indeed αq(bi) = b
−1
i = (q−1)

q 1+ bi

q , i = 1, 2.
9

> bexpand(alpha2(b1)),evalb(bexpand(cinv(b1)) = bexpand(alpha2(b1)));
> bexpand(alpha2(b2)),evalb(bexpand(cinv(b2)) = bexpand(alpha2(b2)));

(q − 1) Id
q

+
b1

q
, true

(q − 1) Id
q

+
b2

q
, true

On the other hand, (24) implies that αq(b12) = (
−1
q)

2 �b12 = b
−1
12 :

> bexpand(alpha2(b12));
> map(normal,bexpand((-1/q)^2*(reversion(b12))));
> evalb(bexpand(cinv(b12))=bexpand(alpha2(b12)));

(1− 2 q + q2) Id

q2
+
(q − 1) b1

q2
+
(q − 1) b2

q2
+
b21

q2

(1− 2 q + q2) Id

q2
+
(q − 1) b1

q2
+
(q − 1) b2

q2
+
b21

q2

true

and similarly for b21. For completeness we only show that αq(b121) = (
−1
q)

3 �b121 = b
−1
121 :

8Procedure alpha2 is part of a package suppl. Rather than displaying and comparing long expressions, it is often
convenient to use Maple�s built-in Boolean procedure evalb which returns true or false when the two expressions
are equal or not.

9In CLIFFORD, the symbolic inverse of any element can be found using a procedure cinv.

16

> bexpand(alpha2(b121));
> map(normal,bexpand((-1/q)^3*(reversion(b121))));
> evalb(bexpand(cinv(b121))=bexpand(alpha2(b121)));

(−2 q2 + q3 + 2 q − 1) Id
q3

+
(1− 2 q + q2) b1

q3
+
(1− 2 q + q2) b2

q3
+
(q − 1) b12

q3

+
(q − 1) b21

q3
+
b121

q3

(−2 q2 + q3 + 2 q − 1) Id
q3

+
(1− 2 q + q2) b1

q3
+
(1− 2 q + q2) b2

q3
+
(q − 1) b12

q3

+
(q − 1) b21

q3
+
b121

q3

true

Thus, we have veriÞed that αq(bK) = (−1
q)

|K| �bK = b−1
K for a multi-index K of length |K|.

However, this property does not extend to non-homogeneous (non-versor like) elements of the
Hecke algebra. Let hecke be a Maple variable representing an arbitrary element in HF(3, q)
expanded in the Hecke basis {1, b1, b2, b12, b21, b121} :

> hecke:=h[1]*Id + h[2]*’b1’ + h[3]*’b2’ + h[4]*’b12’ + h[5]*’b21’ + h[6]*’b121’;

hecke := h1 Id + h2 b1 + h3 b2 + h4 b12 + h5 b21 + h6 b121

Then the action of αq on hecke can be written as follows:

> alpha2hecke:=bexpand(alpha2(hecke));

alpha2hecke :=
H1 Id

q3
+
H2 b1

q3
+
H3 b2

q3
+
H4 b12

q3
+
H5 b21

q3
+
H6 b121

q3

where the expressions Hi, i = 1, . . . , 6, are q -polynomials with coefficients expressed in terms of
hi, i = 1, . . . , 6. 10 With a little experimentation it can be easily veriÞed that, for example, αq
does not give the inverse of the element 1+ b1 :

> h[1],h[2],h[3],h[4],h[5],h[6]:=1,1,0,0,0,0:

> bexpand(hecke);

Id + b1

> bexpand(CS(cinv(hecke))),bexpand(alpha2(hecke));

1

2

(q − 2) Id
q − 1 +

1

2

b1

q − 1 ,
(2 q − 1) Id

q
+
b1

q
.

We return now to the problem of Þnding the Garnir element G
(21)
1,1 that would satisfy

equations (21) and (22). Recall that equation (21) had three linearly independent solutions

X1, X2, X3. Notice, that X1 does not annihilate the Young operator Y
(21)

1,2,3 and αq(X1) does

not annihilate the Young operator Y
(21)

1,3,2 no matter what values are assigned to the parameters
K2,K4,K5,K6 :

> clisolve2(X.1 &c Y.21.123,vars1),clisolve2(alpha2(X.1) &c Y.21.132,vars1);

[], []

10In order to get the display for αq(hecke) shown above expressions Hi, i = 1, . . . , 6, have been deÞned in Maple
as aliases. See Appendix 2 for their deÞnitions.

17

Furthermore, the following shows that the elements X1Y
(21)

1,2,3 and αq(X1)Y
(21)

1,3,2 are linearly
independent:

> nops(findbasis([X.1 &c Y.21.123,alpha2(X.1) &c Y.21.132]));

2

Since the six elements

{Y (3)
1,2,3, Y

(21)
1,2,3, X1Y

(21)
1,2,3,αq(X1)Y

(21)
1,3,2, Y

(21)
1,3,2, Y

(111)
1,2,3 }

are linearly independent,
> nops(findbasis([Y.3.123,Y.21.123,X.1 &c Y.21.123,alpha2(X.1) &c Y.21.132,
> Y.21.132,Y.111.123]));

6

they may form a basis S for the Hecke algebra HF(3, q). We deÞne the Garnir element G
(21)
1,1

to be equal to X1.
11

> alias(t1=K[6]*q^2+K[4]*q^2-K[5]*q-K[6]*q-K[4]*q+K[2]+K[4]):
> G21.1.1:=bexpand(X1);

G2111 := (K2 q −K6 q +K4) Id +K2 b1 +
t1 b2

q
+K4 b12 +K5 b21 +K6 b121

> S:=[Y.3.123,Y.21.123,G21.1.1 &c Y.21.123,
> alpha2(G21.1.1) &c Y.21.132,Y.21.132,Y.111.123]:

Procedure yexpand (See Appendix 2) is used to expand elements in the Hecke algebra HF(3, q) in
terms of the Young basis S. For example,

> yexpand(Y3.123);

Y3 .123

> yexpand(&c(G21.1.1,Y21.123));

G21 .1.1&cY21 .123

> yexpand(&c(alpha2(G21.1.1),Y21.132));

α2(G21 .1.1)&cY21 .132

Recall that the original basis in the Hecke algebra was: {1, b1, b2, b12, b21, b121}. Each original
basis element should be representable in terms of the Young basis S :

> ’Id’=yexpand(Id);

Id = Y3 .123 + Y21 .123 + Y21 .132 + Y111 .123

> ’b1’=yexpand(b1);

b1 = Y3 .123 +
w2 Y21 .123

1+ q
+
q w1 (G21 .1.1&cY21 .123)

w3 (1+ q)

− q
2 (α2(G21 .1.1)&cY21 .132)

w4
+
q w5 Y21 .132

w6
− qY111 .123

> ’b2’=yexpand(b2);

11The above computations could have been performed with X2 or X3 instead of X1, and the results would have
been similar.

18

b2 = Y3 .123− w7 qY21 .123
1+ q

− w8 q (G21 .1.1&cY21 .123)
w3 (1+ q)

+
q3 (α2(G21 .1.1)&cY21 .132)

w4
− w9 Y21 .132

w6
− qY111 .123

where wi, i = 1, . . . , 9, are polynomials in q parameterized in terms of K2,K4,K5,K6. They have
been deÞned as Maple aliases and are shown in Appendix 2.

4 Singular Value Decomposition

Our next application of Clifford algebras will be to the Singular Value Decomposition (SVD) of a
matrix [28]. There are many uses of SVD such as in image processing, description of the so called
principal gains in a multivariable system [25], or in an automated data indexing known as Latent
Semantic Indexing (or LSI). LSI presents a very interesting and useful technique in information
retrieval models and it is based on the SVD [10]. While in these practical cases computations
are done numerically, it may be of interest to ask whether such decomposition of a matrix can
be performed in the framework of Clifford algebras. That is, if any new insights, theoretical or
otherwise, into such decomposition could be gained when stated in the Clifford algebra language.
In this section we will present examples of such computations.

We will explore a well-known fact that when p− q 6= 1 mod 4, Clifford algebra C`p,q is a simple
algebra of dimension 2n, n = p + q, isomorphic to a full matrix algebra Mat(2k,K) of 2k × 2k
matrices12 with entries in K which is R, C, or H (see [5]). Thus, any operation performed on a
matrix A can be expressed as an operation on a corresponding to it element p in C`p,q. The choice of
the signature (p, q) depends on the size of A and the division ring K. Of course, for computational
reasons one should Þnd the smallest Clifford algebra C`p,q such that the given matrix A can be

embedded into Mat(2k,K)
ϕ' C`p,q. In the following we will use the same approach as in [4] where a

technique for matrix exponentiation based on the isomorphism ϕ was presented. In particular, we
will use a faithful spinor representation of C`p,q in a minimal left ideal S = C`p,qf generated by
a primitive idempotent f. Symbolic computations of such representations with CLIFFORD were
shown in [5].

Following [28], let A be an m × n real matrix of rank r. Then the SVD of A is deÞned a
factorization of A into a product of three matrices U,Σ, V −1 where U and V are orthogonal
matrices m×m and n× n respectively, and Σ is a m× n matrix containing singular values of A
on its �diagonal�.

A = UΣV −1, UTU = I, V TV = I. (25)

The matrices V = [v1|v2| . . . |vn] and U = [u1|u2| . . . |um] contain orthonormal bases for all four
fundamental spaces of A. Namely, the Þrst r columns v1, v2, . . . , vr of V provide a basis for the
row space R(AT) while the remaining n−r columns of V provide a basis for the null space N (A).
Likewise, the Þrst r columns u1, u2, . . . , ur of U provide a basis for the column space C(A) while
the remaining m − r columns of U provide a basis for the left-null space N (AT). Vectors vi are
the normalized eigenvectors of ATA while vectors ui are the normalized eigenvectors of AA

T . For

12The value of k = q − rq−p, where ri is the Radon-Hurwitz number. The Radon-Hurwitz number is deÞned by
a recursion as ri+8 = ri + 4 and these initial values: r0 = 0, r1 = 1, r2 = r3 = 2, r4 = r5 = r6 = r7 = 3.

19

i = 1, . . . , r, these vectors can be chosen to be related via the positive singular values σi of A which
are just the square roots of the eigenvalues of ATA (or of AAT .) Namely,

Avi = σiui, i = 1, . . . , r. (26)

It is a little tricky to make sure that the above relation is satisÞed: this is because the choice of
vectors ui is independent of the choice of vectors vi. However, it is always possible to do so as we
will see below (see also [28]). In order to complete the picture, the orthonormal set {v1, . . . , vr}
needs to be completed to a full orthonormal basis for Rn while {u1, . . . , ur} needs to be completed
to a full orthonormal basis for Rm. Since the additional vectors are being annihilated by A and AT

respectively, that is, they are eigenvectors of A and AT (or of ATA and AAT) that correspond to
the eigenvalue 0, care has to be exercised when Þnding them. For example, while the eigenvectors
of the symmetric matrix AAT are automatically orthogonal provided they correspond to different
eigenvalues, eigenvectors of AAT that correspond to the 0 eigenvalue don�t need to be orthogonal:
in this case the Gram-Schmidt orthogonalization process is used to complete the two sets.

4.1 Singular Value Decomposition of a 2× 2 matrix of rank 2

In this section we present our Þrst example of SVD applied to a 2 × 2 real matrix of rank 2.
The purpose of this example is just to show step by step how Þnding the SVD of a matrix can
be done in the Clifford algebra language. Reader is encouraged to perform these computations
with CLIFFORD and an additional package asvd which is described in Appendix 3.

> A:=matrix(2,2,[2,3,1,2]);#defining A
> m:=rowdim(A): #number of rows of A is m
> n:=coldim(A): #number of columns of A is n

A :=

∙
2 3
1 2

¸
Since A ∈ Mat(2,R), we need to Þnd (p, q) such that C`p,q ϕ' Mat(2,R). As shown next, we
have two choices for the signature:

> all_sigs(2..2,real,simple);

[[1, 1], [2, 0]]

Thus, we can pick either C`1,1 or C`2,0. Our choice is C`2,0. We deÞne a bilinear form B =
diag(1, 1) and display information about C`2,0.

> dim:=2:B:=diag(1,1):eval(makealiases(dim)):
> data:=clidata();

data := [real , 2, simple,
1

2
Id +

1

2
e1 , [Id , e2], [Id], [Id , e2]]

The above output means that C`2,0 is a simple algebra isomorphic with Mat(2,R); that the
element 1

2 +
1
2e1 is a primitive idempotent which we will call f ; that the list [Id, e2] shown

as the fourth entry displays generators of a minimal left-ideal C`2,0f considered as vector space
over R; that the division ring K = fC`2,0f =< Id >R' R; and that the last list [Id, e2] gives
generators of C`2,0f over K, and since K ' R, it is the same as the fourth list.13. In the
following, we deÞne a Grassmann basis in C`2,0, assign the primitive idempotent to f, and
generate a spinor basis in C`2,0f.

13For more information see [5] and CLIFFORD�s help pages.

20

> clibas:=cbasis(dim); #ordered basis in Cl(2,0)

clibas := [Id , e1 , e2 , e12]
> f:=data[4]:#a primitive idempotent in Cl(2,0)
> SBgens:=data[5]:#generators for a real basis in S
> FBgens:=data[6]:#generators for K

Here SBgens is a K -basis for S = C`2,0f. Since for the signature (2, 0) we have K ' R, S ' R2,
and C`2,0 ' Mat(2,R), the output from the procedure spinorKbasis shown below has two basis
elements and their generators modulo f :

> Kbasis:=spinorKbasis(SBgens,f,FBgens,’left’);

Kbasis := [[
1

2
Id +

1

2
e1 ,

1

2
e2 − 1

2
e12], [Id , e2], left]

Thus, the real spinor basis in S consists of the following two polynomials:

> for i from 1 to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od;

f1 :=
1

2
Id +

1

2
e1 , f2 :=

1

2
e2 − 1

2
e12 .

Now, we compute matrices M1,M2,M3,M4 representing each of the four basis elements {1, e1, e2, e12}
in C`2,0.

14

> for i from 1 to nops(clibas) do M[i]:=subs(Id=1,matKrepr(clibas[i])) od:

We will use a procedure phi which gives the isomorphism ϕ from Mat(2,R) to C`2,0. This way
we can Þnd the image p in C`2,0 of any real 2 × 2 real matrix A. Knowing the image ϕ(Mi)
of each matrix Mi in terms of some Clifford polynomial in C`2,0, we can easily Þnd the image
p = ϕ(A) of A as follows:15

> p:=phi(A,M); #finding image of A in Cl(2,0)

p := 2 Id + 2 e2 + e12

> pT:=phi(t(A),M); #finding image of t(A) in Cl(2,0)

pT := 2 Id + 2 e2 − e12
Next, we compute a symmetric matrix ATA (denoted in Maple as ATA), its characteristic

polynomial, eigenvalues, and its orthonormal eigenvectors v1, v2. Vectors v1 and v2 will become
columns of an orthogonal matrix V needed for SVD of A 16:

> ATA:=evalm(t(A) &* A); #finding matrix ATA

ATA :=

∙
5 8
8 13

¸
> pTp:=phi(ATA,M); #finding image of ATA in Cl(2,0)

pTp := 9 Id − 4 e1 + 8 e2
which should be the same as

> ’pTp’=cmul(pT,p);

pTp = 9 Id − 4 e1 + 8 e2
The minimum polynomial of ATA (or p Tp = ϕ(ATA)) is:

> climinpoly(pTp);

14Since a similar computation was done in [4, 5], we won�t display the matrices.
15From now on, as use Maple alias(t=transpose), that is, t(A) denotes the matrix transposition in Maple.
16We use procedure radsimplify to simplify radicals in matrices and vectors.

21

x2 − 18x+ 1
and, in this case, it is the same as the characteristic polynomial of ATA :

> pol:=charpoly(ATA,x);#characteristic polynomial of ATA

pol := x2 − 18 x+ 1
In order to Þnd eigenvalues and eigenvectors of ATA, we will use Maple�s procedure eigenvects

modiÞed by our own sorting via a new procedure assignL. The latter displays a list containing
two lists: one has the eigenvalues while the second has the eigenvectors.17 In the following, we
will assign the eigenvalues to λ1,λ2 and the (un-normalized, but orthogonal) eigenvectors we
assign to v1, v2.

> P:=assignL(sort([eigenvects(ATA)],byeigenvals));N:=P[1]:

P := [2, [9 + 4
√
5, 9− 4√5], [

∙
1,
1

2
+
1

2

√
5̧ ,

∙
1,
1

2
− 1
2

√
5̧]]

> for i from 1 to N do lambda.i:=P[2][i];
> v.i:=map(simplify,normalize(P[3][i]))
> od:

We can now verify that vectors v1, v2 are eigenvectors of A
TA with the eigenvalues λ1,λ2.

> for i from 1 to N do map(simplify,evalm(ATA &* v.i - lambda.i*v.i)) od;

[0, 0], [0, 0]

Similar veriÞcation can be done in C`2,0 since one can view the 1 -column eigenvectors v1, v2

as one-column spinors in S. We simply convert the two vectors to spinors sv1, sv2 which we
express in the previously computed spinor basis f1, f2.

> spinorbasis:=[’’f1’’,’’f2’’]:
> for i from 1 to N do sv.i:=convert(v.i,spinor,spinorbasis) od;

sv1 := 2
f1p

10 + 2
√
5
+
(1+

√
5) f2p

10 + 2
√
5
, sv2 := 2

f1p
10− 2√5

− (−1+
√
5) f2p

10− 2√5
.

Since v1, v2 are eigenvectors of ATA, spinors sv1, sv2 must be eigenspinors of pTp = ϕ(A
TA).

> for i from 1 to N do simplify((pTp - lambda.i) &c sv.i) od;

0, 0

We are now in position to deÞne the orthogonal matrix V = [v1|v2].

> V:=radsimplify(augment(v.(1..N))); #defining matrix V

V :=

2

1p
10 + 2

√
5
2

1p
10− 2√5

1+
√
5p

10 + 2
√
5

−√5 + 1p
10− 2√5

Since later we will need images of V and V T under ϕ, we compute them now and store

under the variables pV and pV t. The fact that V is orthogonal can be easily veriÞed in the
matrix language; in C`2,0 it can be done as follows:

> simplify(cmul(pVt,pV));

Id

17The Þrst entry 2 in the output is just the number of eigenvectors.

22

Now we repeat the above steps and apply them to AAT . In the process, we will Þnd its
eigenvectors u1, u2. We must make sure that Avi = σiui where σi =

√
λi, i = 1, 2. This will

require extra checking and possibly redeÞning of the u �s.

> AAT:=evalm(A &* transpose(A)); #computing AAT

AAT :=

∙
13 8
8 5

¸
The image of AAT under ϕ in C`2,0 we denote as ppT.

> ppT:=phi(AAT,M); #finding image of AAT in Cl(2,0)

ppT := 9 Id + 4 e1 + 8 e2

In this case, the minimal polynomial of ppT and the characteristic polynomial of AAT are the
same.

> pol2:=charpoly(AAT,lambda); #finding the characteristic polynomial of AAT

pol2 := λ2 − 18λ+ 1
> ’ppT’=climinpoly(ppT);

ppT = x2 − 18x+ 1
Since matrices ATA and AAT have the same characteristic polynomials, their eigenvalues will
be the same. We deÞne therefore the singular values σ1 and σ2 of A :

> for i from 1 to N do sigma.i:=sqrt(lambda.i) od;

σ1 :=
√
5 + 2, σ2 :=

√
5− 2

When we compute the eigenvectors u1, u2 of AA
T , we will not necessarily have Avi = σiui, i =

1, 2. This is because the choice of u1, u2 is not consistent with the choice of v1, v2.

> P:=assignL(sort([eigenvects(AAT)],byeigenvals)):
> for i from 1 to N do lambda.i:=P[2][i];
> u.i:=map(simplify,normalize(P[3][i]))
> od:

However, Av1 = σ1u1 while Av2 = −σ2u2 :

> radsimplify(evalm(A &* v1-sigma1*u1)); #this one checks out but

[0, 0]
> radsimplify(evalm(A &* v2-sigma2*u2)); #this one does not check out
> radsimplify(evalm(A &* v2+sigma2*u2)); #this one does check out"

14− 6√5p
10− 2√5

,
8− 4√5p
10− 2√5

#
[0, 0]

Notice that the set {u1, u2} is orthonormal, but so is {u1,−u2}. Let�s re-deÞne u2 as −u2 and
call it u22. For completeness we rename u1 as u11 :

> u11:=evalm(u1):u22:=evalm(-u2):

In the Clifford algebra C`2,0, we need to perform similar computations with v1, v2. The
images ϕ(u11),ϕ(u22) contained in the spinor ideal need to be found Þrst. We call them su1

and su2.

> for i from 1 to N do su.i:=convert(u.i.i,spinor,spinorbasis) od;

23

su1 :=
(1+

√
5) f1p

10 + 2
√
5
+ 2

f2p
10 + 2

√
5
, su2 :=

(−1+√5) f1p
10− 2√5

− 2 f2p
10− 2√5

.

The veriÞcation of the condition (26) in C`2,0 looks as follows:

> for i from 1 to N do simplify(p &c sv.i-sigma.i*su.i) od;

0, 0

Now we may deÞne the orthogonal matrix U = [u11|u22] and its image ϕ(U) in C`2,0 which we
call pU : 18

> U:=radsimplify(augment(u11,u22)); #defining matrix U

U :=

1+

√
5p

10 + 2
√
5

−1+√5p
10− 2√5

2
1p

10 + 2
√
5
−2 1p

10− 2√5

> pU:=phi(U,M);pUt:=phi(t(U),M):

pU := Id (
1

20
%1
√
5− 1

8
%2− 1

40
%2
√
5) + (

1

20
%1
√
5 +

1

8
%2 +

1

40
%2
√
5) e1

+ (
1

20
%2
√
5 +

1

8
%1− 1

40
%1
√
5) e2 + (

1

20
%2

√
5− 1

8
%1+

1

40
%1

√
5) e12

%1 :=
p
10 + 2

√
5

%2 :=
p
10− 2√5

The fact that U is an orthogonal matrix can be easily now checked both in the matrix language
and in the Clifford language:

> radsimplify(evalm(t(U) &* U));#U is an orthogonal matrix∙
1 0
0 1

¸
> simplify(pUt &c pU);

Id

Finally, we deÞne matrix Σ using a procedure makediag. Recall [28] that Σ has the same dimensions
as the original matrix A and that ΣTΣ,ΣΣT are the diagonal forms of ATA and AAT respectively.
In this example matrices ΣTΣ and ΣΣT are the same since Σ is a square diagonal matrix. Normally
these matrices are different although their nonzero �diagonal� entries are the same.

ATA = V ΣTΣV T , AAT = UΣΣTUT , Σ =

∙
σ1 0
0 σ2

¸
, ΣTΣ = ΣΣT =

∙
σ2

1 0
0 σ2

2

¸
. (27)

> Sigma:=makediag(m,n,[seq(sigma.i,i=1..N)]);
> STS,SST:=evalm(t(Sigma) &* Sigma),evalm(Sigma &* t(Sigma));

Σ :=

∙ √
5 + 2 0

0
√
5− 2

¸
18For a later veriÞcation we will also need pUt = ϕ(UT). Expressions %1 and %2 showing up in the Maple output

for pU are just place holders for
!
10 + 2

√
5 and

!
10− 2√5 respectively as shown at the end of the display.

24

STS , SST :=

∙
(
√
5 + 2)2 0

0 (
√
5− 2)2

¸
,

∙
(
√
5 + 2)2 0

0 (
√
5− 2)2

¸
> pSigma,pSTS,pSST:=phi(Sigma,M),phi(STS,M,FBgens),phi(SST,M);

pSigma, pSTS , pSST :=
√
5 Id + 2 e1 , 9 Id + 4

√
5 e1 , 9 Id + 4

√
5 e1

We should be able to verify in C`2,0 the following two factorizations of AA
T and ATA :

ATA = V ΣTΣV T (28)

AAT = UΣΣTUT (29)

like this:

> evalb(pTp=simplify(pV &c pSTS &c pVt)), evalb(ppT=simplify(pU &c pSST &c pUt));

true, true

We check the SVD of A, which is A = UΣV T , 19 in the Clifford algebra language:

> evalb(p=simplify(pU &c pSigma &c pVt)),

true,

where

> ’pU’=pU;

pU = Id (
1

20
%1

√
5− 1

8
%2− 1

40
%2

√
5) + (

1

20
%1

√
5 +

1

8
%2 +

1

40
%2

√
5) e1

+ (
1

20
%2

√
5 +

1

8
%1− 1

40
%1

√
5) e2 + (

1

20
%2

√
5− 1

8
%1+

1

40
%1
√
5) e12

%1 :=
p
10 + 2

√
5

%2 :=
p
10− 2√5

> ’pSigma’=pSigma;

pSigma =
√
5 Id + 2 e1

> ’pVt’=pVt;

pVt = Id (− 1

20
%1

√
5 +

1

8
%2− 1

40
%2

√
5) + (

1

20
%1

√
5 +

1

8
%2− 1

40
%2

√
5) e1

+ (
1

20
%2

√
5 +

1

8
%1+

1

40
%1

√
5) e2 + (

1

20
%2
√
5− 1

8
%1− 1

40
%1
√
5) e12

%1 :=
p
10− 2√5

%2 :=
p
10 + 2

√
5

4.2 Singular Value Decomposition of a 3× 2 matrix of rank 2

In this section we will show our second example of SVD applied to a non-square matrix. The
matrix will need to be embedded Þrst into an appropriate matrix algebra before its image can
be found in a suitable Clifford algebra.

19The SVD of A is not unique: For example, A = (−U)Σ(−V T) is another such factorization.

25

> C:=matrix(3,2,[3,0,0,-1,0,1]);
> m:=rowdim(C): #number of rows of C is m
> n:=coldim(C): #number of columns of C is n

C :=

 3 0
0 −1
0 1

Since our matrix C is 3× 2, we will embed it into Mat(4,R) ' C`p,q where the signature (p, q)
could be either (2, 2) or (3, 1). Since the symbolic spinor representation of C`3,1 was already
computed in [5], we will work with the signature (3, 1).

> dim:=4:B:=diag(1$3,-1$1):eval(makealiases(dim)):

Let�s recall information about C`3,1 stored in CLIFFORD20:

> data:=clidata();

data := [real , 4, simple, �cmulQ �(
1

2
Id +

1

2
e1 ,

1

2
Id +

1

2
e34), [Id , e2 , e3 , e23], [Id],

[Id , e2 , e3 , e23]]
We begin by deÞning a Grassmann basis in C`3,1, by assigning the fourth entry in the list to a
primitive idempotent f, and by generating a spinor basis in S = C`3,1f.

> clibas:=cbasis(dim): #ordered basis in Cl(3,1)
> f:=data[4]; #a primitive idempotent in Cl(3,1)
> SBgens:=data[5]; #generators for a real basis in S
> N:=data[2]: #dimension of the spinor representation

f := cmulQ(
1

2
Id +

1

2
e1 ,

1

2
Id +

1

2
e34)

SBgens := [Id , e2 , e3 , e23]

Thus, the real spinor basis in S = C`3,1f consists of the following four polynomials:

> for i from 1 to N do f.i:=SBgens[i] &c f od;

f1 :=
1

4
Id +

1

4
e34 +

1

4
e1 +

1

4
e134 , f2 :=

1

4
e2 +

1

4
e234 − 1

4
e12 − 1

4
e1234

f3 :=
1

4
e3 +

1

4
e4 − 1

4
e13 − 1

4
e14 , f4 :=

1

4
e23 +

1

4
e24 +

1

4
e123 +

1

4
e124

We compute matrices M1, . . . ,M16 representing each basis element in C`3,1. These matrices
can be computed also with the help of a procedure matKrepr which, being less general than
spinorKrepr used earlier, is also simpler to use. We won�t display these matrices since they can
be found in [5].

> for i from 1 to nops(clibas) do M[i]:=subs(Id=1,matKrepr(clibas[i]))od:

Before we can use the procedure phi that realizes the isomorphism Mat(4,R)
ϕ' C`3,1, we need

to embed matrix C into Mat(4,R). This is accomplished with a procedure embed.

> A:=embed(C);m1:=rowdim(A):n1:=coldim(A):

20In the following display, �cmulQ�(1
2
∗ Id+ 1

2
∗ e1, 1

2
∗ Id+ 1

2
∗ e34) denotes an unevaluated product of two non-

primitive idempotents 1
2
∗ Id+ 1

2
∗ e1 and 1

2
∗ Id+ 1

2
∗ e34 in C`3,1, and cmulQ is a name of a simpliÞed version of

the procedure cmul. While cmul gives the Clifford product in C`(B), cmulQ gives the Clifford product in C`(Q).

26

A :=

3 0 0 0
0 −1 0 0
0 1 0 0
0 0 0 0

> p:=phi(A,M); #finding image of A (and C) in Cl(3,1)
> pT:=phi(t(A),M); #finding image of AT (and CT) in Cl(3,1)

p :=
1

2
Id + e1 − 1

4
e23 − 1

4
e24 +

1

2
e34 +

1

4
e123 +

1

4
e124 + e134

pT :=
1

2
Id + e1 +

1

4
e23 − 1

4
e24 +

1

2
e34 − 1

4
e123 +

1

4
e124 + e134

Next we compute ATA,AAT , their images in the Clifford algebra C`3,1 under ϕ, their
eigenvalues, and orthonormal eigenvectors vi and ui, i = 1, . . . , 4, which will become columns
of two orthogonal matrices V and U.

> ATA,AAT:=evalm(t(A) &* A),evalm(A &* t(A));

ATA, AAT :=

9 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 ,

9 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

> pTp,ppT:=phi(ATA,M),phi(AAT,M); #finding images of ATA and AAT in Cl(3,1)

pTp, ppT :=

11

4
Id +

7

4
e1 +

11

4
e34 +

7

4
e134 ,

11

4
Id +

7

4
e1 +

1

2
e24 +

9

4
e34 − 1

2
e124 +

9

4
e134

The characteristic polynomial of ATA and AAT is (x−9)(x−2)x2 while the minimal polynomial
of p Tp and ppT is x(x− 2)(x− 9).

> P1:=assignL(sort([eigenvects(ATA)],byeigenvals));
> P2:=assignL(sort([eigenvects(AAT)],byeigenvals));
> for i from 1 to N do lambda.i:=P1[2][i];
> v.i:=map(simplify,normalize(P1[3][i]));
> u.i:=map(simplify,normalize(P2[3][i]));
> od:

P1 := [4, [9, 2, 0, 0], [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]

P2 := [4, [9, 2, 0, 0], [[1, 0, 0, 0], [0, −1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 1]]]
The third list in P1 and the third list in P2 contain vectors vi and ui that will make up matrices
V and U respectively. Clearly, since V is the 4 × 4 identity matrix, ϕ(V) = ϕ(V T) = 1. In
order to translate this matrix picture C`3,1, we need to Þnd spinors svi = ϕ(vi) and sui = ϕ(ui)
in S = C`3,1f.

> spinorbasis:=[’’f1’’,’’f2’’,’’f3’’,’’f4’’]:
> for i from 1 to N do sv.i:=convert(v.i,spinor,spinorbasis);
> su.i:=convert(u.i,spinor,spinorbasis) od;

sv1 := f1 , sv2 := f2 , sv3 := f3 , sv4 := f4

su1 := f1 , su2 := −1
2

√
2 f2 +

1

2

√
2 f3 , su3 :=

1

2

√
2 f2 +

1

2

√
2 f3 , sv4 := f4

Spinors svi are eigenspinors of pTp, while sui are eigenspinors of ppT with the eigenval-
ues λ1 = 9, λ2 = 2,λ3 = 0,λ4 = 0, namely:

27

> for i from 1 to N do simplify((pTp - lambda.i) &c sv.i);
> simplify((ppT - lambda.i) &c su.i) od;

0, 0, 0, 0, 0, 0, 0, 0
> V:=radsimplify(augment(v.(1..N))): #defining matrix V (identity matrix)
> pV,pVt:=phi(V,M),phi(t(V),M): #finding images of V and t(V) in Cl(3,1)

We check that Avi = σiui where σi =
√
λi by verifying this fact in C`3,1.

21

> for i from 1 to N do sigma.i:=sqrt(lambda.i) od;

σ1 := 3, σ2 :=
√
2, σ3 := 0, σ4 := 0

> for i from 1 to N do simplify(p &c sv.i-sigma.i*su.i) od;

0, 0, 0, 0

Thus, we may now deÞne an orthogonal matrix U = [u1|u2|u3|u4] and Þnd its image ϕ(U) and
the image of its transpose in C`3,1 :

> U:=radsimplify(augment(seq(u.i,i=1..N))); #defining matrix U

U :=

1 0 0 0

0 −1
2

√
2
1

2

√
2 0

0
1

2

√
2

1

2

√
2 0

0 0 0 1

> pU:=phi(U,M);pUt:=phi(t(U),M);

pU :=
1

2
Id +

1

2
e1 − 1

4

√
2 e24 − 1

4

√
2 e34 +

1

4

√
2 e124 +

1

4

√
2 e134

pUt :=
1

2
Id +

1

2
e1 − 1

4

√
2 e24 − 1

4

√
2 e34 +

1

4

√
2 e124 +

1

4

√
2 e134

The fact that U is orthogonal is reßected in the following:

> pUt &c pU;

Id

Finally, it is just enough to Þnd matrix Σ and verify SVD for ϕ(A) in the Clifford algebra
C`3,1.

> Sigma:=makediag(m1,n1,[seq(sigma.i,i=1..N)]);
> pSigma:=phi(Sigma,M);

Σ :=

3 0 0 0

0
√
2 0 0

0 0 0 0
0 0 0 0

pSigma := Id (

3

4
+
1

4

√
2) + (−1

4

√
2 +

3

4
) e1 + (

3

4
+
1

4

√
2) e34 + (−1

4

√
2 +

3

4
) e134

> evalb(p=pU &c pSigma &c pVt); #SVD of phi(A)

true

21As before, we are following engineering practice [25] of considering square roots of zero eigenvalues of AAT and
ATA also as the singular values of a matrix. While it is convenient to do so for computational reasons, it is not
conceptually correct since by the deÞnition singular values of a matrix are always positive.

28

Since the original matrix C was 3 by 2 and not 4 by 4, in order to Þnd SVD of C we need
to project out certain columns and rows out of the matrices U,Σ, and V. This can also be done
internally in the Clifford algebra. The original matrix C has therefore this factorization:

> U2,Sigma2,V2t:=submatrix(U,1..m,1..m),submatrix(Sigma,1..m,1..n),
> submatrix(t(V),1..n,1..n);

U2 , Σ2, V2t :=

1 0 0

0 −1
2

√
2
1

2

√
2

0
1

2

√
2

1

2

√
2

 ,
 3 0

0
√
2

0 0

 , ∙ 1 0
0 1

¸

> evalm(C)=radsimplify(evalm(U2 &* Sigma2 &* V2t)); 3 0
0 −1
0 1

 =
 3 0
0 −1
0 1

4.3 Additional comments

In this section we have shown that it is possible to translate the matrix algebra picture of the
Singular Value Decomposition of a matrix A into the Clifford algebra language. Although we
have not abandoned entirely the linear algebra formalism in our examples, e.g., we have computed
the eigenvalues and the eigenvectors of ATA and AAT , and only then we have found images of
the eigenvectors in the spinor space C`p,qf, these computations including solving the eigenvalue
problems can be done entirely in C`p,q without using matrices. For example, if we consider
element p Tp = ϕ(ATA) in C`3,1 from the last example, we can Þnd its eigenvalues from its
minimal polynomial while its eigenvectors can be found by solving the eigenvalue equation. For
example, we know that the minimal polynomial of p Tp is

> pol:=factor(climinpoly(pTp));

pol := x (x− 2) (x− 9)
hence the eigenvalues of pTp are 9, 2, 0. Of course, the minimal polynomial doesn�t give us their
geometric multiplicities. However, we can Þnd them by solving the eigenvalue equation directly
in C`3,1 for each of the eigenvalues. Let�s assign these three known eigenvalues to λ1,λ2,λ3 :

> lambda1,lambda2,lambda3:=9,2,0;

λ1, λ2, λ3 := 9, 2, 0

Let ψ ∈ C`3,1f be an arbitrary spinor expressed in the spinor basis {f1, f2, f3, f4} computed
earlier, and let c1, . . . , c4 be its undeÞned (real) coefficients.

> psi:=c[1]*’f1’+c[2]*’f2’+c[3]*’f3’+c[4]*’f4’;

ψ := c1 f1 + c2 f2 + c3 f3 + c4 f4

We will now use the procedure clisolve2 from the suppl package (see Section 2) to solve the
eigenvalue equation

p Tpψ = λψ. (30)

First we solve it when λ = λ1 = 9.

> sol1:=clisolve2(pTp &c psi - lambda1*psi,[c[1],c[2],c[3],c[4]]);

sol1 := [{c2 = 0, c3 = 0, c4 = 0, c1 = c1}]

29

> psi1:=c[1]*’f1’; #eigenspinor of pTp with eigenvalue lambda1=9

ψ1 := c1 f1

Thus, the Þrst solution to (30) for λ1 = 9 is a one-parameter solution that belongs to a one-
dimensional subspace spanned by f1. That is, the geometric multiplicity of the eigenvalue λ1 = 9
is 1. Similarly for λ = λ2 = 2 :

> sol2:=clisolve2(pTp &c psi - lambda2*psi,[c[1],c[2],c[3],c[4]]);

sol2 := [{c3 = 0, c4 = 0, c1 = 0, c2 = c2}]
> psi2:=c[2]*’f2’; #eigenspinor of pTp with eigenvalue lambda2=2

ψ2 := c2 f2

The second solution to (30) for λ2 = 2 is also a one-parameter solution that belongs to a one-
dimensional subspace spanned by f2. The geometric multiplicity of the eigenvalue λ2 = 2 is
also 1.

> sol34:=clisolve2(pTp &c psi - lambda3*psi,[c[1],c[2],c[3],c[4]]);

sol34 := [{c3 = c3, c4 = c4, c2 = 0, c1 = 0}]
The third solution to (30) for λ = λ3 = 0 is parameterized by two parameters c3 and c4 and
belongs therefore to a two-dimensional subspace of S spanned by {f3, f4}. This implies that
the geometric multiplicity of λ = λ3 = 0 is two.

> psi3:=c[3]*’f3’; #eigenspinor of pTp with eigenvalue lambda3=0

ψ3 := c3 f3

> psi4:=c[4]*’f4’; #eigenspinor of pTp with eigenvalue lambda3=0

ψ4 := c4 f4

So, up to a normalizing scalar, the eigenspinors ψ1,ψ2,ψ3,ψ4 give previously computed normal-
ized spinors sv1, sv2, sv3, sv4. Likewise for the image ppT of AAT :

> sol1:=clisolve2(ppT &c psi - lambda1*psi,[c[1],c[2],c[3],c[4]]);

sol1 := [{c2 = 0, c3 = 0, c4 = 0, c1 = c1}]
> phi1:=c[1]*’f1’; #eigenspinor of ppT with eigenvalue lambda1=9

φ1 := c1 f1

The Þrst one-parameter eigenspace of ppT corresponding to the eigenvalue λ1 = 9 is one-
dimensional and it is spanned by f1.

> sol2:=clisolve2(ppT &c psi - lambda2*psi,[c[1],c[2],c[3],c[4]]);

sol2 := [{c3 = c3, c4 = 0, c1 = 0, c2 = −c3}]
> phi2:=-c[3]*’f2’+c[3]*’f3’; #eigenspinor of ppT with eigenvalue lambda2=2

φ2 := −c3 f2 + c3 f3

The second one-parameter eigenspace of ppT corresponding to the eigenvalue λ2 = 0 is also
one-dimensional and it is spanned by {f2, f3}.

> sol34:=clisolve2(ppT &c psi - lambda3*psi,[c[1],c[2],c[3],c[4]]);

sol34 := [{c3 = c3, c4 = c4, c1 = 0, c2 = c3}]
The third solution to (30) is parameterized by two parameters c3 and c4. Thus, we get a two
dimensional vectors space spanned by {f3, f4}.

> phi3:=c[3]*’f2’+c[3]*’f3’; #eigenspinor of ppT with eigenvalue lambda3=0

30

φ3 := c3 f2 + c3 f3

> phi4:=c[4]*’f4’; #eigenspinor of ppT with eigenvalue lambda3=0

φ4 := c4 f4

So, again up to a normalizing scalar, φ1,φ2,φ3,φ4 give the eigenspinors su1, su2, su3, su4 computed
earlier.

5 Clifford algebras in robotics

Clifford algebras C`(V,Q) on a quadratic space (V,Q) endowed with a degenerate quadratic form
Q and associated groups Spin, Pin, Clifford, etc., were studied in [3, 8] and [2, 12, 13]. In contrast
to the Clifford algebras of a non-degenerate quadratic form, these algebras possess a non-trivial
two-sided nilpotent ideal called Jacobson radical . The Jacobson radical J is generated by the null-
vectors in V which are orthogonal to the entire space V (that is, J is generated by the orthogonal
complement V ⊥ of V). It is known [15, 16] that J contains every nilpotent left and right ideal in
C`(V,Q). From the point of view of the spinorial representation theory of Clifford algebras used in
Section 4, an important difference is that C`(V,Q) does not possess faithful matrix representation
when Q is degenerate.

Let V = V 0⊥V ⊥ where V 0 is endowed with a non-degenerate part Q0 of Q of signature (p, q).
Let dim (V ⊥) = d, hence p+q+d = dim (V). Let�s denote C`(Q) as C`d,p,q. Then we have a direct
sum decomposition C`d,p,q = C`p,q ⊕ J into C`p,q -modules. It was shown in [2] that when d = 1
this decomposition is responsible for a semi-direct product structure of the group of units C`∗1,p,q
of C`1,p,q and of all of its subgroups such as the Clifford group Γ(1, p, k) and the special Clifford
groups Γ±(1, p, k) = Γ(1, p, k) ∩C`±1,p,q, where C`+1,p,q (resp. C`−1,p,q) denotes the even (resp. odd)
part of C`1,p,q. The Clifford group was deÞned as Γ(1, p, k) = {g ∈ C`∗1,p,q | gvg−1 ∈ V, v ∈ V },
that is, without a twist.22 Let N : Γ(1, p, k) → C`∗1,p,k be deÞned as N(g) = �gg. Then we deÞne

the reduced Clifford groups as Γ±0 (1, p, k) = kerN ∩ Γ±(1, p, k). The Pin(1, p, q) and Spin(1, p, k)
groups are then:

Pin(1, p, q) = {g ∈ Γ(1, p, q) |N(g) = ±1}, Spin(1, p, q) = {g ∈ Γ+(1, p, q) |N(g) = ±1}. (31)

In preparation for our computations below, from now on we assume that p + q is an odd positive
integer. Let G = {1+ ve1|v ∈ V 0, e2

1 = 0} be a subgroup of C`∗1,p,q. Then it was proven in [2] that

Pin(1, p, q) = Go Γ±0 (p, k), Spin(1, p, q) = Go Spin(p, k). (32)

In the above, symbol o denotes a semi-direct product with the group on the right acting on the
group on the left. For example, it will be of interest to us to note that the homogeneous Galilei group
of rigid motions G6 = R3 o SO(3) in R3 is isomorphic to SO+(1, 0, 3) and it is doubly covered
by Spin+(1, 0, 3), the identity component of Spin(1, 0, 3). For a similar result to (32) when one
considers the twisted Clifford group Γα(1, p, k) and a twisted map Nα : Γα(1, p, k)→ C`∗1,p,k deÞned
as Nα(g) = ḡg where ¯ denotes the conjugation in C`1,p,q, see [12, 26].

22See Crumeyrolle [14] for a deÞnition of the Clifford group with the twist given by α : in Crumeyrolle�s notation
α denotes the principal automorphism or the grade involution in C`(Q). Then the twisted Clifford group is deÞned
as Γα(1, p, k) = {g ∈ C`∗1,p,q |α(g)vg−1 ∈ V, v ∈ V }.

31

In the following two sections we will use approach and notation from Selig [27] where the author
denotes the degenerate Clifford algebra C`d,p,q as C(p, q, d). Furthermore Selig uses twisted groups
and deÞnes the Pin and Spin groups as follows:

Pin(n) = {g ∈ C(0, n, 0) : gg∗ = 1 and α(g)xg∗ ∈ V for all x ∈ V }, (33)

Spin(n) = {g ∈ C+(0, n, 0) : gg∗ = 1 and gxg∗ ∈ V for all x ∈ V }, (34)

with ∗ denoting the conjugation ¯ in the Clifford algebra C(p, q, d). It is implicit in the deÞnitions
above that the actions of Pin and Spin on V are x 7→ α(g)xg∗ and x 7→ gxg∗ respectively.

5.1 Group Pin(3)

In this section we will perform some computations with Pin(3). In particular, we will Þnd all
possible forms of the elements in Pin(3) and verify some facts about that group. We begin by
assigning a diagonal matrix to the bilinear form B. Grassmann basis for C`0,3 will be stored in
the variable clibas. Following Selig we re-name Clifford conjugation as a procedure star and
deÞne a Euclidean norm on V = R3 as a procedure Enorm. We will also deÞne some additional
Maple procedures that will be useful below.

> B:=diag(-1$3);eval(makealiases(3)):clibas:=cbasis(3);

B :=

 −1 0 0
0 −1 0
0 0 −1

clibas := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123]

> star:=proc(x) conjugation(x) end: #star (conjugation) operation in Cl(0,3)
> Enorm:=v->simplify(scalarpart(v &c star(v))): #(pseudo)Euclidean norm in V
> alpha:=proc(x) gradeinv(x) end: #alpha (grade involution) operation in Cl(0,3)
> scalarprod:=(x,y)->scalarpart(1/2*(x &c star(y) + star(y) &c x)): #scalar product
> Pin_action:=(x,g)->clicollect(simplify(alpha(g) &c x &c star(g)));#action of
Pin(3)

Pin action := (x, g)→ clicollect(simplify((α(g) �&c�x) �&c� star(g)))

> Spin_action:=(x,g)->clicollect(simplify(g &c x &c star(g)));#action of Spin(3)

Spin action := (x, g)→ simplify((g �&c�x) �&c� star(g))

Let v, v1, v2 be three arbitrary vectors in R3 with some undetermined coefficients expressed in
a pseudo-orthonormal basis {e1, e2, e3} :

> v:=c1*e1+c2*e2+c3*e3:v1:=c11*e1+c12*e2+c13*e3:v2:=c21*e1+c22*e2+c23*e3:

Then the Euclidean norm in R3 is:

> Enorm(v);

c1 2 + c2 2 + c3 2

The action of Pin on C`0,3 is realized as the procedure Pin action deÞned above. Let�s verify
Selig�s claim ([27], page 153) that when x,g are both in V, then gxg∗ automatically belongs
to V :

> Pin_action(v,v1);

32

(c11 2 c3 − c13 2 c3 − 2 c13 c12 c2 + c12 2 c3 − 2 c13 c11 c1) e3
+ (−c11 2 c1 − 2 c11 c13 c3 + c12 2 c1 + c13 2 c1 − 2 c11 c12 c2) e1
+ (c11 2 c2 − 2 c12 c11 c1 − 2 c12 c13 c3 + c13 2 c2 − c12 2 c2) e2

As we can see from the above, the output of Pin action(v,v1) belongs to V. In order to check
that indeed the action of Pin in V preserves the scalar product, we will Þrst Þnd all possible
forms of g ∈ Pin(3). Recall that according to (33) any element g ∈ Pin(n) must satisfy two
conditions: (1) gg∗ = 1 and (2) α(g)vg∗ ∈ V for any v ∈ V. Suppose that g is an arbitrary
element in C`0,3,0 expressed in CLIFFORD in terms of the Grassmann basis {1, e1, e2, e12} 23

> g:=add(x.i * clibas[i],i=1..nops(clibas)); #a general element in Cl(0,3,0)

g := x1 Id + x2 e1 + x3 e2 + x4 e3 + x5 e12 + x6 e13 + x7 e23 + x8 e123

We will now attempt to Þnd conditions that the coefficients xi, i = 1, . . . , 8, must satisfy so that
gg∗ = 1. We will again use the command clisolve2. In order to shorten its outputs, additional
aliases κj, j = 1, . . . , 5, need to be deÞned (see Appendix 2).

The Þrst condition (1) gives:

> sol:=clisolve2(cmul(g,star(g))-Id,[x.(1..8)]);

sol := [{x1 = −−x7 κ5− x5 x4 + x6 x3
x8

, x8 = x8 , x4 = x4 , x7 = x7 , x6 = x6 , x5 = x5 , x2 = κ5,

x3 = x3}, {x8 = 0, x1 = κ4

x7
, x4 = x4 , x7 = x7 , x6 = x6 , x5 = x5 , x3 = x3 , x2 =

−x5 x4 + x6 x3
x7

},

{x7 = 0, x8 = 0, x1 = κ3

x6
, x3 =

x4 x5

x6
, x2 = x2 , x4 = x4 , x6 = x6 , x5 = x5},

{x4 = 0, x7 = 0, x6 = 0, x8 = 0, x2 = x2 , x5 = x5 , x3 = x3 , x1 = κ2},
{x7 = 0, x6 = 0, x5 = 0, x8 = 0, x2 = x2 , x4 = x4 , x3 = x3 , x1 = κ1}]
Thus, there are Þve different possible solutions, three of which requiring respectively that x6, x7

and x8 be non-zero. Let�s substitute these solutions into g.

> for i from 1 to nops(sol) do g.i:=subs(sol[i],g) od;

g1 := −(−x7 κ5− x5 x4 + x6 x3) Id
x8

+ κ5 e1 + x3 e2 + x4 e3 + x5 e12 + x6 e13 + x7 e23

+ x8 e123

g2 :=
κ4 Id

x7
+
(−x5 x4 + x6 x3) e1

x7
+ x3 e2 + x4 e3 + x5 e12 + x6 e13 + x7 e23

g3 :=
κ3 Id

x6
+ x2 e1 +

x4 x5 e2

x6
+ x4 e3 + x5 e12 + x6 e13

g4 := κ2 Id + x2 e1 + x3 e2 + x5 e12

g5 := κ1 Id + x2 e1 + x3 e2 + x4 e3

The above are Þve different types of g in C`0,3,0 satisfying gg
∗ = 1.

> for i from 1 to nops(sol) do simplify(cmul(g.i,star(g.i))) od;

Id , Id , Id , Id , Id

23Recall that e12 was deÞned above as an alias of e1 ∧ e2 with the command makealiases.

33

We need to make sure now that each gi displayed above satisÞes also the second condition (2),
namely, α(g)vg∗ is in V for any v ∈ V. We begin with the simplest element g5. By computing
the Pin group action on v and requiring that the result be a 1 -vector, we get for g5 :

> Pin_action(v,g5);

(2 κ1 c3 x4 + 2 κ1 c1 x2 + 2κ1 c2 x3) Id + (−2 x3 x4 c2 − 2 x4 x2 c1 − 2 x4 2 c3 + c3) e3

+ (−2 x4 x2 c3 − 2 x3 x2 c2 − 2 x2 2 c1 + c1) e1

+ (−2 x3 2 c2 − 2 x4 x3 c3 − 2 x2 x3 c1 + c2) e2
It should be clear from the above that since the coefficient of Id must be zero for any c1, c2, c3,
either x2 = x3 = x4 = 0 or κ1 = 0. Let ε = ±1. 24 Thus, the former gives g = ±1,

> g.5.1:=subs({x2=0,x3=0,x4=0},g5);

g51 := eps Id

while the latter gives

> g.5.2:=subs({kappa1=0,x4=lambda1},g5);

g52 := λ1 e3 + x2 e1 + x3 e2

where λ1 = ±
p
1− x2

2 − x2
3.

25 We will collect all Pin group elements in a set Pin group.

> Pin_group:={g.5.1,g.5.2};
Pin group := {eps Id , λ1 e3 + x2 e1 + x3 e2}

Similarly, we consider g4. We assign the identity coefficient of the Pin action α(g)vg∗ to
a variable eq and Þnd a solution to the resulting two equations that will be parameterized
by c1, c2 :

> a:=Pin_action(v,g4);

a := (2 x3 κ2 c2 − 2 x5 x2 c2 + 2 x5 x3 c1 + 2 x2 κ2 c1) Id + c3 e3
+ (−2 x2 2 c1 − 2 x5 κ2 c2 − 2 x3 x2 c2 + c1 − 2 x5 2 c1) e1

+ (−2 x5 2 c2 − 2 x2 x3 c1 + 2κ2 x5 c1 − 2 x3 2 c2 + c2) e2
> eq:=collect(coeff(a,Id),{c1,c2}):eq1:=coeff(eq,c1):eq2:=coeff(eq,c2):

> sol:=[solve({eq1,eq2},{x2,x5,x3})];

sol := [{x5 = 0, x2 = λ2, x3 = x3}, {x3 = 0, x2 = 0, x5 = x5}]
In the above, λ2 = ±

p
1− x2

3. Likewise, we set λ3 = ±p1− x2
5.

26 The two new elements we
assign to g41, g42 and add to Pin group.

> for i from 1 to nops(sol) do g.4.i:=simplify(subs(sol[i],g4)) od:

> Pin_group:=Pin_group union {g41,g42};
Pin group := {eps Id , λ1 e3 + x2 e1 + x3 e2 , λ2 e1 + x3 e2 , λ3 Id + x5 e12}

In order to continue with g3 displayed above, we must make the assumption x6 6= 0 known
to Maple. Then, the action of g3 on a vector can be computed.

27

> assume(x6>0,x6<0);

24In Maple one way to make ε = ±1 is to deÞne alias(eps=RootOf(Z^2-1)):. In the following, Maple outputs
will contain the alias eps.

25In Maple we deÞne alias(lambda1=RootOf(Z^2+x2^2+x3^2-1)):.
26Both are deÞned as aliases: alias(lambda2=RootOf(Z^2-1+x3^2)): alias(lambda3=RootOf(Z^2-1+x5^2)):.
27We won�t display it due to its length.

34

> a:=Pin_action(v,g3):

As in the previous two case, the quantity a is spanned by {Id, e1, e2, e3}. We will isolate the
coefficient of the identity element in a, assign it to a variable eq, and then determine for which
values of x2, x4, x5, x6 it will be automatically zero for every choice of c1, c2, c3. This will require
solving a set of three equations {eq1, eq2, eq3} for x2, x4, x5, x6. Maple reminds us that x6 6= 0
by displaying it as x6� :

> cliterms(a);

{Id , e3 , e1 , e2}
> eq:=collect(coeff(a,Id),{c.(1..3)});

eq := −2 (x6�
3 x2 − λ4 x4 x6�) c3

x6�2 − 2 (−λ4 x2 x6�− x5
2 x4 x6�− x4 x6�3) c1

x6�2

− 2 (−λ4 x5 x4 + x2 x5 x6�
2) c2

x6�2

> for i from 1 to 3 do eq.i:=coeff(eq,c.i) od:

> sol:=solve({eq.(1..3)},{x6,x4,x5,x2});

sol := {x2 = 0, x6� = x6�, x5 = x5 , x4 = 0}
This time we only have one solution which we then substitute into g3.

> g31:=subs(sol,g3);

g31 :=
λ5 Id

x6�
+ x5 e12 + x6� e13

where λ5 is another alias (see Appendix 2).

> Pin_group:=Pin_group union {g31};

Pin group := {λ3 Id + x5 e12 , λ5 Id
x6�

+ x5 e12 + x6� e13 , λ1 e3 + x2 e1 + x3 e2 ,

λ2 e1 + x3 e2 , eps Id}
By continuing in the similar fashion with the elements g2 and g1, one can Þnd all general

types of Pin(3). Finally, all general elements of Pin(3) can be displayed:

> ’Pin_group’=Pin_group;

Pin group := {λ3 Id + x5 e12 , λ5 Id
x6�

+ x5 e12 + x6� e13 ,

λ7 Id

x7�
+ x5 e12 + x6 e13 + x7� e23 , λ9 e1 + x3 e2 + x4 e3 + x8� e123 ,

λ1 e3 + x2 e1 + x3 e2 , λ2 e1 + x3 e2 , eps Id}
where λ7 and λ9 are displayed in the Appendix 2. It is a simple matter now to verify that
all elements of Pin displayed in Pin group satisfy both conditions (1) and (2) from the
deÞnition (33).

> for g in Pin_group do evalb(simplify(cmul(g,star(g))=Id)) od;#Condition (1)

true, true, true, true, true, true
> for g in Pin_group do
> evalb(Pin_action(v,g)=vectorpart(Pin_action(v,g),1)) od;#Condition (2)

35

true, true, true, true, true, true

We are now in position to verify Selig�s claim [27], page 153, that the scalar product on V = R3

deÞned in C`d,p,q as

v1 · v2 =
1

2
(v1v

∗
2 + v2v

∗
1), for any v1,v2 ∈ R3,

is preserved under the action of the Pin group. Let v1, v2 be two arbitrary 1 -vectors deÞned
earlier. Procedure scalarprod that gives the scalar product may be deÞned as follows:

> scalarprod:=(x,y)->scalarpart(1/2*(x &c star(y) + star(y) &c x)):#scalar product
> for g in Pin_group do
> simplify(scalarprod(Pin_action(v1,g),Pin_action(v2,g))-
> scalarprod(v1,v2)) od;

0, 0, 0, 0, 0, 0

Thus, Pin(3) preserves the scalar product in R3 and, therefore, we have a homomorphism from
Pin(3) to O(3) which is known to be a double-covering map. In the process, we have found all
types of elements in Pin(3).

5.2 Group Spin(3)

In this section we will perform a few computations with Spin(3). Once we have found general
elements in Pin(3), it is much easier to Þnd elements in Spin(3). Recall from (34) that

Spin(3) = {g ∈ C`+0,3,0 : gg∗ = 1 and gxg∗ ∈ R3 for all x ∈ R3}.

Let�s Þnd gSpin, a general element in Spin(3). Since Spin(3) ⊂ C`+0,3,0, we will begin with
decomposing gSpin over the even basis elements.

> clibaseven:=cbasis(3,’even’);

clibaseven := [Id , e12 , e13 , e23]

> gSpin:=c0*Id+c3*e12+c2*e13+c1*e23;

gSpin := c0 Id + c3 e12 + c2 e13 + c1 e23

Notice that under the Spin group action deÞned as a procedure Spin action

> Spin_action:=(x,g)-> simplify(g &c x &c star(g));

Spin action := (x, g)→ simplify((g �&c�x) �&c� star(g))

vectors are automatically mapped into vectors:

> Spin_action(v,gSpin)-vectorpart(Spin_action(v,gSpin),1);

0

We just need to make sure that gg∗ = 1 for each g ∈ Spin(3). To simplify Maple output, we
deÞne κ =

p
1− c2

1 − c2
2 − c2

3 as a Maple alias.

> alias(kappa=sqrt(-c1^2-c2^2-c3^2+1)):

> sol:=clisolve2(cmul(gSpin,star(gSpin))-Id,[c.(0..3)]);

sol := [{c1 = c1 , c2 = c2 , c3 = c3 , c0 = κ}, {c1 = c1 , c2 = c2 , c3 = c3 , c0 = −κ}]
> gSpin:=eps*kappa*Id+c3*e12+c2*e13+c1*e23;

gSpin := eps κ Id + c3 e12 + c2 e13 + c1 e23

36

Thus, the most general element in Spin(3) is just g = εκ1+c3e12+c2e13+c1e23 where ε = ±1.
Notice, that the deÞning properties of g are easily checked:

> simplify(cmul(gSpin,star(gSpin)));

Id

> evalb(Spin_action(v,gSpin)=vectorpart(Spin_action(v,gSpin),1));

true

In fact, element g ∈ Spin(3) could be identiÞed with a unit quaternion spanned over the basis
{1, e12, e13, e23}. Then, the ∗ conjugation becomes the quaternionic conjugation. It can be
easily checked by hand or with CLIFFORD that the basis (bi)vectors anticommute and square
to −1.

> quatbasis:=[e12,e13,e23];

quatbasis := [e12 , e13 , e23]

> M:=matrix(3,3,(i,j)->cmul(quatbasis[i],quatbasis[j]));

M :=

 −Id e23 −e13
−e23 −Id e12
e13 −e12 −Id

We have unit quaternions on a unit sphere in R4 isomorphic to Spin(3) while the even part
of C`0,3 is isomorphic with the quaternionic division ring H. Spin(3) acts on R3 through the
rotations. In Appendix 3 one can Þnd a procedure rot which takes as its Þrst argument a vector
v in R3 while as its second argument it takes a quaternion. For example, a counter-clockwise
rotation in the {e1, e2} is accomplished with a help of a unit quaternion cos(θ2) + sin(θ2) e12 :

> rot(e1,cos(theta/2)+sin(theta/2)*e12);
> rot(e2,cos(theta/2)+sin(theta/2)*e12);
> rot(e3,cos(theta/2)+sin(theta/2)*e12);

cos(θ) e1 + e2 sin(θ), −e1 sin(θ) + cos(θ) e2 , e3
Let�s now take a general element from Spin(3) and act on all three unit basis vectors e1,e2,e3.
We can easily verify that the new elements e11, e22, e33 provide another orthonormal basis with
the same orientation:

> e11:=rot(e1,gSpin);e22:=rot(e2,gSpin);e33:=rot(e3,gSpin);

e11 := 2 (eps κ c2 + c3 c1) e3 − (2 c2 2 + 2 c3 2 − 1) e1 + 2 (eps κ c3 − c2 c1) e2
e22 := 2 (eps κ c1 − c3 c2) e3 − 2 (eps κ c3 + c2 c1) e1 − (2 c1 2 − 1+ 2 c3 2) e2

e33 := −(2 c2 2 + 2 c1 2 − 1) e3 − 2 (−c3 c1 + eps κ c2) e1 − 2 (eps κ c1 + c3 c2) e2
> e1 &c e2 + e2 &c e1, e1 &c e3 + e3 &c e1, e2 &c e3 + e3 &c e2;

0, 0, 0

> e11 &c e22 + e22 &c e11, e11 &c e33 + e33 &c e11, e22 &c e33 + e33 &c e22;

0, 0, 0

> e1 &w e2 &w e3,e11 &w e22 &w e33;

e123 , e123

Length of a vector v under the action Spin(3) is of course preserved:

> Enorm(v),Enorm(Spin_action(v,gSpin));

37

c3 2 + c1 2 + c2 2, c3 2 + c1 2 + c2 2

Example 1: Rotations in coordinate planes

Let�s deÞne unit quaternions responsible for the rotations in the coordinate planes. These are
counter-clockwise rotations when looking down the rotation axis. We will deÞne a pure-quaternion
basis consisting of {qi,qj ,qk} in place of traditionally used {i, j,k}.

> qi:=e23:qj:=e13:qk:=e12:

> q12:=cos(alpha/2)*Id+sin(alpha/2)*’qk’;#rotation in the xy-plane

q12 := cos(
1

2
α) Id + sin(

1

2
α) qk

> q13:=cos(beta/2)*Id+sin(beta/2)*’qj’;#rotation in the xz-plane

q13 := cos(
1

2
β) Id + sin(

1

2
β) qj

> q23:=cos(gamma/2)*Id+sin(gamma/2)*’qi’;#rotation in the yz-plane

q23 := cos(
1

2
γ) Id + sin(

1

2
γ) qi

Notice that to rotate by an angle nα it is enough to Þnd the n -th Clifford power of the appro-
priate quaternion and then apply it to a vector.

> q12 &c q12; #rotation by the angle 2*alpha

cos(α) Id + e12 sin(α)

> q12 &c q12 &c q12; #rotation by the angle 3*alpha

cos(
3

2
α) Id + sin(

3

2
α) e12

> q12 &c q12 &c q12 &c q12; #rotation by the angle 4*alpha

cos(2α) Id + sin(2α) e12

Let�s see now how these basis rotations in the coordinate planes act on an arbitrary vector
v = ae1 + be2 + ce3 :

> v:=a*e1+b*e2+c*e3;

v := a e1 + b e2 + c e3

The norm of v is kvk = vv∗ and it can be deÞned in CLIFFORD as follows:

> vlength:=sqrt(scalarpart(v &c star(v)));

vlength :=
√
c2 + a2 + b2

Certainly, rotations do not change length. For example, let�s rotate v by q13q12 :

> v123:=rot(v,q13 &c q12); #rotation q12 followed by q13

v123 := (−b sin(β) sin(α) + a sin(β) cos(α) + c cos(β)) e3
+ (−b sin(α) cos(β)− c sin(β) + a cos(β) cos(α)) e1 + (b cos(α) + a sin(α)) e2

> vlength:=sqrt(scalarpart(v123 &c star(v123)));

vlength :=
√
c2 + a2 + b2

Thus, the length of v123 is the same as the length of v. However, rotations do not commute.
We will show that by applying quaternion q12q13 to v and by comparing it with q123 :

38

> v132:=rot(v,q12 &c q13); #rotation q13 followed by q12

v132 := (a sin(β) + c cos(β)) e3 + (a cos(β) cos(α)− c sin(β) cos(α)− b sin(α)) e1
+ (b cos(α)− c sin(β) sin(α) + a sin(α) cos(β)) e2

> clicollect(v123-v132);

(−b sin(β) sin(α) + a sin(β) cos(α)− a sin(β)) e3
+ (−b sin(α) cos(β)− c sin(β) + c sin(β) cos(α) + b sin(α)) e1
+ (a sin(α) + c sin(β) sin(α)− a sin(α) cos(β)) e2

As it can be seen, v123 6= v132.

Example 2: Counter-clockwise rotation by an angle α around the given axis

In this example we will Þnd a way to rotate a given vector v by an angle α in a plane
orthogonal to the given axis vector axis = a1e1 + a2e2 + a3e3 vector. This rotation will
be counter-clockwise when looking down the axis towards to origin (0, 0, 0) of the coordinate
system. In order to derive symbolic formulas, we will assume that the symbolic vector axis has
been normalized by deÞning λ = ±

p
1− a2

1 − a2
2 and axis = a1e1 + a2e2 + λe3. However, it

won�t be necessary for axis to be of unit length when its components are numeric.
> alias(lambda=RootOf(-a1^2-a2^2-_Z^2+1)):
> axis:=a1*e1+a2*e2+lambda*e3;

axis := a1 e1 + a2 e2 + λ e3

> simplify(axis &c star(axis));

Id

Thus, in the symbolic case we will always have that kaxisk = 1. Notice that in order to represent
a rotation around axis we need to Þnd a dual unit quaternion which we will call qaxis. It will
need to be deÞned in such a way as to give a desired orientation for the rotation. Since we
have opted for counter-clockwise rotations, we deÞne qaxis = −axis e123 where e123 is a unit
pseudo-scalar in C`0,3. In the following we will refer to the axis = a1e1 + a2e2 + a3e3 as the
axis (a1, a2, a3).

> qaxis:=axis &c (-e123);

qaxis := λ e12 + a1 e23 − a2 e13
In Appendix 3 Reader can Þnd a procedure qrot which Þnds the dual quaternion qaxis. The Þrst
three arguments to qrot are the (numeric or symbolic) components of the axis vector in the basis
{e1,e2, e3} while the fourth argument is the angle of rotation. For example, we can deÞne various
rotation quaternions:

> q100:=qrot(1,0,0,theta);#rotation about the axis (1,0,0)

q100 := cos(
1

2
θ) Id + sin(

1

2
θ) e23

> q010:=qrot(0,1,0,theta);#rotation about the axis (0,1,0)

q010 := cos(
1

2
θ) Id − sin(1

2
θ) e13

> q001:=qrot(0,0,1,theta);#rotation about the axis (0,0,1)

q001 := cos(
1

2
θ) Id + sin(

1

2
θ) e12

39

> q101:=qrot(1,0,1,theta);#rotation about the axis (1,0,1)

q101 := cos(
1

2
θ) Id + sin(

1

2
θ) (

1

2
e12

√
2 +

1

2

√
2 e23)

> q011:=qrot(0,1,1,theta);#rotation about the axis (0,1,1)

q011 := cos(
1

2
θ) Id + sin(

1

2
θ) (

1

2
e12

√
2− 1

2

√
2 e13)

> q110:=qrot(1,1,0,theta);#rotation about the axis (1,1,0)

q110 := cos(
1

2
θ) Id + sin(

1

2
θ) (

1

2

√
2 e23 − 1

2

√
2 e13)

> q111:=qrot(1,1,1,theta);#rotation about the axis (1,1,1)

q111 := cos(
1

2
θ) Id + sin(

1

2
θ) (

1

3
e12

√
3− 1

3

√
3 e13 +

1

3

√
3 e23)

Let�s try to rotate Þrst a basis vector e1 around various axes listed above by some angle α.
In the next example, after we Þnd a general formula for the components of the rotated e1, we will
verify it for various angles.

> v:=e1:

> vnew:=rot(v,q100); #rotation around the (100) axis

vnew := e1

> vnew:=rot(v,q010); #rotation around the (010) axis

vnew := −sin(θ) e3 + cos(θ) e1
> eval(subs(theta=Pi/2,vnew));

−e3
> vnew:=rot(v,q001); #rotation around the (001) axis

vnew := cos(θ) e1 + e2 sin(θ)

> eval(subs(theta=Pi/2,vnew));

e2

> vnew:=rot(v,q101); #rotation around the (101) axis

vnew := −1
2
(−1+ cos(θ)) e3 + 1

2
(cos(θ) + 1) e1 +

1

2

√
2 e2 sin(θ)

> eval(subs(theta=Pi/2,vnew));

1

2
e3 +

1

2
e1 +

1

2
e2
√
2

> vnew:=rot(v,q011); #rotation around the (011) axis

vnew := −1
2

√
2 e3 sin(θ) + cos(θ) e1 +

1

2

√
2 e2 sin(θ)

> eval(subs(theta=Pi/2,vnew));

−1
2
e3
√
2 +

1

2
e2
√
2

> vnew:=rot(v,q110); #rotation around the (110) axis

vnew := −1
2

√
2 e3 sin(θ) +

1

2
(cos(θ) + 1) e1 − 1

2
(−1+ cos(θ)) e2

> eval(subs(theta=Pi/2,vnew));

40

−1
2
e3
√
2 +

1

2
e1 +

1

2
e2

> vnew:=rot(v,q111); #rotation around the (111) axis

vnew := −1
3
(
√
3 sin(θ)− 1+ cos(θ)) e3 + 1

3
(2 cos(θ) + 1) e1

+
1

3
(
√
3 sin(θ) + 1− cos(θ)) e2

> eval(subs(theta=Pi/2,vnew));

−1
3
(
√
3− 1) e3 + 1

3
e1 +

1

3
(
√
3 + 1) e2

> eval(subs(theta=Pi,vnew));

2

3
e3 − 1

3
e1 +

2

3
e2

Example 3: A general formula

Finally, we derive a general formula for a rotation of an arbitrary vector v = v1e1+ v2e2+ v3e3

around an arbitrary axis = a1e1+a2e2+a3e3 and by an arbitrary angle α. In the purely symbolic
case we assume that the axis is of unit length, that is, a3 = λ.

> v:=v1*e1+v2*e2+v3*e3; #an arbitrary vector

v := v1 e1 + v2 e2 + v3 e3

> qnew:=clicollect(rot(v,qrot(a1,a2,lambda,theta)));# new vector after rotation

qnew := (−λ v1 a1 cos(θ)− λ v2 a2 cos(θ) + a1 2 v3 cos(θ)− v1 a2 sin(θ) + λ v1 a1
+ λ v2 a2 + a2 2 v3 cos(θ) + v2 a1 sin(θ) + v3 − a2 2 v3 − a1 2 v3)e3 + (v1 cos(θ)

− a1 v2 a2 cos(θ)− λ v3 a1 cos(θ) + λ v3 a1 + a1 2 v1 − a1 2 v1 cos(θ)

− v2 λ sin(θ) + v3 a2 sin(θ) + a1 v2 a2)e1 + (a2 2 v2 + a1 v1 a2 − v3 a1 sin(θ)
− a2 2 v2 cos(θ) + λ v3 a2 + v1 λ sin(θ)− λ v3 a2 cos(θ) + v2 cos(θ)
− a1 v1 a2 cos(θ))e2

For example, let�s rotate vector v = e1 + 2e2 + 3e3 around the axis (1, 2, 3) by any angle α.
Certainly, since the vector v is on the axis of rotation, it should not change:

> clicollect(rot(e1+2*e2+3*e3,qrot(1,2,3,alpha)));

e1 + 2 e2 + 3 e3

Let�s rotate v = e1 − 2e2 + 4e3 around the axis (2,−3, 4) by an angle α = π/4.
> clicollect(rot(e1-2*e2+4*e3,qrot(2,-3,4,Pi/4)));

(− 1

58

√
29
√
2 +

10

29

√
2 +

96

29
) e3 + (− 2

29

√
29
√
2 +

48

29
− 19
58

√
2) e1

+ (
7

29

√
2− 2

29

√
29
√
2− 72

29
) e2

Thus, in this section we have shown how easy it is to derive vector rotation formulas from vector
analysis using elements of Spin(3) considered as unit quaternions. It has been very helpful to be
able to embed Spin(3) in C`0,3.

41

5.3 Degenerate Clifford algebra and the proper rigid motions SE(3)

In this Þnal section we will use the ability of CLIFFORD to perform computations in Clifford
algebras of an arbitrary quadratic form including, of course, degenerate forms. We will consider
the semi-direct product Spin(3) o R3 that double covers the group of proper rigid motions
SE(3). We will follow the notation used in [27], page 156, except that our basis vector that
squares to 0 will be e4 and not e. We begin by deÞning B as a degenerate diagonal form
diag(−1,−1,−1, 0) of signature (0, 3, 1). Recall from the previous section that procedure star

gives conjugation in C`0,3,1 = C(0, 3, 1).
> dim:=4:n:=dim-1:eval(makealiases(dim)):
> B:=diag(-1$n,0); #Selig’s C(0,3,1)

B :=

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

Let the vector basis in R3 be stored in vbasis and let t an arbitrary vector in R3.

> vbasis:=cbasis(n,1):t:=add(t.i*vbasis[i],i=1..n);

t := t1 e1 + t2 e2 + t3 e3

Elements of the form 1+ t e4 are invertible in C`0,3,1 since u e4 and e4 u are nilpotent for any
u in C`0,3,1. That is, the Jacobson radical J in C`0,3,1 is generated by e4.

> cinv(1+t &c e4;);#symbolic inverse of 1+t & c e4;

Id − t1 e14 − t2 e24 − t3 e34
We will verify now statements made on page 156. Let κ =

p−c2
1 − c2

2 − c2
3 + 1 and ε = ±1

as before. Then the most general element g in Spin(3) has the form:

> alias(kappa=sqrt(-c1^2-c2^2-c3^2+1)):alias(eps=RootOf(_Z^2-1)):

> gSpin:=eps*kappa*Id+c3*e12+c2*e13+c1*e23;

gSpin := eps κ Id + c3 e12 + c2 e13 + c1 e23

We consider a subgroup G of the group of units of C`0,3,1 of the form g + 1
2tge4 where g

belongs to Spin(3) and t is a 1 -vector. Elements in G will be given by a procedure ge.

> ge:=proc(g,t) RETURN(clicollect(simplify(g+1/2*t &c g &c e4))) end:

For the most general g in Spin(3) and t ∈ R3, procedure ge gives:

> ’ge(gSpin,t)’=ge(gSpin,t);

ge(gSpin, t) = (
1

2
t2 κ eps − 1

2
t1 c3 +

1

2
t3 c1) e24 + (

1

2
t3 κ eps − 1

2
t2 c1 − 1

2
t1 c2) e34

+ (
1

2
t2 c3 +

1

2
t3 c2 +

1

2
t1 κ eps) e14 + (−1

2
t2 c2 +

1

2
t3 c3 +

1

2
t1 c1) e1234

+ eps κ Id + c3 e12 + c2 e13 + c1 e23
First, let�s verify Selig�s statement that

(g− 1
2
t g e4)

∗ = (g∗ +
1

2
g∗ t e4). (35)

Notice that the left-hand-side in (35) is just the conjugation of ge(gSpin,−t) while the right-
hand-side is equal to ge(gSpin∗,−t) where gSpin∗ denotes the conjugate of gSpin.

42

> L:=clicollect(star(ge(gSpin,-t))):
> R:=simplify(star(gSpin)+1/2*star(gSpin) &c t &c e4):
> simplify(L-R);

0

Next, we deÞne the action of the group G on the subspace of C`0,3,1 consisting of the elements of
the form 1+ xe4 as follows:

(g+
1

2
t g e4)(1+ x e4)(g − 1

2
t ge4)

∗ = 1+ (g xg∗ + t) e4 (36)

where x, t ∈ R3 and g ∈ Spin(3). The above identity can be shown as follows. We deÞne a
procedure rigid which will give this action on R3 : x 7→ g xg∗ + t.

> rigid:=proc(x,g,t) local p;
> if not evalb(x=vectorpart(x,1)) or
> not evalb(t=vectorpart(t,1)) then ERROR(‘x and t must be vectors‘)
> fi:
> if not type(g,evenelement) then ERROR(‘g must be even‘) fi;
> RETURN(clicollect(simplify(cmul(g,x,star(g))+t)))
> end:

This action will give us the rigid motion on R3. Thus, we can compute the right-hand-side of
(36) by using rigid while the left-hand-side will be computed directly.

> x:=add(x.i*vbasis[i],i=1..n);

x := x1 e1 + x2 e2 + x3 e3
> LHS:=simplify(ge(gSpin,t) &c (1 + x &c e4) &c star(ge(gSpin,-t))):
> RHS:=simplify(Id+rigid(x,gSpin,t) &c e4):
> simplify(LHS-RHS);

0

Finally, we will verify directly that the action x 7→ g x g∗ + t is a rigid motion. If we denote by
xp,yp the images of x,y under this action, we will need to show that kxp − ypk = kx− yk in
the Euclidean norm. We can compute the norm kx−yk by taking p(x− y)(x− y)∗ in C`0,3,1,
or by using a procedure distance.

> y:=add(y.i*vbasis[i],i=1..n):
> distance:=proc(x,y) sqrt(simplify(scalarpart(cmul(x-y,star(x-y))))) end:
> xp:=rigid(x,gSpin,t):yp:=rigid(y,gSpin,t):
> evalb(distance(x,y)=distance(xp,yp));

true

Thus the action of G deÞned as x 7→ g xg∗ + t is a rigid motion in R3. In view of the presence of
the radical in C`0,3,1, this group G is in fact a semi-direct product of Spin(3) and R3, that is of
rotations and translations. It is well known of course that Spin(3) o R3 doubly covers the group
of proper rigid motions SE(3). We leave it as an exercise for the Reader to check in CLIFFORD
that the composition of two rigid motions is a rigid motions.

6 Summary

The main purpose of this paper has been to show a variety of computational problems that can
be approached with the symbolic package CLIFFORD. It is through an extensive experimentation
with the package that the results reported in [7] were found; we have seen some of the computations

43

that have led to them in Section 3. In view of their complexity it is unlikely that they could have
been performed by hand. Relation between the Clifford products in C`(g) and C`(B) through the
Helmstetter�s formula appears more clear once it has been checked with CLIFFORD. The SVD
of a matrix as performed in Section 4 is clearly feasible in the Clifford algebra language; however
it is not clear if the approach presented there is the best. More study would need to be done
here in order to possibly simplify the computations, perform them uniquely in the Clifford algebra
language, and possibly better utilize the nilpotent-idempotent basis in the Clifford algebra rather
than the Grassmann basis. In robotics applications presented in Section 5.3, CLIFFORD appears
to be a very convenient tool to carry out practical computations in the low dimensional algebras
such as C`0,3 and C`1,3,1.

7 Acknowledgments

The Author would like to acknowledge collaboration with and contribution from Bertfried Fauser,
Universität Konstanz, Fakultät für Physik, Fach M678, 78457 Konstanz, Germany, to the develop-
ment of the additional procedures used in Section (3).

8 Appendix 1

In addition to the main package CLIFFORD, in Section 2 we have used new procedures from a
supplementary package suppl. These procedures are: cinvg, cmulg, LCg, makeF, RCg, revg, and
splitB.

� Procedure cinvg Þnds the Clifford inverse with respect to the symmetric part g of the bilinear
form B, that is, it Þnds the inverse (if it exists) of u in C`(g).

� Procedure cmulg performs Clifford multiplication with respect to the symmetric part g of the
bilinear form B. That is, it gives the Clifford product uv

g
for any two elements u and v in

C`(g).

� Procedures LCg and RCg give the left and right contraction in C`(g).

� Procedure makeF computes element F ∈ V2
V ∗ deÞned in (3). It uses additional procedures

pairs and mysign from the package suppl.

� Procedure revg performs the reversion anti-automorphism � in C`(g).

� Procedure splitB splits a bilinear form B in V into its symmetric part g and its antisym-
metric part A which are returned as a sequence g,A. If B is purely symbolic and a second
optional parameter (of any type) is used, in addition to g and A the output sequence contains
two lists of symbolic substitutions that relate entries of g and A to the entries of B. If B is
not assigned, in order for splitB to work it internally assigns a blank 9× 9 matrix to B and
then it calls itself.

In Section 3 we have used the following additional procedures from suppl:

44

� Procedure cliexpand expands the given Clifford number u ∈ C`(B) from the default Grass-
mann basis to a Clifford basis consisting of un-evaluated Clifford products of the generators
{e1, . . . , en}. Procedure clieval converts from the Clifford basis back to the Grassmann basis.

� Procedure reversion gives the reversion in C`(B).

� Procedure clisolve2 solves equations of the type u = 0 for the unknown parameters in u.
Its code is shown in Appendix 3.

� Procedure defB is needed to deÞne a bilinear form B in an even-dimensional vector space V.

� Procedure bexpand expands any element in the Hecke algebra HF(n, q) in terms of the Hecke
b -basis.

� Procedure alpha2 provides a Hecke algebra automorphism.

In Section 4 we have used the following additional procedures from a supplementary package avsd.

� Procedure phi provides an isomorphism between a matrix algebra and a Clifford algebra.

� Procedure radsimplify simpliÞes radical expressions in matrices and vectors.

� Procedure assignL is needed to write output from a Maple procedure eigenvects in a suit-
able form, it sorts eigenvectors according to the corresponding eigenvalues, and it uses the
Gram-Schmidt orthogonalization process, if necessary, to return a complete list of orthogonal
eigenvectors.

� Procedure climinpoly belongs to the main package CLIFFORD. It computes a minimal
polynomial of any element of a Clifford algebra.

� Procedure makediag makes a �diagonal� Σ matrix consisting of singular values.

� Procedure embed embeds the given non-square matrix or a matrix of smaller dimensions into
a 2k × 2k matrix of smallest k such that it can be mapped into a Clifford algebra.

9 Appendix 2

We display a Maple code of some more important procedures used in Section 3.
Procedure bexpand expands any element in the Hecke algebra in terms of the Hecke b -basis:

> suppl[bexpand]:=proc(X)
> local a,setbs,setbe,i,eq,T,sys,sol;
> option remember;
> setbs:=[Id,’b1’,’b2’,’b12’,’b21’,’b121’]:
> setbe:=[Id,b1,b2,cmul(b1,b2),b21,cmul(b1,b21)]:
> eq:=CS(X-add(a[i]*setbe[i],i=1..6));
> T:=cliterms(eq);
> sys:={coeffs(eq,T)};
> sol:=solve(sys,{seq(a[i],i=1..6)});
> subs(sol,add(a[i]*setbs[i],i=1..6));
> end:

Procedure alpha2 gives an automorphism in the Hecke algebra:

45

> suppl[alpha2]:=proc(X)
> local a,setbb,setbe,setba,i,eq,T,sys,sol;
> option remember;
> setbe:=[Id,b1,b2,cmul(b1,b2),b21,cmul(b1,b21)]:
> setba:=[Id,-1/q*reversion(b1),-1/q*reversion(b2),1/q^2*reversion(setbe[4]),
> 1/q^2*reversion(setbe[5]),-1/q^3*reversion(setbe[6])]:
> eq:=CS(X-add(a[i]*setbe[i],i=1..6));
> T:=cliterms(eq);
> sys:={coeffs(eq,T)};
> sol:=solve(sys,{seq(a[i],i=1..6)});
> subs(sol,add(a[i]*setba[i],i=1..6));
> end:

Aliases needed in Section (3.3):
> alias(w1=q^4*K[4]^2+3*q^3*K[4]^2-K[4]*q^3+4*q^2*K[4]^2-K[4]*q^2+
> 3*q*K[4]^2-K[4]*q-q+K[4]^2-K[4]):
> alias(w2=K[4]*q^3+2*K[4]*q^2-q^2+2*K[4]*q+K[4]):
> alias(w3=-K[4]^2+K[4]+K[2]+K[4]*K[5]*q-q^3*K[4]*K[2]-q*K[2]*K[4]+
> K[6]*q^2*K[4]+K[4]*q^4*K[6]+K[6]*q^3*K[4]+K[4]*K[6]*q-q^2*K[2]*K[4]+
> q^2*K[4]*K[5]-K[2]*q-K[5]*q+K[4]*q^2-K[4]*q+q^4*K[4]^2-q^2*K[4]^2-
> q*K[4]^2-K[6]*q+K[6]*q^2-K[4]*K[2]);
> alias(w4=K[6]*q^3+K[4]*q^3-K[6]*q^2-K[5]*q^2-K[6]*q-K[5]*q+K[6]+K[4]):
> alias(w5=K[4]*q+K[2]*q-K[6]-K[5]):
> alias(w6=K[6]*q^2+K[4]*q^2-2*K[6]*q-K[5]*q-K[4]*q+K[6]+K[4]):
> alias(w7=K[4]*q^3+2*K[4]*q^2+q+2*K[4]*q+K[4]):
> alias(w8=q^5*K[4]^2+3*q^4*K[4]^2+4*q^3*K[4]^2+K[4]*q^3+3*q^2*K[4]^2+
> K[4]*q^2+q*K[4]^2+K[4]*q-1+K[4]):
> alias(w9=K[4]*q^3+K[2]*q^3-2*K[6]*q^2-K[5]*q^2-K[4]*q^2+K[5]*q+
> 2*K[6]*q+K[4]*q-K[4]-K[6]):

Aliases needed in Section (3.3.)
> alias(H1=h[1]*q^3+2*h[6]*q-h[6]+h[5]*q^3-h[3]*q^2-2*h[5]*q^2-2*h[6]*q^2
> +h[5]*q+h[6]*q^3+h[4]*q^3+h[2]*q^3-h[2]*q^2+h[4]*q+h[3]*q^3-2*h[4]*q^2):
> alias(H2=-2*h[6]*q+h[6]-h[4]*q+h[6]*q^2+h[2]*q^2+h[4]*q^2+h[5]*q^2-h[5]*q):
> alias(H3=h[3]*q^2-h[5]*q-h[4]*q-2*h[6]*q+h[4]*q^2+h[6]*q^2+h[5]*q^2+h[6]):
> alias(H4=-h[6]+h[5]*q+h[6]*q):
> alias(H5=h[6]*q+h[4]*q-h[6]):
> alias(H6=h[6]):

Aliases needed in Section (5.1):

46

> alias(kappa1=RootOf(_Z^2-1+x3^2+x2^2+x4^2)):
> alias(kappa2=RootOf(_Z^2-1+x5^2+x3^2+x2^2)):
> alias(kappa3=RootOf(-x6^2+x5^2*x6^2+x4^2*x5^2+x6^4+x2^2*x6^2+x4^2*x6^2+_Z^2)):
> alias(kappa4=RootOf(-x7^2+x5^2*x7^2+x3^2*x7^2+x6^2*x7^2+x7^4+x4^2*x5^2-
> 2*x4*x5*x6*x3+x6^2*x3^2+x4^2*x7^2+_Z^2)):
> alias(kappa5=RootOf((x7^2+x8^2)*_Z^2+(2*x5*x4*x7-2*x3*x6*x7)*_Z-x8^2+
> x6^2*x3^2+x8^4+x4^2*x5^2-2*x4*x5*x6*x3+x6^2*x8^2+x7^2*x8^2+x5^2*x8^2+x
> 3^2*x8^2+x4^2*x8^2)):
> alias(eps=RootOf(_Z^2-1)):
> alias(lambda1=RootOf(Z^2+x2^2+x3^2-1)):
> alias(lambda2=RootOf(_Z^2-1+x3^2)):
> alias(lambda3=RootOf(_Z^2-1+x5^2)):
> alias(lambda4=RootOf(-x6^2+x5^2*x6^2+x4^2*x5^2+x6^4+x2^2*x6^2+x4^2*x6
> ^2+_Z^2)):
> alias(lambda5=RootOf(_Z^2-x6^2+x5^2*x6^2+x6^4)):
> alias(lambda6=RootOf(-x7^2+x5^2*x7^2+x3^2*x7^2+x6^2*x7^2+x7^4+x4^2*x5
> ^2-2*x4*x5*x6*x3+x6^2*x3^2+x4^2*x7^2+_Z^2)):
> alias(lambda7=RootOf(_Z^2-x7^2+x5^2*x7^2+x6^2*x7^2+x7^4)):
> alias(lambda8=RootOf((x7^2+x8^2)*_Z^2+(2*x5*x4*x7-2*x3*x6*x7)*_Z-x8^2
> +x6^2*x3^2+x8^4+x4^2*x5^2-2*x4*x5*x6*x3+x6^2*x8^2+x7^2*x8^2+x5^2*x8^2+
> x3^2*x8^2+x4^2*x8^2)):
> alias(lambda9=RootOf(_Z^2*x8^2-x8^2+x8^4+x3^2*x8^2+x4^2*x8^2)):

10 Appendix 3

We display code for two procedures qrot and rot that were needed in Section 5.2. Procedure
qrot Þnds a unit quaternion that is dual to the rotation axis vector axis.

> qrot:=proc(p1,p2,p3,theta) local bas,c,e,k,l,i,q,n;global qaxis;
> if type(p1,name) or type(p2,name) then
> RETURN(cos(theta/2)*Id+sin(theta/2)*qaxis) fi;
> if evalb(simplify(p1^2+p2^2+p3^2)=1) then
> q:=simplify(subs({a1=p1,a2=p2},qaxis)) fi;
> n:=sqrt(p1^2+p2^2+p3^2):
> if n=0 then ERROR(‘axis vector must be a non-zero vector‘) elif
> has(n,RootOf) then n:=max(allvalues(n)) fi;
> q:=simplify(subs({a1=p1/n,a2=p2/n},qaxis));
> bas:=[Id,e12,e13,e23]:c:=[]:k:=0:
> for i from 1 to 4 do l:=coeff(q,bas[i]);
> if has(l,RootOf) then k:=i fi:
> c:=[op(c),l] od:
> if k<>0 then e:=allvalues(c[k]);
> if p3>0 then c:=subsop(k=max(e),c) elif
> p3<0 then c:=subsop(k=min(e),c) else ERROR(‘p3=0‘) fi;
> fi;
> q:=add(c[i]*bas[i],i=1..4);
> RETURN(cos(theta/2)*Id+sin(theta/2)*q)
> end:

Procedure rot performs a rotation of a vector by a quaternion through a certain angle.
> rot:=proc(v,q) local qs;
> qs:=star(q):
> RETURN(map(factor,clicollect(simplify(cmul(q,v,qs)))))
> end:

47

Procedure clisolve2 was used extensively throughout this paper to solve linear equations in a
Clifford algebra C`(B).

> suppl[clisolve2]:=proc(eq,indet) local i,T,vars,sol,sys;
> if type(indet,list) then
> vars:=convert(indet,set)
> else
> vars:=select(type,indets(indet),indexed)
> fi;
> T:=cliterms(eq);
> sys:={coeffs(clicollect(simplify(eq)),T)};
> sol:=[solve(sys,vars)];
> if type(indet,list) then
> RETURN(sol)
> else
> RETURN([seq(subs(sol[i],indet),i=1..nops(sol))]);
> fi;
> end:

References

[1] R. AbÃlamowicz; Clifford algebra computations with Maple , Proc. Clifford (Geometric) Algebras,
Banff, Alberta Canada, 1995. Ed. W. E. Baylis, Birkhäuser, Boston, 1996, pp. 463�501.

[2] R. AbÃlamowicz; Structure of spin groups associated with degenerate Clifford algebras , Journal
of Mathematical Physics, Vol. 27, No. 1, January 1986, pp. 1�6.

[3] R. AbÃlamowicz; Deformation and contraction in Clifford algebras, Journal of Mathematical
Physics, Vol. 27, No. 2, January 1986, pp. 1�6.

[4] R. AbÃlamowicz; Matrix exponential via Clifford algebras , Journal of Nonlinear Mathematical
Physics, Vol. 27, No. 2, August 1998, pp. 423�427.

[5] R. AbÃlamowicz; Spinor Representations of Clifford Algebras: A Symbolic Approach, CPC The-
matic Issue �Computer Algebra in Physics Research�, Physics Communications 115 (1998),
pp. 510�535.

[6] R. AbÃlamowicz; CLIFFORD - Maple V package for Clifford algebra computations, ver. 4
(Copyright 1995-1999) and two supplementary packages suppl and asvd are available from
http://math.tntech.edu/rafal/cliff4/.

[7] R. AbÃlamowicz and B. Fauser, Hecke algebra representations in ideals generated by q-Young
Clifford idempotents , Proceedings of the 5th International Conference on Clifford Algebras,
Ixtapa, Mexico, 1999, Vol. 1 (submitted) and math.QA/9908062.

[8] R. AbÃlamowicz and P. Lounesto, Primitive idempotents and indecomposable left ideals in de-
generate Clifford algebras , Proc. of �Clifford Algebras and Their Applications in Mathematical
Physics (Canterbury, 1985), pp. 61�65, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 183,
Reidel, Dordrecht-Boston, Mass.

48

[9] R. AbÃlamowicz and P. Lounesto, On Clifford algebras of a bilinear form with an antisymmetric
part , in: R. AbÃlamowicz, P. Lounesto, and J. M. Parra, eds., On Clifford Algebras with Numeric
and Symbolic Computations (Birkhäuser, Boston, 1996), pp. 167�188.

[10] M. Berry and J. Dongarra; Atlanta Organizers Put Mathematics to Work for the Math Sciences
Community, SIAM News, Vol. 32, No. 6, July/August 1999, and references therein.

[11] N. Bourbaki; Algebra 1 , Chapters 1�3, Springer Verlag, Berlin, 1989.

[12] J.A.Brooke; A Galileian formulation of spin. I. Clifford algebras and Spin groups , J. Math.
Phys. 19, no. 5, 952�959 (1978); A Galileian formulation of spin. I. Explicit realizations, J.
Math. Phys. 21, no. 4, pp. 617�621 (1980).

[13] J.A.Brooke; Spin groups associated with degenerate orthogonal spaces, Proc. of �Clifford Alge-
bras and Their Applications in Mathematical Physics (Canterbury, 1985), pp. 93�102, NATO
Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 183, Reidel, Dordrecht-Boston, Mass.

[14] A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras: Spinor Structures (Kluwer, Dor-
drecht, 1990).

[15] C.W.Curtis and I. Reiner; Methods of Representation Theory with Applications to Finite Groups
and Orders , Vol. 1, Wiley-Interscience, Now York, 1981.

[16] I.N.Herstein; Noncommutative Rings , The Carus Mathematical Monographs, Number 15, Math-
ematical Association of America, Chicago, 1968.

[17] B. Fauser; Hecke algebra representations within Clifford geometric algebras of multivectors ,
J. Phys. A: Math. Gen. 32, 1999, pp. 1919�1936.

[18] M. Hamermesh; Group Theory and Its application to Physical Problems , Addison-Wesley, Lon-
don, 1962.

[19] J. Helmstetter, Monöõdes de Clifford et déformations d�algèbres de Clifford , Journal of Algebra,
Vol. 111 (1987), pp. 14�48.

[20] R.C. King, B.G. Wybourne; Representations and traces of Hecke algebras Hn(q) of type An−1 ,
J. Math. Phys. 33, 1992, pp. 4�14.

[21] P. Lounesto, R. Mikkola, and V. Vierros, �CLICAL User Manual�, Helsinki University of Tech-
nology, Institute of Mathematics, Research Reports A248, Helsinki, 1987.

[22] P. Lounesto; Clifford Algebras and Spinors , Cambridge University Press, Cambridge, 1997.

[23] P. Lounesto; Private communication, 1997.

[24] I. G. Macdonald; Symmetric Functions and Hall Polynomials , Oxford University Press, Oxford,
1979.

[25] J.M. Maciejowski; Multivariable Feedback Design, Addison-Wesley, Wokingham, England, 1989.

[26] I. R. Porteous: Clifford Algebras and the Classical Groups (Cambridge University Press, Cam-
bridge, 1995).

49

[27] J.M. Selig; Geometrical Methods in Robotics , Monographs in Computer Science, Springer-
Verlag, New York, 1996.

[28] G. Strang; Introduction to Linear Algebra, Wellesley-Cambridge Press, Wellesley, 1998.

50

