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Abstract: This paper addresses the problem of characterizations and constructions of opti-

mal and efficient two-dimensional designs for generalized least squares estimation of treat-

ment contrasts when the errors are correlated. Universally optimal designs are obtained

when the plots of each block are on a cylinder and the errors follow the three parameter

autonormal process on the cylinder. Efficiencies of planar versions of some of the proposed

designs are calculated and found to be very satisfactory.
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1. Introduction

The design problems for correlated errors resulting from neighboring plots which are

arranged in rectangular arrays have recently been addressed by several researchers. See Gill

and Shukla (1985), Kiefer and Wynn (1981), Kunert (1988), Martin (1982, 1986, 1996),

Martin and Eccleston (1993), Morgan and Uddin (1991, 1998), Uddin and Morgan (1991,

1997a, 1997b), and Uddin (1997). In these papers, optimal and highly efficient two dimen-

sional designs have been obtained for certain error covariance structures in conjunction

with simplifying assumptions. In addition to simpler models, convenient plot arrange-

ments, and structured error covariance matrices, these authors also introduced different

approaches to address the design problems, see Kiefer and Wynn(1981), Martin (1982),

and Uddin and Morgan (1997a, 1997b) and compare. Martin (1982) introduced a torus
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(plots are on a torus) technique and enumerated exact properties of designs on the torus.

Following Martin�s (1982) torus approach, Morgan and Uddin (1991) considered designs

with multiple toruses and described methods for the construction of universally optimal

torus designs. Their methods give inÞnite families of universally optimal torus designs

when the errors follow the symmetric second order autonormal process. These torus de-

signs are balanced for nearest (row + column) neighbors and for nearest diagonal neighbors

with no like neighbors in any of these directions. The planar versions of these torus designs

are shown numerically to have very high efficiency when the errors follow the stationary

second order autonormal planar process (see Morgan and Uddin, 1991). An m1×m2 torus

block is made an m1 ×m2 planar one by cutting the torus between any two rows and any

two columns. This upsets the row, column and diagonal neighbors for some treatments

and hence the loss of perfect neighbor balance and possibly the exact optimal properties

in planar applications. Alternatively, one may construct universally optimal designs by

taking the plots of each block on a cylinder: an intermediate step between planar and

torus processes. With the convention that the rows are circular, a cylindrical block can be

made a planar block by cutting the cylinder between any two columns. The planar versions

of universally optimal cylinder designs are expected to have better neighbor balance and

higher efficiency (due to fewer cuts) than that of the torus designs, although the extent to

which this is true depends in part on how the cylinder/torus designs are cut and how the

error processes are adapted to the plane. It is this cylindrical approach that is considered

in this paper.

The above cylindrical approach is taken in this paper primarily for the purpose of

simplicity and feasibility. The algebra involving the generalized least squares information

matrix and the maximization of its trace, required for optimality arguments, simplify

greatly when blocks are taken on the cylinder. The cylindrical approach is also very

attractive from the construction point of view : multiple cylindrical blocks constructed

appropriately can be combined together to form new blocks. It will be seen in Section

3 that the procedure leads to designs with reasonable numbers of blocks and treatment

replications. It should be noted that the designs with planar blocks are the most relevant

one in practice. The present cylindrical setup is closest to the planar case. Furthermore,
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these cylinder designs can also be laid out as side bordered designs preserving all neighbor

properties. Hence one may Þnd these designs useful in other situations, for instance, in

polycross experimentations. The reader is referred to Morgan (1990) for a discussion on

the usefulness of the proposed designs in situations other than that considered here.

To formulate our problem, let there be b separated blocks each with m1m2 experi-

mental units which are arranged on a m1 ×m2 cylinder where we use the convention that

the rows are circular. We address the problem of characterization and construction of

cylinder designs for v treatments in b m1×m2 cylindrical blocks that optimally estimate

treatment contrasts under the model

Y = Xτ + Zβ + ², cov(²) = Σ, (1.1)

where Y is the response vector in row-major order, τ is the vector of treatment effects,

X is an n × v (n = bm1m2) plot-treatment design matrix, β is the vector of Þxed block

effects, and Z = Ib ⊗ Jm1m2×1 is the plot-block incidence matrix. The error covariance

matrix considered here is given by the following autonormal process on the cylinder :

σ2Σ−1 = Ib ⊗ (Im1m2 − α1(Im1 ⊗Hm2)− α2(Hm1 ⊗ Im2)− α3(Hm1 ⊗Hm2))

where α1 > 0,α2 > 0,α3 > 0, and the square matrices Hm1 and Hm2 of orders m1 and

m2 are as follows:.

(Hm1)ll! =

½
1, if (l − l0) = ±1,
0, otherwise,

, and (Hm2)ll! =

½
1, if (l − l0) = ±1 (mod m2),
0, otherwise.

For a design d, the generalized least squares information matrix Cd for the estimation

of treatment contrasts under (1.1) is

Cd = X
0Σ−1X −X 0Σ−1Z(Z0Σ−1Z)−Z0Σ−1X. (1.2)

where (Z 0Σ−1Z)− denotes a generalized inverse of Z0Σ−1Z. To simplify Cd further, we

introduce the following notations:

rδd = diagonal matrix of treatment replications,

Nb
dj = v × 1 treatment-block incidence matrix (nbdij) where nbdij is the number of times
treatment i appears in block j,
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Nr
d = v × v matrix (nrdii!) where nrdii! is the number of plots in which treatment i is
neighbored by i0 in rows,

Nc
d = v × v matrix (ncdii!) where ncdii! is the number of plots in which treatment i is
neighbored by i0 in columns,

Nδ
d = v × v matrix (nδdii!) where nδdii! is the number of plots in which treatment i is
neighbored by i0 in diagonals,

Ne
dj = v× 1 incidence matrix (nedij) where nedij is the replication of treatment i in the two
end rows of block j,

Write w = m1m2(1 − 2α1 − 2α2 − 4α3) + 2m2(α2 + 2α3), and uj = (1 − 2α1 − 2α2 −
4α3)N

b
dj + (α2 + 2α3)N

e
dj. Then the matrix Cd given by (1.2) simpliÞes to

Cd = r
δ
d − α1Nr

d − α2Nc
d − α3Nδ

d −
1

w

bX
j=1

uju
0
j . (1.3)

The matrix Cd, for all connected designs d, is positive semideÞnite with rank v − 1.
Note that a design is said to be connected if and only if τi − τi! is estimable for all i 6= i0.
Only connected designs are of interest here, and D(v, b,m1,m2) will be used to denote the

class of connected designs for the parameters v, b, m1 and m2. In section 2, universally

optimal designs are determined in some subclasses of D(v, b,m1,m2). Constructions of

these designs are considered in section 3. Section 4 gives efficiencies of planar versions of

some cylinder designs constructed in this paper. Throughout this paper, BBD(v, b, k) is

used to refer to a balanced block design (Kiefer, 1975) for v treatments in b blocks each of

size k. A BBD(v, b, k) is a BIBD(v, b, k) whenever k < v (Raghavarao, 1971).

2. Optimal Designs.

For the determination of optimal designs in D(v, b,m1,m2), we will use the method

of Kiefer (1975): a design d∗ ∈ D(v, b,m1,m2) which assigns the treatments to the plots

in such a way that

(i) trace(Cd∗) ≥ trace(Cd) for all d ∈ D(v, b,m1,m2) and,

(ii) Cd∗ is completely symmetric,

is universally optimal within the class D(v, b,m1,m2).
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It follows from (1.3) that trace(Cd), for a design d ∈ D(v, b,m1,m2), is maximized

if nrdii = ncdii = nδdii = 0 for every i, and if
Pv

i=1

Pb
j=1 u

2
ij is minimized where uij =

(1− 2α1 − 2α2 − 4α3)nbdij + (α2 + 2α3)nedij . This last condition requires that uij �s are as
equal as possible for all i and j, their mean value being ū = (1−2α1−2α2−4α3)m1m2/v+

2(α2 + 2α3)m2/v. In general, it is not immediately clear how these uij �s can be made as

equal as possible. However, this can be done for some special cases.

First we specialize to the case m2 ≡ 0 (mod v). In this case, uij = ū if nbdij = m1m2/v

and nedij = 2m2/v for all i and j. The conditions for complete symmetry of Cd for a design

d having maximal trace(Cd) are n
r
dii! equal for i 6= i0, ncdii! equal for i 6= i0, and nδdii! equal

for i 6= i0. Summarizing these we obtain our Þrst optimality result.

Theorem 2.1. Let D1(v, b,m1,m2) be the class of all connected cylinder designs for v

treatments in b m1 × m2 blocks, m2 ≡ 0 (mod v). A design d ∈ D1(v, b,m1,m2) is

universally optimal for generalized least squares estimation of treatment contrasts under

(1.1) if d satisÞes the following conditions:

(a) nrdii = ncdii = nδdii = 0 for every i, i.e. no treatment is neighbored by itself in rows,

columns, and diagonals,

(b) nrdii! �s are equal for all i 6= i0, ncdii! are equal for all i 6= i0, and nδdii! are equal for all
i 6= i0, i.e. every treatment is neighbored by every other treatment equally often in

rows, columns, and diagonals,

(c) nbdij = m1m2/v for all i and j, i.e. each cylindrical block is equireplicate, and

(d) nedij = 2m2/v for all i and j, i.e. for each j, the Þrst and last rows of the j-th block

together have each treatment equally often.

Example 1. The following two cylindrical blocks give a universally optimal cylinder

design in D1(v = 5, b = 2,m1 = 3,m2 = 5).

T1 =
0 3 1 4 2
1 4 2 0 3
2 0 3 1 4

, T2 =
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3

.

As mentioned in section 1, the rows of each cylindrical block are circular. This is

to say that, in the above seemingly planar displays of T1 and T2, the Þrst and the last
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columns are adjacent columns. This convention will be used henceforth for all cylindrical

blocks.

Next we consider the class D2(v, b,m1 = 2,m2) of all connected designs in 2 × m2

cylindrical blocks where we assume m2 6≡ 0 (mod v) to avoid overlapping with the class

D1. In this case, there are no interior rows and hence ndij = n
e
dij for all i and j, and for

all d ∈ D2. The following theorem follows immediately.

Theorem 2.2. A design d ∈ D2(v, b,m1 = 2,m2) is universally optimal for generalized

least squares estimation of treatment contrasts under (1.1) if d satisÞes the conditions (a)

and (b) of Theorem 2.1 and the following condition

(e) The b cylindrical blocks of d give a one-dimensional BBD(v, b, 2m2).

Example 2. A universally optimal cylinder design in D2(v = 6, b = 1,m1 = 2,m2 = 15)

is given by the following cylindrical block:

T =
2 5 1 3 1 2 4 2 3 5 3 4 1 4 5
0 3 2 0 4 3 0 5 4 0 1 5 0 2 1

.

For m2 6≡ 0 (mod v) and m1 ≥ 3, we consider the subclass D3(v, b,m1,m2) of designs

having equireplicate-blocks (cylindrical). In this case nbdij = m1m2/v for all i and j,

and for all d ∈ D3. Then
Pv

i=1

Pb
j=1 u

2
ij is minimized if, for each j, n

e
dij = [2m2/v] for

v([2m2/v]+1)−2m2 treatments and n
e
dij = [2m2/v]+1 for the remaining 2m2−v[2m2/v]

treatments, where [.] stands for the largest integer function. The conditions for complete

symmetry of Cd having maximal trace are easily obtained and summarized in the following

theorem.

Theorem 2.3. A design d ∈ D3(v, b,m1,m2) is universally optimal for generalized least

squares estimation of treatment contrasts under the model (1.1) if d satisÞes the conditions

(a) and (b) of Theorem 2.1 and the following condition :

(f) The end-design, i.e. the design obtained by taking the 2m2 plots of end-rows of each

m1 ×m2 cylindrical block as a one-dimensional block, is a BBD(v, b, 2m2).
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Example 3. The following twelve cylindrical blocks give a universally optimal design in

D3(v = 9, b = 12,m1 = 3,m2 = 3). Here the end-design is a BIBD(v = 9, b = 12, k = 6).

T1 =
0 1 5
8 7 2
6 3 4

, T2 =
8 7 2
4 6 3
1 5 0

, T3 =
4 6 3
0 1 5
7 2 8

, T4 =
0 2 6
1 8 3
7 4 5

,

T5 =
1 8 3
5 7 4
2 6 0

, T6 =
5 7 4
0 2 6
8 3 1

, T7 =
0 3 7
2 1 4
8 5 6

, T8 =
2 1 4
6 8 5
3 7 0

,

T9 =
6 8 5
0 3 7
1 4 2

, T10 =
0 4 8
3 2 5
1 6 7

, T11 =
3 2 5
7 1 6
4 8 0

, T12 =
7 1 6
0 4 8
2 5 3

.

3. Constructions Of Optimal and Neighbor Balanced Designs.

The three parameter conditional autonormal error process (planar version of Σ con-

sidered under the model (1.1)) is for long-range (slowly decaying) correlations. It is shown

elsewhere in the literature that planar designs that are balanced or nearly balanced for

neighbors in rows, columns, and diagonals with no like neighbors in any of these directions

are highly efficient for such slowly decaying correlations, see Martin (1986), Uddin and

Morgan (1991, 1997b), and Morgan and Uddin (1991). All cylinder designs that satisfy

the neighbor conditions (a) and (b) have nearly balanced neighbor properties (row, column

and diagonal) with no repeated like neighbors when displayed as planar designs and are,

therefore, expected to perform very well (see numerical efficiency calculations in section 4)

in planar applications. Keeping this in mind, here the construction techniques are devel-

oped to give both the universally optimal cylinder designs as well as cylinder designs that

satisfy only the neighbor conditions (a) and (b). For convenience, a design that satisÞes

(a) and (b) will henceforth be referred to as a neighbor balanced cylinder design (NBCD).

We utilize the method of differences (see Raghavarao (1971), for example) on Þnite

Þelds to obtain NBCDs and the universally optimal designs of Section 2. We shall let FN

denote the Þnite Þeld of order N , and x will be used throughout to denote a primitive root

of the Þeld FN . Our Þrst construction technique is described in the following theorem.

Theorem 3.1. Let v = sn, where s is an odd prime number and n ≥ 1. Suppose it is

possible to construct m p × (q + 1) planar arrays A1, A2, . . . , Am of the elements of Fv

such that the following conditions are satisÞed:
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(i) the symmetric row-neighbor differences are 2pqm/(v − 1) copies of Fv − {0},
(ii) the symmetric diagonal-neighbor differences are 4(p−1)qm/(v−1) copies of Fv−{0},
(iii) the symmetric column-neighbor differences obtained from the Þrst q columns of all m

arrays are 2(p− 1)qm/(v − 1) copies of Fv − {0}, and
(iv) for each j = 1, 2, . . . ,m, the Þrst column Aj1 and the last column Aj(q+1) of the array

Aj satisfy

Aj(q+1) −Aj1 = fj1p×1 for some fj ∈ Fv − {0}.

Then there exists an NBCD for v = sn treatments in b = msn−1 cylindrical blocks each

of size p × qs. When n = 1, the design is universally optimal in D1(v = s, b = m,m1 =

p,m2 = qv).

Proof: By construction. For each j = 1, 2, . . . ,m, deÞne s planar blocks on Fv as follows:

Bjl = Aj + (l − 1)fjJp×(q+1), l = 1, 2, . . . , s.

Consider Þrst the case n = 1. In this case v = s, and (l − 1)fj for l = 1, 2, . . . , v give

all elements of Fv. Hence by (i) and (ii), the mv arrays Bjl�s are balanced for row-

and diagonal-neighbors in that every treatment has each other treatment as Þrst neighbor

equally often in rows and in diagonals. Also, by (iii) the Þrst q columns of all mv arrays

together are balanced for column-neighbors. These three conditions also imply that no

treatment is neighbored by itself in rows, columns and diagonals in the planar arrays

Bjl�s. The condition (iv) implies that for each j the v arrays Bj1, Bj2, . . . , Bjv (in this

order) are such that the last column of an array is identical to the Þrst column of the

next, and the Þrst column of the Þrst array is the same as the last column of the last

array. We can then merge these v arrays at their common end columns to form a p × qv
cylindrical array, the last column of Bjv is merged with the Þrst column of Bj1. Varying

j = 1, 2, . . .m, we obtain m cylindrical arrays (blocks). Since the last (or equivalently the

Þrst) column of each of the mv arrays Bjl is lost in the process of constructing cylinders

from planar arrays, the m cylindrical blocks are, by (iii), balanced for column-neighbors.

Also, by construction, all row and diagonal neighbors of each treatment in planar arrays

are preserved in cylindrical arrays and hence the balanced neighbor properties (a) and (b)
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of Theorem 2.1. By construction, each treatment appears exactly q times in each row and

hence the equireplication conditions (c) and (d), completing the proof for n = 1.

For n ≥ 2, the s elements {(l−1)fj, l = 1, 2, . . . , s} together give an additive subgroup
F(j) = {0, fj , 2fj , . . . , (s − 1)fj} of Fv. Hence, similar to the case of n = 1, the s blocks

Bj1, Bj2, . . . , Bjs can be merged at their common end columns to construct a p × qs
cylindrical block Tj . Using Tj , one may construct s

n−1 cylindrical blocks as follows:

Tju = Tj + h
(j)
u Jp×qs, u = 1, 2, . . . , sn−1

where h
(j)
1 = 0, and h

(j)
2 , h

(j)
3 , . . . , h

(j)
sn−1 are s

n−1− 1 distinct elements of Fv each of which
belongs to exactly one coset of F(j). Varying j = 1, 2, . . . ,m we obtain msn−1 cylindrical

blocks of the desired neighbor balanced cylinder design. To see this it is sufficient to

note that the msn−1 cylindrical blocks obtained above use all mv planar blocks Aj +

fJp×(q+1),∀f ∈ Fv, j = 1, 2, . . . ,m; the last column of each of these blocks is lost when

merged to construct cylinders. tu

The following two examples further illustrate our construction technique.

Example 4. Theorem 3.1 design for v = 7 in one 2 × 21 cylindrical block. Here m = 1,

and we take

A1 =
2 4 1 3
3 6 5 4

.

The symmetric row, column (exclude the last) and diagonal neighbor differences are each

nonzero element of F7 exactly twice, once, and twice, respectively. Furthermore f1 = 1,

thus all conditions of Theorem 1 are satisÞed. The seven planar arrays B11, B12, . . . , B17

are

B11 =
2 4 1 3
3 6 5 4

, B12 =
3 5 2 4
4 0 6 5

, B13 =
4 6 3 5
5 1 0 6

, B14 =
5 0 4 6
6 2 1 0

,

B15 =
6 1 5 0
0 3 2 1

, B16 =
0 2 6 1
1 4 3 2

, B17 =
1 3 0 2
2 5 4 3

.

When merged at their common end columns, these arrays yield the following 2× 21 cylin-
drical block which satisÞes all conditions of Theorem 2.1.

T1 =
2 4 1 3 5 2 4 6 3 5 0 4 6 1 5 0 2 6 1 3 0
3 6 5 4 0 6 5 1 0 6 2 1 0 3 2 1 4 3 2 5 4

.
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Example 5. Theorem 3.1 design for v = 32 in 6 2× 12 cylindrical blocks. The nonzero
elements of F32(x) may be written as x = (1, 0), x2 = (2, 1), x3 = (2, 2), x4 = (0, 2),

x5 = (2, 0), x6 = (1, 2), x7 = (1, 1), and x8 = (0, 1). Here m = 2 and deÞne A1 and A2 as

follows (where (a, b) is written as (ab) to save space):

A1 =
(01) (21) (02) (12) (10)
(10) (22) (20) (11) (22)

, A2 =
(10) (22) (20) (11) (21)
(21) (02) (12) (01) (02)

.

Then it may be checked that A1 and A2 satisfy the conditions of Theorem 3.1. For

these arrays, f1 = (12), f2 = (11) and the corresponding additive subgroups are F(1) =

{(00), (12), (21)}, F(2) = {(00), (11), (22)}. The blocks Bjl for j = 1, 2, l = 1, 2, 3 are

B11 =
(01) (21) (02) (12) (10)
(10) (22) (20) (11) (22)

, B12 =
(10) (00) (11) (21) (22)
(22) (01) (02) (20) (01)

,

B13 =
(22) (12) (20) (00) (01)
(01) (10) (11) (02) (10)

, B21 =
(10) (22) (20) (11) (21)
(21) (02) (12) (01) (02)

,

B22 =
(21) (00) (01) (22) (02)
(02) (10) (20) (12) (10)

, B23 =
(02) (11) (12) (00) (10)
(10) (21) (01) (20) (21)

.

The blocks B11, B12, and B13, when merged at their common end columns, yield the 2×12
cylindrical block

T1 =
(01) (21) (02) (12) (10) (00) (11) (21) (22) (12) (20) (00)
(10) (22) (20) (11) (22) (01) (02) (20) (01) (10) (11) (02)

,

and similarly the blocks B21, B22 and B23 yield the 2× 12 cylindrical block

T2 =
(10) (22) (20) (11) (21) (00) (01) (22) (02) (11) (12) (00)
(21) (02) (12) (01) (02) (10) (20) (12) (10) (21) (01) (20)

.

The two cosets of F(1) are {(11), (20), (02)}, and {(10), (22), (01)}, and the two cosets of
F(2) are {(10), (21), (02)}, and {(12), (20), (01)}.

We now choose h
(1)
2 = (11), and h

(1)
3 = (10) in the two cosets of F(1) and use T1 to

obtain the following two 2× 12 cylindrical blocks:

T12 =
(12) (02) (10) (20) (21) (11) (22) (02) (00) (20) (01) (11)
(21) (00) (01) (22) (00) (12) (10) (01) (12) (21) (22) (10)

,

T13 =
(11) (01) (12) (22) (20) (10) (21) (01) (02) (22) (00) (10)
(20) (02) (00) (21) (02) (11) (12) (00) (11) (20) (21) (12)

.
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Similarly h
(2)
2 = (10) and h

(2)
3 = (01) in the two cosets of F(2) in conjunction with T2 yield

the following two 2× 12 cylindrical blocks:

T22 =
(20) (02) (00) (21) (01) (10) (11) (02) (12) (21) (22) (10)
(01) (12) (22) (11) (12) (20) (00) (22) (20) (01) (11) (00)

,

T23 =
(11) (20) (21) (12) (22) (01) (02) (20) (00) (12) (10) (01)
(22) (00) (10) (02) (00) (11) (21) (10) (11) (22) (02) (21)

.

The six 2 × 12 cylindrical blocks T11 = T1, T12, T13, T21 = T2, T22, and T23 together are

balanced for row, column, and diagonal neighbors (condition (b)) with no like neighbors

(condition (a)) and hence give an NBCD.

As applications of Theorem 3.1, we have

Corollary 3.1. Let v = sn ≥ 5 where s is an odd prime number and n ≥ 1. Then,

for every positive integer m1 ≥ 2, there exists an NBCD for v = sn treatments in b =

(v− 1)sn−1/2 cylindrical blocks of size m1× s each. When n = 1, the design is universally
optimal in D1(v = s, b = (v − 1)/2,m1,m2 = v).

Proof: It is sufficient to give the m1 × 2 planar arrays A1, A2, . . . , A(v−1)/2 on Fv that
satisfy all four conditions of Theorem 3.1. Choose f1 ∈ Fv − {0, f,−f} where f is any
nonzero element of Fv. Now deÞne Ai = x

i−1A1, i = 1, 2, . . . , (v − 1)/2 where

A1 =

0 f1
f f + f1
2f 2f + f1
...

...
(m1 − 1)f (m1 − 1)f + f1

.

The proof is completed by checking the differences described in Theorem 3.1. tu

Corollary 3.2. Let v = sn = qm+1 ≥ 5 where s is an odd prime number, q ≥ 2 and n ≥ 1.
Then there exists an NBCD for v = sn treatments in b = msn−1 cylindrical blocks each

of size 2×sq. If n = 1, the design is universally optimal in D1(v, b = m,m1 = 2,m2 = vq).

Proof: It is sufficient to give the m planar arrays A1, A2, . . . , Am on Fv that satisfy all

four conditions of Theorem 3.1. If m = 1, choose any k > 1 such that xk 6= −1. If m > 1,
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choose any k 6≡ 0 (mod m) such that xk 6= −1. In both cases take f1 = (1− xm)(1+ xk)
and deÞne a 2× (q + 1) planar array A as

A =
xm x2m . . . , xqm xm + f1
xm+k x2m+k . . . , xqm+k xm+k + f1

.

Then the m arrays Ai = x
i−1A, i = 1, 2, . . . ,m satisfy all conditions of Theorem 3.1. tu

Corollary 3.3. Let v = sn = 2qm + 1 where s is a prime number, q is odd and n ≥ 1.
Then there exists an NBCD for v = sn treatments in b = msn−1 cylindrical blocks each

of size 2×sq. If n = 1, the design is universally optimal in D1(v, b = m,m1 = 2,m2 = vq).

Proof: Take f1 = (1− x2m)(1+ xk) where k 6≡ 0 (mod 2m) satisfy xk 6= −1. Then the m
planar 2× (q+ 1) arrays Ai = xi−1A, i = 1, 2, . . . ,m satisfy all conditions of Theorem 3.1

where

A =
x2m x4m . . . , x2qm x2m + f1
x2m+k x4m+k . . . , x2qm+k x2m+k + f1

.

tu

We like to note that examples 1, 3, 4 and 5 are constructed using corollaries 3.1,

3.1, 3.3, and 3.2, respectively. Each cylindrical block of corollaries 3.2 and 3.3 has only

two rows. The number of rows can be increased to any even number by taking g copies

of each block and adjoining them vertically to construct a new cylindrical block with 2g

rows. For the resulting design in 2g × vq cylindrical blocks, the treatment replications
and row-neighbor counts are g times those of corollaries 3.2-3, and the neighbor counts in

columns and diagonals are 2g − 1 times those of corollaries 3.2-3.

Next, we give two series constructions of NBCDs and universally optimal designs of

Theorem 2.2. For the purpose of these constructions, we write v = sn + 1 where s is an

odd prime number and denote the v treatments by the v elements of Fsn ∪ {∞}. Also, we
use the convention that ∞+ f =∞ for all f ∈ Fsn .

Theorem 3.2. Let a prime number s and an integer n ≥ 1 be such that sn ≡ 3 (mod 4).
Then there exists an NBCD for v = sn + 1 treatments in sn−1 2× sv/2 blocks. If n = 1,
the design is universally optimal in D2(v = s+ 1, b = 1,m1 = 2,m2 = v(v − 1)/2).

12



Proof: DeÞne the following 2× (v/2 + 1) planar array

A =
xv−4 xv−2 x2 . . . , xv−4 xv−2

∞ −xv−2 −x2 . . . , −xv−4 ∞ .

Note that ±{xv−2, x2, . . . , xv−4} = {xv−2, x1, x2, . . . , xv−3} since s3 ≡ 3 mod (4). Utilizing
this result, we see that the neighbor differences among the Þnite elements of A are as

follows:

the symmetric row neighbor differences are two copies of Fsn − {0},
the symmetric diagonal neighbor differences are two copies of Fsn − {0}, and
the symmetric column neighbor differences are one copy of Fsn − {0}.

Furthermore, the symbol ∞ is neighbored by two Þnite elements in rows as well as in

diagonals and by one Þnite element in the Þrst v/2 columns. Then the s planar arrays

Bj = A+ (j − 1)(1− xv−4)J2×(v/2+1), j = 1, 2, . . . , s

can be merged, in the fashion of Theorem 3.1, at their common end columns to obtain a

2 × sv/2 cylindrical block. When n = 1, this block gives the desired universally optimal
design. For n ≥ 2, construct sn−1 blocks of NBCD in the fashion of Theorem 3.1. tu

Example 6. For v = 8, a 2× 28 universally optimal design of Theorem 3.2 is (the symbol

∞ is replaced by 8 for convenience)

4 1 2 4 1 5 6 1 5 2 3 5 2 6 0 2 6 3 4 6 3 0 1 3 0 4 5 0
8 6 5 3 8 3 2 0 8 0 6 4 8 4 3 1 8 1 0 5 8 5 4 2 8 2 1 6

If sn ≡ 1 (mod 4), sn > 5, then the Þnite row-neighbor differences obtained from A in

Theorem 3.2 are all quadratic residues or all quadratic non-residues of Fsn , and so are the

column and diagonal neighbor differences. In this case, one may start with A and xA, and

construct 2sn−1 cylindrical blocks using the technique described in the proof of Theorem

3.2. For v = 5, a universally optimal design in D2 is given by example 2. Hence we state

Theorem 3.3. Let s be a prime number and n ≥ 1 be an integer such that sn ≡ 1 (mod
4). Then there exists an NBCD for v = sn + 1 treatments in 2sn−1 2 × sv/2 blocks. If
n = 1, the design is universally optimal in D2(v = s+ 1, b = 2,m1 = 2,m2 = v(v − 1)/2).

In our next construction, we take optimal designs of Theorems 3.2 and 3.3 to obtain

new NBCDs and universally optimal designs of Theorem 2.3.

13



Theorem 3.4. An NBCD for v = sn + 1, b = sn−1, m1 = 2g, m2 = sv/2 can be

constructed for every g ≥ 2 whenever sn = 5, or sn ≡ 3 (mod 4), and for the parameters
v = sn + 1, b = 2sn−1, m1 = 2g, m2 = vs/2 for every g ≥ 2 whenever sn ≡ 1 (mod

4), sn > 5. If n = 1, these designs are universally optimal in D3 having the respective

parameters.

Proof: For sn ≡ 3 (mod 4), take g copies of each block of the Theorem 3.2 design

and adjoin them vertically to construct 2g×vs/2 cylindrical blocks. Similarly use g copies
of the Theorem 3.3 design when sn ≡ 1 (mod 4), sn > 5. For sn = 5, use g copies of the
Example 2 design. tu

Finally, we give a series construction for NBCDs for v = sn + 1 treatments where s

is any odd prime number.

Theorem 3.5. An NBCD for the parameters v = sn+ 1, b = vsn−1/2, m1 = 2, m2 = 2s

can be constructed for every odd prime number s.

Proof: For some f1 ∈ Fsn − {0, 1, s− 1, s− 3}, deÞne (sn + 1)/2 planar arrays on Fsn as

follows:

A1 =
∞ 0 ∞
1 2 s− f1 − 1 , A2 =

∞ 0 ∞
s− 1 2 f1 + 1

,

Ai+1 =
0 xi−1 xi−1f1

2xi−1 −xi−1 xi−1(2 + f1)
, i = 2, 3, . . . , (sn − 1)/2.

Using each planar array, construct sn−1 cylindrical blocks in the fashion of Theorems 3.1

and 3.2. That the vsn−1/2 cylindrical blocks thus obtained from the above v/2 planar

arrays is an NBCD follows from the neighbor differences of the planar arrays. tu

4. Efficiency Calculations.

In this section, we investigate numerically the behavior of some cylinder designs in

the plane. An m1 × m2 cylindrical block becomes an m1 × m2 planar block when the

cylinder is cut between any two columns. Write ∆(v, b,m1,m2) to denote the class of all

connected designs for v treatments in b m1 × m2 planar blocks. The planar versions of

14



some cylinder designs constructed in section 3 will be compared with the corresponding

hypothetical universally optimal design in ∆(v, b,m1,m2). We use the model (1.1) but

with the planar error process given by σ2Σ−1 = Ib ⊗Σ−11 where

Σ−11 = Im1m2 − α1(Im1 ⊗Hm2)− α2(Hm1 ⊗ Im2)− α3(Hm1 ⊗Hm2). (3.1)

Here α1 > 0,α2 > 0,α3 > 0, such that Σ
−1
1 is positive deÞnite, and Ht of order t satisÞes

(Ht)ll! =

½
1, if (l − l0) = ±1,
0, otherwise,

.

This three parameter autonormal error process has been used previously by Morgan and

Uddin (1998), Uddin and Morgan (1997b), by Gill and Shukla (1985) under the model

(1.1) with β = 0, and by Uddin and Morgan (1991) with α1 = α2 in their investigation of

optimal planar designs. The A-, E-, and D-efficiencies of the planar versions of cylinder

designs of examples 1- 5 are calculated here under this error process.

The common nonzero eigenroot θ of the C-matrix of a hypothetical universally optimal

design in∆(v, b,m1,m2) arrived at by the method of Kiefer (1975) would have the following

upper bound (see Morgan and Uddin, 1991, pp 2176):

θ ≤ b

v − 1 [trace(Σ
−1
1 )− J1×m1m2Σ

−1
1 Jm1m2×1
v

] = θ∗ (say).

The nonzero eigenroots θ1, θ2, . . . , θv−1 of the C-matrix of a proposed design can be

compared with θ∗ to obtain lower bounds for A-, E- and D-efficiencies (see Morgan and

Uddin, 1991) as follows:

Aefficiency ≥ v−1
Σv−1

i=1
(θ∗/θi)

, Eefficiency ≥ min(θ1,...,θv−1)
θ∗ , Defficiency ≥ [

Qv−1
i=1 (

θi

θ∗ )]
1

v−1 .

These lower bound efficiencies of the planar versions (as displayed) of cylinder designs

of examples 1- 5 are calculated for some combinations of α1, α2 and α3 for which Σ1 is

positive deÞnite. These results are reported in Table 1 below where each entry multiplied

by 1000 is in the order (A,E,D) and truncated after three decimal places. All these designs

perform very well in planar applications especially with respect to A and D�efficiencies.

The poor performance (especially with respect to E) of example 3 is due to the fact that

15



the rows of this design are very short, so that making the cylinder blocks planar has a

heavier cost than for the other examples. Furthermore, this design was optimal within the

subclass of equireplicate-block (cylindrical) designs only.

Table 1 : Efficiencies of planar versions of cylinder designs of examples 1 - 5.

planar versions of designs of examples
α1 α2 α3 1 2 3 4 5
.1 .1 .05 (999, 989, 999) (999, 975, 999) (997, 977, 997) (999, 978, 999) (997, 979, 997)
.1 .2 .05 (999, 989, 999) (999, 976, 999) (994, 973, 994) (999, 979, 999) (997, 980, 997)
.1 .3 .05 (999, 989, 999) (999, 976, 999) (988, 965, 988) (999, 979, 999) (998, 981, 998)
.1 .4 .05 (999, 989, 999) (999, 977, 999) (973, 946, 974) (999, 979, 999) (998, 982, 998)
.2 .1 .05 (999, 970, 999) (999, 961, 999) (993, 955, 994) (999, 965, 999) (997, 967, 997)
.2 .2 .05 (998, 971, 999) (999, 961, 999) (989, 948, 989) (999, 966, 999) (997, 968, 997)
.2 .2 .10 (998, 978, 998) (998, 954, 999) (978, 932, 979) (999, 959, 999) (997, 967, 997)
.2 .2 .15 (995, 975, 995) (998, 948, 998) (957, 898, 958) (998, 953, 998) (996, 965, 996)
.2 .3 .05 (998, 971, 998) (998, 962, 999) (977, 930, 977) (999, 966, 999) (997, 969, 998)
.3 .1 .05 (997, 950, 997) (997, 947, 998) (986, 929, 987) (998, 953, 999) (996, 955, 996)
.3 .2 .05 (996, 949, 996) (997, 948, 998) (975, 913, 977) (998, 953, 998) (995, 956, 996)
.4 .1 .05 (991, 926, 993) (992, 934, 993) (970, 893, 972) (993, 941, 994) (988, 940, 989)
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