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Abstract: This paper presents optimal 3 × 3, 3 × 4, and 3 × 5 row-column designs for two
treatments in the presence of a symmetric doubly geometric correlated errors. All designs

presented here minimize the variance of generalized least squares estimator of the difference

between treatment effects under a correlated model that incorporates both Þxed row and Þxed

column effects.

1. Introduction

An allocation of of v ≥ 2 treatments to pq experimental units, which are further grouped
into p rows and q columns, is called a row-column design. This paper addresses the problem

of choosing a row-column design d that estimates the difference between the effects of two

treatments with minimum variance under the model

Yd = 1pqµ+ Z1ρ+ Z2γ +Xdτ + ², cov(²) = V. (1.1)

Here Yd (written in column order) is the pq× 1 response vector, 1n is the n× 1 column vector
of ones, τ is the v × 1 vector of treatment effects, Xd is a pq × v plot-treatment design matrix
that deÞnes the allocation of treatments to the experimental units according to the design d,

and ρ and γ are vectors of parameters for Þxed row and Þxed column effects, respectively. The

matrices Z1 = 1q ⊗ Ip and Z2 = Iq ⊗ 1p are called the plot-row and plot-column incidence

matrices, respectively. The error co-variance matrix is assumed here to be a special case

(α = β) of the following doubly geometric process :

V =
σ2(1− α2)−1

(1− β2)


1 β β2 . . . βq−1

β 1 β . . . βq−2

...
...

...
. . .

...
βq−1 βq−2 βq−3 . . . 1

⊗


1 α α2 . . . αp−1

α 1 α . . . αp−2

...
...

...
. . .

...
αp−1 αp−2 αp−3 . . . 1

 .
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With Z = (1pq Z2 Z1), the generalized least squares information matrix Cd for estima-

tion of treatment contrasts under (1.1) can be written as

Cd = X
0
dV

−1Xd −X 0
dV

−1Z(Z0V −1Z)−Z0V −1Xd. (1.2)

The matrix Cd, for any connected design d, is nonnegative deÞnite with rank v− 1. For v = 2,
Cd is of order 2× 2 and of the following form

Cd =

µ
cd11 −cd11

−cd11 cd11

¶
where cd11 must be determined by simplifying the matrix Cd given by (1.2). This simpliÞed

form of Cd implies that the vard(�τ1 − �τ2) = c
−1
d11 for a design d. If we let D(2, p, q) denote the

class of all connected p×q row-column designs for two treatments, then a design d∗ ∈ D(2, p, q)
is optimal if vard∗(�τ1−�τ2) = c−1

d∗11 ≤ c−1
d11 =vard(�τ1 − �τ2) for all d ∈ D(2, p, q). This is equivalent

to saying that the design d∗ is optimal if cd∗11 ≥ cd11 for all d ∈ D(2, p, q).

Several researchers have addressed the problems of optimality of row-column designs for

v ≥ 2 when observations are correlated (e.g., Gill and Shukla, 1985; Kunert, 1988; Martin,

1986; Martin and Eccleston, 1993; Morgan and Uddin, 1991, 1998; Uddin and Morgan, 1991,

1997a, 1997b; Uddin, 1997). Optimal p × q row-column designs under the model (1.1), that
incorporates both row and column effects, are almost nonexistent except for some very special

cases. Uddin and Morgan (1997a) have attempted to determine universally optimal two-

dimensional block designs for correlated observations with and without row/column effects in

(1.1). Their paper gives some universally optimal p× 2 row-column designs under (1.1) when
v = 2. For v ≥ 3, their universally optimal designs use b ≥ 2 blocks each of which is a p × 2
row-column design. For v = 2, Uddin (1997) gives universally optimal p×q designs for all even
p and q when both α and β are positive. More speciÞcally, it is shown in Uddin (1997) that

the design

d∗ =


1 2 1 2 . . . 1 2
2 1 2 1 . . . 2 1
...
...
...
...
. . .

...
...

1 2 1 2 . . . 1 2
2 1 2 1 . . . 2 1


p×q
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is universally optimal (in the sense of Kiefer, 1975) over D(v = 2, p, q) for all α ≥ 0, β ≥ 0 and
for all even p and q. The author is not aware of any other paper that gives optimal designs in

the present set-up. It appears that even for the special case of v = 2, the optimality problem

is only partially solved under the model (1.1). For example, optimal p × q designs are not
known for all α, β ∈ (−1, 1) when at least one of p ≥ 3 and q ≥ 3 is odd. At this time, we

do not know if optimal p × q designs for two treatments can be determined for all p, q, α
and β mentioned above ; see the information matrix Cd in Uddin (1997) and the algebraic

complexity involved in the determination of such optimal designs. However, for small p and

q, the problem can be solved by enumerating all possible designs for a given p and q. In this

paper, we have determined optimal 3×3, 3×4, and 3×5 designs for two treatments under (1.1)
with α = β. We have enumerated all possible designs in each case and determined optimal

designs by comparing cd11 of all designs for a given p and q. Our results are presented in the

following section.

2. Optimal designs for v = 2.

We have utilized MAPLE software to simplify the information matrix Cd and obtained

cd11 for all possible d ∈ D(v = 2, p, q) for each combination of p and q mentioned above.

Note that two treatments can be assigned to pq experimental units in 2pq ways, each of these

arrangement is a p × q design. However, not all of these designs are connected since Cd is a
zero matrix for some d. In our search of optimal designs, we have calculated cd11 element of Cd

for each connected design d. The optimal design is one that maximizes cd11 over D(v = 2, p, q)

for α ∈ (−1, 1). However, no single design is found that maximizes cd11 over D(2, p, q) for all

α ∈ (−1, 1). The optimal design depends on the magnitude of p , q and α.

In the following subsections, we use the convention that two designs d1 and d2 are distinct

if d1 can not be obtained from d2 by interchanging the two symbols 1 and 2 in d2, or d1 can

not be obtained by rotating the design d2.
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2.1 Optimal 3× 3 designs for v = 2.

In this case, cd11 of all connected 3× 3 designs are obtained using MAPLE software. We
have found four distinct designs d1, d

0
1, d2, and d3 such that the max(cd111, cd"111, cd211, cd311),

for each α ∈ (−1, 1), is greater than or equal to the cd11 values of all other 3× 3 designs. Thus
the cd11 values of these four designs may be compared to determine optimal designs.

For the purpose of determining the values of α and the corresponding optimal designs, we

Þrst list in Table 1 these four distinct designs and the cd11 element of the corresponding Cd.

Table 1. Four distinct designs and the corresponding cd11

Design cd11

d1 =

 2 2 1
2 2 1
1 1 2

 −16α4+32α3−32α+16
(3−α)2(1−α)2(1−α2)

d01 =

 1 1 2
1 2 2
2 2 1

 −16α4+32α3−32α+16
(3−α)2(1−α)2(1−α2)

d2 =

 2 2 1
2 1 2
1 2 2

 −10α6+8α5+6α4+16α3−14α2−24α+18
(3−α)2(1−α)2(1−α2)

d3 =

 2 1 2
1 2 1
2 1 2

 −16α6+48α4−48α2+16
(3−α)2(1−α)2(1−α2)

Note that the two distinct designs d1 and d
0
1 have the same cd11. Utilizing MAPLE, we have

compared cd11 values of all 3×3 designs. It follows that maxα∈(−1,1)(cd111= cd"111, cd211, cd311)

≥ cd11, for all other d ∈ D(2, 3, 3). Hence the values of α and the corresponding optimal design
can be determined by comparing cd11 of the above four designs. The values of α for which

cd111 or cd"111 is greater than cd211 and cd311 are determined by solving the inequalities

−16α4 + 32α3 − 32α+ 16
(3− α)2(1− α)2(1− α2)

>
−10α6 + 8α5 + 6α4 + 16α3 − 14α2 − 24α+ 18

(3− α)2(1− α)2(1− α2)

and
−16α4 + 32α3 − 32α+ 16
(3− α)2(1− α)2(1− α2)

>
−16α6 + 48α4 − 48α2 + 16

(3− α)2(1− α)2(1− α2)
.
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The above two inequalities are satisÞed for all α ∈ (−1,−1/5). Hence d1 and d
0
1 are optimal

under (1.1) for all α ∈ (−1,−1/5). In a similar fashion, are obtained the values of α for which
d2 and d3 are optimal. These values of α and the corresponding optimal (maximal cd11) designs

are reported in Table 2 below.

Table 2 . Optimal 3× 3 designs

α Optimal design

(−1, −1
5 ) d1 =

 2 2 1
2 2 1
1 1 2

 , d01 ==

 1 1 2
1 2 2
2 2 1


(−1

5 ,
2
√

7−5
3 ) d2 =

 2 2 1
2 1 2
1 2 2


(2
√

7−5
3 , 1)) d3 =

 2 1 2
1 2 1
2 1 2



2.2. Optimal 3× 4 designs

Optimal 3 × 4 designs are obtained by comparing cd11 of all possible 3 × 4 designs. In
this case, we have found two designs that maximize, depending on α, the cd11 element of the

information matrix Cd. The values of α and the corresponding optimal 3 × 4 designs are in
Table 2.

Table 2. Optimal 3× 4 designs

α Optimal design

(−1, 0) d4 =

 1 1 2 2
1 1 2 2
2 2 1 1


(0, 1) d5 =

 1 2 1 2
2 1 2 1
1 2 1 2


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The cd11 for designs d4 and d5 are as follows.

cd411 =
−8α10 + 64α8 − 176α6 + 224α4 − 136α2 + 32

(3− α)(1− α)2(1− α2)2(4− 2α)
cd511 =

−8α9 + 40α8 − 72α7 + 40α6 + 72α5 − 168α4 + 104α3 + 56α2 − 96α+ 32
(3− α)(1− α)2(1− α2)2(4− 2α) .

The values of α in Table 2 above are determined by solving the inequality cd411 > cd511.

2.3 Optimal 3× 5 designs.

The procedure used for the determination of optimal 3 × 5 designs is similar to that of
3 × 3 and 3 × 4 designs. Optimal 3 × 5 designs are obtained by comparing cd11 of all 3 × 5
designs. The distinct designs that are found to be optimal are reported in Table 3.

Table 3. Optimal 3× 5 designs

α Optimal Designs cd11

(−1,−0.05561673968] {
 1 1 2 2 2
2 2 2 1 1
2 2 1 1 1

 , 48−160α+176α2−16α3−144α4+160α5−80α6+16α7

(3−α)(5−3α)(1−α)2(1−α2) 1 1 2 2 2
2 2 1 1 1
2 2 1 1 1

 , 1 1 1 2 2
2 2 2 1 1
2 2 2 1 1

 , 1 1 1 2 2
2 2 1 1 1
2 2 2 1 1

}
[−0.05561673969, 0)

 1 1 2 2 1
2 2 1 1 1
2 1 1 1 2

 50−130α+74α2+78α3−130α4+74α5−2α6−22α7+8α8

(3−α)(5−3α)(1−α)2(1−α2)

(0, 0.05414365096]

 1 2 1 2 1
2 1 2 1 1
1 2 1 1 2

 50−40α−106α2+52α3+98α4−8α5−54α6−4α7+12α8

(3−α)(5−3α)(1−α)2(1−α2)

[0.05414365097, 1)

 1 2 1 2 1
2 1 2 1 2
1 2 1 2 1

 48−160α2+192α4−96α6+16α8

(3−α)(5−3α)(1−α)2(1−α2)
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The Þrst four designs in Table 3 above have the same cd11 and hence are equally good. The

values of α in column one are determined by comparing the cd11 values reported in third column

under cd11.

Note that the optimal p×q design (with p ≤ q) for two treatments, when α = 0 (errors are
uncorrelated) and both p and q are odd, uses treatment one p(q−1)/2 times and treatment two
p(q + 1)/2 times, see Morgan and Uddin (1993). Thus the optimal designs with uncorrelated

errors require that the two treatment replications differ by p. However, this is not the case

for our optimal designs with large |α|, see the designs in Tables 1 and 3 for large |α|. Here
the difference between the replications of two treatments is one, a criterion often preferred by

practicing statisticians.

We have determined only 3 × 3, 3 × 4 and 3 × 5 optimal row-column designs for two
treatments. It would be unwise to make any recommendation for all p × q designs based on
these three designs. However, we suspect that the treatment allocation patterns found here, if

extended to p× q designs, will give optimal p× q designs especially for large |α|. For example,
a design in which no treatment is neighbored by itself in rows and in columns is expected to

be optimal for large positive α.
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