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ON THE INVERTIBILITY OF SOME OPERATORS
ON HILBERT SPACES
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For any given bounded linear operator A on a complex
Hilbert space H, we give sufficient conditions to ensure the
existence of a bounded operator B on H such that
(i)AB + BA is of rank one, and (ii)I + exP (A)+tQ(A)B
is invertible for all x, t ∈ R where P (A) and Q(A) are
polynomials in A. Our main results will provide a justiÞca-
tion in general terms to a crucial step of the so-called
operator method used by Aden, Carl, and Schiebold [1,3]
to solve nonlinear partial differential equations like the
Korteveg-deVries(KdV), modiÞed KdV, Kadomtsev-
Petviashvili equations.

1. INTRODUCTION

In [1] Aden and Carl showed that for a given bounded linear operator A on a

Banach space E the family of operators V (x, t) := (I +L)−1eAx+A3t(AB+BA)

is a solution to the operator KdV equation Vt = Vxxx + 3V
2

x , provided the

operator B satisÞes (i) AB + BA is of rank one, and (ii) (I + L)−1 exists,

where L(x, t) := eAx+A3tB. Further, v(x, t) := tr(V (x, t))), where tr is the

continuous trace, gives a scalar solution to the scalar KdV equation vt = vxxx+

3v2
x. A similar approach was used by Carl and Schiebold in [4] to solve some

other partial differential equations of nonlinear physics like the modiÞed KdV
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equation, Kadomtsev-Petviashvili equation as well as the sine-Gordon equation.

The approach mentioned above is known as the operator method. The main idea

of the operator method can be described as follows. Given a nonlinear PDE of

soliton physics as well as a speciÞc scalar solution to the equation, the Þrst

step in the solution is to translate the given nonlinear equation to an operator

equation. Using the speciÞc scalar solution as an aid, one then searches for

a family of operator solutions to the operator equation. Having obtained the

operator solutions, the second step is to transfer the operator-valued solution

into a scalar solution by using a suitable scalarization technique. The most

important step in the above method is step one. In order to carry out this step,

in most cases, given an operator A on a Hilbert space H, one needs to Þnd an

operator B such that

(1)AB +BA is of rank one, and

(2) the operator I +L is invertible, where L := I + exP (A)+tQ(A)B, x, t ∈ R

and P (A), Q(A) are some polynomials in A with real (or complex) coefficients.

In this paper we give sufficient conditions to ensure the existence of an

operator B satisfying the above conditions (1) and (2) for a given operator A

on a separable Hilbert space H. In section 3 we consider operators A acting

on a Þnite dimensional space, whereas section 4 deals with operators A on the

inÞnite dimensional sequence space `2.
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2. PRELIMINARIES

Recall that an operator T : E → F (where E and F are Banach spaces) is

said to be of rank one if the dimension of the range of T is equal to one. It is

straightforward to verify that T is of rank one if and only if there exists a ∈ E 0

(dual of E) and y ∈ F such that T = a⊗ y, where (a⊗ y)x := a(x)y, ∀x ∈ E.

It is obvious that for any a, b ∈ E 0; x, y ∈ E, and complex number λ, we have

(i) λ(a⊗x) = a⊗λx, (ii) (a±b)⊗x = a⊗x±b⊗x, and (iii) (a⊗x)◦(b⊗y) =

b⊗ a(y)x.

The following lemmas are quite useful in the proofs of the main results of

the paper. Lemma 2.1 is also stated in [3] and a proof of Lemma 2.2 can be

found in [1].

Lemma 2.1. Suppose R ∈ L(E, F ) and S ∈ L(F,E) where E and F are vector

spaces. Then I +RS is invertible if and only if I + SR is invertible.

Lemma 2.2. Let E,F be Banach spaces, and let A ∈ L(E,E), B ∈ L(F,F )

be bounded operators. If
R∞

0 ke−BsCe−Askds <∞ then the operator X deÞned

by the integral X =
R∞

0
e−BsCe−Asds satisÞes the equation XA+BX = C.

Throughout the paper C denotes the Þeld of complex numbers, `2 stands

for the Hilbert space of all absolute square summable complex sequences with

the standard `2-norm, and L2(0,∞) denotes the space of square integrable mea-

surable functions on (0,∞). For any x = (x1, . . . , xn) ∈ Cn or x = (xn) ∈ `2,
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xt always denotes the corresponding column vector. For any square matrix A,

E(A) denotes the set of eigenvalues of A. Finally, I always stands for the identity

operator.

3. FINITE DIMENSIONAL CASE

Recall that for any h, g ∈ Cn, h ⊗ g gives a linear operator on Cn which

is deÞned as follows (h ⊗ g)x =
³Pn

i=1 h̄ixi

´
g for each x ∈ Cn. Even though

for any h, g ∈ Cn there always exists a matrix B such that AB + BA = h ⊗ g

provided 0 /∈ E(A) + E(A) for a given A (see [1], [4], [6]), we show that a careful

choice of h and g will also ensure the invertibility of the matrix I+exP (A)+tQ(A)B

for all x, t ∈ R, where P (A) and Q(A) are some polynomials in A. First we prove

the result for any diagonalizable matrix of size n and then extend it to a general

square matrix. We call a matrix diagonalizable if it is similar to a diagonal

matrix.

Theorem 3.1. Let A be a diagonalizable square matrix of size n such that

0 /∈ E(A) + E(A). Then there always exist non-zero vectors h, g ∈ Cn and an

n× n matrix B such that

(i) AB +BA = h⊗ g, and

(ii) I + exP (A)+tQ(A)B is invertible for all x, t ∈ R where P (A) and Q(A)

are polynomials in A.

Proof. Let S be a similarity transformation which diagonalizes A, i.e., there
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exists a diagonal matrix �A such that �A = SAS−1. Let {ej} be the standard

basis, and let �Aej = µjej , 1 ≤ j ≤ n. DeÞne the following matrix �B := (bij)ni,j=1

where bij =
βiᾱj

µi + µj
,α = (α1, . . . ,αn)

t, and β = (β1, . . . ,βn)
t. Note that the

entries (bij) of the matrix �B are well-deÞned since 0 /∈ E(A) + E(A).

Claims: (1) �A �B + �B �A = α⊗ β.

(2) The following choice of α and β guarantees the invertibility for the

matrix (I + exP (Ã)+tQ(Ã) �B) for all x, t ∈ R: for i < n, αi = 0 if i is odd, αi 6= 0

if i is even; βi 6= 0 if i is odd, βi = 0 if i is even, and
βnᾱn

2µn
≥ 0.

Proof of claim (1). It is enough to show that for each j, 1 ≤ j ≤ n

( �A �B + �B �A)ej = (α ⊗ β)ej . We have ( �A �B + �B �A)ej = �A �Bej + �B(µjej) =

�A(b1j , . . . , bnj)
t + µj(b1j , . . . , bnj)

t = (µ1b1j , . . . , µnbnj)
t + µj(b1j , . . . , bnj)

t =

((µ1 + µj)b1j , . . . , (µn + µj)bnj)
t = (β1ᾱj , . . . , βnᾱj)

t = (α⊗ β)ej .

This proves claim (1).

To prove claim (2), note that because of the choice of α and β the matrix �B will

have the following structure

�B =



0 b12 0 b14 0 . . . b1n

0 0 0 0 0 . . . 0
0 b32 0 b34 0 . . . b3n

0 0 0 0 0 . . . 0
0 b52 0 b54 0 . . . b5n
...

...
...

...
...

0 bn2 0 bn4 0 . . . bnn


.

Hence det(I + exP (Ã)+tQ(Ã) �B) = 1+ bnne
xP (µn)+tQ(µn). Since bnn =

βnᾱn

2µn
≥ 0,

it is easy to see that 1+ bnne
xP (µn)+tQ(µn) 6= 0. This proves claim (2).



6

Now we are ready to exhibit h, g ∈ Cn and an n× n matrix B as stated in

the theorem. Let B := S−1 �BS,

h := α2(s̄21, . . . , s̄2n)
t + α4(s̄41, . . . , s̄4n)

t + . . .+ αn(s̄n1, . . . , s̄nn)
t and

g := β1(q11, . . . , qn1)
t + β3(q13, . . . , qn3)

t + . . .+ βn(q1n, . . . , qnn)
t

where S = (sij) and S
−1 = (qij). Notice also that S

−1(α⊗ β)S = h⊗ g. Then

AB +BA = S−1 �ASS−1 �BS + S−1 �BSS−1 �AS = S−1( �A �B + �B �A)S = h⊗ g.

This proves part (i) of the theorem. Since

I + exP (A)+tQ(A)B = S(I + exP (Ã)+tQ(Ã) �B)S−1

and I + exP (Ã)+tQ(Ã) �B is invertible, statement (ii) of the theorem follows.

Now we are ready to extend the above theorem to a general situation.

Theorem 3.2. Let A be any square matrix of size n such that 0 /∈ E(A)+E(A).

Then there always exist non-zero vectors h, g ∈ Cn and an n× n matrix B such

that

(i) AB +BA = h⊗ g, and

(ii) I + exP (A)+tQ(A)B is invertible for all x, t ∈ R where P (A) and Q(A)

are polynomials in A.

Proof. Let S be such a similarity transformation which reduces the matrix

A to a Jordan canonical form in which all the 1 × 1 Jordan blocks appear at

the bottom of the matrix �A. Obviously, this can always be achieved since the

Jordan canonical form is unique up to permutations of the Jordan blocks. The
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matrix �A will be as follows

�A =


J1

J2

. . .

Jk


where

Ji =


µi 1

µi 1
. . .

. . .

µi 1
µi

 .
All the entries in matrices �A and Ji which are not shown are zeros. Suppose

that there are r 1 × 1 Jordan blocks (the transformation S is such that all of

them are at the bottom of the matrix) and l Jordan blocks which are not of size

1 × 1. Let the Þrst Jordan block J1 be of the size k1 × k1, second of the size

k2 × k2 and so on, and Jl block of size kl × kl.

Notice that the matrix �A can always be represented as a sum of a diago-

nal matrix D and a nilpotent matrix N (the last r rows of N will be zeroes)

such that DN = ND [7]. Thus �A = D + N, DN = ND. Let {ej} be the

standard basis, and let Dej = µjej , 1 ≤ j ≤ n. Now, choose two vectors α =

(α1, . . . ,αn)
t, β = (β1, . . . , βn)

t in Cn in the following way: all αi
0s are zero

except when i = k1, k1+k2, . . . , k1+. . .+kl, k1+. . .+kl+2, k1+. . .+kl+4, . . . , n;

all βi
0s are zero except when i = 1, k1 + 1, k1 + k2 + 1, . . . , k1 + . . .+ kl + 1,

k1 + . . .+ kl + 3, k1 + . . .+ kl + 5, . . . , n; assume also that
βnᾱn

2µn
≥ 0. In other

words, α and β should look like this

α = (0, . . . , 0,αm1 , 0, . . . , 0,αm2 , 0, . . . , 0,αml
, 0,αml+2, 0,αml+4, . . . ,αn)

t and
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β = (β1, 0, . . . , 0,βm1+1, 0, . . . , 0,βm2+1, 0, . . . , 0, βml+1, 0, βml+3, 0, . . . ,βn)
t

wheremi :=
Pi

s=1 ks. DeÞne the matrix �B := (bij)
n
i,j=1 as follows bij :=

βiᾱj

µi + µj

with α and β as speciÞed above. The entries (bij) of the matrix �B are well-deÞned

since 0 /∈ E(A) + E(A).

Claims: (1) �A �B + �B �A = α⊗ β.

(2) The above choice of α and β guarantees the invertibility of the

matrix (I + exP (Ã)+tQ(Ã) �B) for all x, t ∈ R.

To prove claim (1) it is enough to show that for each j, 1 ≤ j ≤ n

( �A �B + �B �A)ej = (α⊗ β)ej .

Note that because of the choice of α and β the matrix �B has the following

structure

�B =



0 . . . b1m1 . . . b1m2 . . . b1ml . . . b1n

0 . . . 0 . . . 0 . . . 0 . . . 0
...

...
...

...
...

0 . . . 0 . . . 0 . . . 0 . . . 0
0 . . . bm1+1,m1 . . . bm1+1,m2 . . . bm1+1,ml

. . . bm1+1,n

...
...

...
...

...
0 . . . bml+1,m1 . . . bml+1,m2 . . . bml+1,ml

. . . bml+1,n

...
...

...
...

...
0 . . . bn,m1 . . . bn,m2 . . . bn,ml

. . . bn,n


.

By direct calculation it can be shown that N �B = �BN = 0. Thus, we have

( �A �B + �B �A)ej = (D +N) �Bej + �B(D +N)ej = D �Bej + �B(µjej)

= D(b1j , . . . , bnj)
t + µj(b1j , . . . , bnj)

t = (µ1b1j , . . . , µnbnj)
t + µj(b1j , . . . , bnj)

t =

((µ1 + µj)b1j , . . . , (µn + µj)bnj)
t = (β1ᾱj . . . βnᾱj)

t = (α⊗ β)ej .

This proves claim (1).
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To prove claim (2) notice that

(I + exP (Ã)+tQ(Ã) �B) = (I + exP (D+N)+tQ(D+N) �B) = (I + exP (D)+tQ(D) �B)

since N �B = 0. Thus det(I + exP (Ã)+tQ(Ã) �B) = 1 + bnne
xP (µn)+tQ(µn). Since

bnn =
βnᾱn

2µn
≥ 0, it follows that 1+ bnne

xP (µn)+tQ(µn) 6= 0.

This proves claim (2).

Now we are ready to exhibit h, g ∈ Cn and an n× n matrix B as stated in

the theorem. Let B := S−1 �BS,

h := αm1(s̄m11, . . . , s̄m1n)
t + αm2(s̄m21, . . . , s̄m2n)

t + · · ·+ αn(s̄n1, . . . , s̄nn)
t

g := β1(q11, . . . , qn1)
t + βm1+1(q1,m1+1, . . . , qn,m1+1)

t + · · · + βn(q1n, . . . , qnn)
t

where S = (sij) and S
−1 = (qij). Note also that S

−1(α ⊗ β)S = h ⊗ g. Then

AB +BA = S−1 �ASS−1 �BS + S−1 �BSS−1 �AS = S−1( �A �B + �B �A)S

= S−1(α⊗ β)S = h⊗ g. This proves part (i) of the theorem. Since

I + exP (A)+tQ(A)B = S(I + exP (Ã)+tQ(Ã) �B)S−1

and I + exP (Ã)+tQ(Ã) �B is invertible, statement (ii) of the theorem follows.

4. INFINITE DIMENSIONAL CASE

It was shown in [1] that if D is a diagonal operator on `2 deÞned by D(xi) =

(λixi), where λi > 0, and inf λi > 0, then there exist non-trivial vectors h, g ∈ `2

and an operator B on `2 such that BD + DB = h ⊗ g. One can easily prove

that for such D and B the operator I + exD+tD3

B is invertible. In this section



10

we extend the above result to a more general situation by using the results of

the previous section.

Suppose

A =



A1

A2

A3

. . .

Ak

. . .


is the matrix representation of an operator on `2 in the standard basis {ej},

where Ak (k ∈ N) is a normal square matrix of size nk placed on the main

diagonal of the inÞnite matrix A and there exists a positive integer n0 such that

the size of each Ak is less than or equal to n0. All the entries of A which are not

shown are equal to zero. Assume that there exists a real number M > 0 such

that kAkk ≤ M for all k. Here kAkk is the Euclidian norm of the matrix Ak.

Also assume that all eigenvalues {µi} of A are positive and constitute a bounded

sequence. Since each Ak is normal, for each k there exists a unitary matrix Uk

such that

UkAkU
−1
k = Dk (4.1)

where Dk is diagonal and U
−1
k = U∗k . Let U,U

−1 and D be inÞnite matrices

constructed as the matrix A but by replacing each block Ak in A by Uk, U
−1
k

and Dk, respectively.

Proposition 4.1. The operators A,D,U and U−1 constructed as described

above are bounded linear operators on `2.
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Proof. Obviously, the operators A,D,U and U−1 are linear. Let x ∈ `2. For

convenience we write x in cycles x = (x
(1)
1 , . . . , x

(1)
n1 ; . . . , x

(k)
1 , . . . , x

(k)
nk ; . . .), where

nk is the size of the matrix Ak, k = 1, 2, . . . . To show that A is bounded note

that Ax = (A1r1, . . . , Akrk, . . .) where rk = (x
(k)
1 , . . . , x

(k)
nk ).

Then kAxk2 =
∞P

k=1

kAkrkk2. Further, by using Hölder�s inequality

kAkrkk2 = |a(k)
11 x

(k)
1 + . . .+ a

(k)
1nk
x

(k)
nk |2 + . . .+ |a(k)

nk1x
(k)
1 + . . .+ a

(k)
nknkx

(k)
nk |2

≤Pnk

j=1 |a(k)
1j |2

Pnk

j=1 |x(k)
j |2 + . . .+Pnk

j=1 |a(k)
nkj |2

Pnk

j=1 |x(k)
j |2

= kAkk2
Pnk

j=1 |x(k)
j |2 ≤M2

Pnk

j=1 |x(k)
j |2. Thus we have

kAxk2 =
∞P

k=1

kAkrkk2 ≤ M2
P∞

k=1

Pnk

j=1 |x(k)
j |2 = M2kxk2. This implies that

Ax ∈ `2, and thus A is a well-deÞned and bounded operator on `2. Obviously,

the diagonal operator D : `2 → `2 will be bounded since the sequence of its

eigenvalues {µi} is bounded by assumption. To show that U is a well-deÞned and

bounded operator on `2 notice that since each Þnite matrix Uk in U is a unitary

matrix it follows that kUkk ≤ n0. Hence, exactly the same argument that was

used to show the boundedness of A can be applied to prove that U is bounded.

The same is true about the boundedness of U−1 since kU−1
k k = kU∗k ≤ n0.

Remark 4.2. Note that if U−1 is bounded, then U is a bijection from `2 onto

`2. To show this, Þrst notice that the range of U is dense in `2. This can be

seen from the fact that any sequence which is eventually zero, is in the range of

U . Since by the above proposition U is bounded, and `2 is complete, it follows

that U is a closed operator. Hence, U−1 is also closed. If U−1 is bounded, then
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the domain of U−1 (which is the range of U) is closed [8]. Hence, range(U)=`2.

Before proceeding further, we need two lemmas. The operators R and

S deÞned in the following lemmas are used in [3]. Even though some of the

properties of R and S are implicitly present in [3], we provide some explicit

proofs for the sake of completion.

Lemma 4.3. Let α = {αi} ∈ `2,β = {βi} ∈ `2, and let {µi} be an inÞnite

bounded sequence of positive real numbers such that ² = inf
i∈N
µi > 0. Then

(i) R : `2 → L2(0,∞) deÞned by R(x1, x2, . . .)(s) =
P∞

j=1 ᾱje
−sµjxj is a

bounded linear operator, and

(ii) S : L2(0,∞) → `2 deÞned by S(f) = (. . . ,
R∞

0 f(s)e−sµiβids, . . .) is a

bounded linear operator.

Proof. Proof of (i). Clearly, R is a linear operator. Let x = (xi) ∈ `2.

ThenÃR∞
0
|ᾱje

−sµjxj |2ds
!1/2

=

Ã
|ᾱjxj |2

R∞
0
e−2sµjds

!1/2

=
|ᾱjxj |p
2µj

≤ |ᾱjxj |√
²
.

Thus

∞X
j=1

kᾱje
−sµjxjkL2

≤
∞X

j=1

|ᾱjxj |√
²
<∞.

Since L2(0,∞) is a Banach space and absolute convergence in a Banach space

implies convergence, it follows that
P∞

j=1 ᾱje
−sµjxj is convergent in L2(0,∞),

and hence R is well-deÞned. To show that R is bounded, notice that by using

the Hölder�s inequality
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kR(x1, x2, . . .)kL2
=
°°°P∞

j=1 ᾱje
−sµjxj

°°°
L2

≤P∞
j=1 |ᾱjxj| · ke−sµjkL2

≤
∞X

j=1

|ᾱjxj |√
²
≤ 1√

²

Ã ∞X
j=1

|αj |2
!1/2Ã ∞X

j=1

|xj |2
!1/2

. Thus

kR(x1, x2, . . .)kL2
≤ 1√

²
kαk`2

kxk`2
.

This completes the proof of part (i).

Proof of part (ii). It is clear that S is linear. Next, note thatP∞
i=1

¯̄̄ R∞
0 f(s)esµiβids

¯̄̄2
≤P∞

i=1 |βi|2
ÃR∞

0 |f(s)|2ds
!ÃR∞

0 |e−sµi |2ds
!

= kfk2
L2

∞X
i=1

|βi|2
2µi

≤
kfk2

L2

2²

∞X
i=1

|βi|2 <∞.

This completes the proof of the lemma.

Lemma 4.4. If K is a compact operator on L2(0,∞) and −1 is not an eigen-

value of K, then (I +K)−1 exists and is bounded on L2(0,∞).

Proof. Since any non-zero spectral value of K is an eigenvalue, it follows

that −1 is in the resolvent set of K. Hence, (I +K)−1 is deÞned on L2 and is

bounded.

Before proceeding further we need the following deÞnition. A sequence of square

matrices {Tk}, k ∈ N is said to be a sequence of matrices of bounded size if there

exists a positive integer n0 such that the size of a matrix Tk is less than or equal

to n0 for all k. Now we are ready to prove one of the main results of the section.

Some arguments in the proof of the following theorem are similar to those given

in [3].
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Theorem 4.5. Let {Ak} be the sequence of normal matrices of bounded size

such that all eigenvalues {µi} of Ak�s are positive and constitute a bounded

sequence such that ² = inf
i∈N
µi > 0. Let A : `2 → `2 be an operator constructed

as in the discussion preceding the proposition 4.1. If there is a positive real

number M such that kAkk ≤ M for all k, then there exist non-trivial vectors

h, g ∈ `2 and a bounded linear operator B : `2 → `2 such that

(i) AB +BA = h⊗ g, and

(ii) I + exP (A)+tQ(A)B is invertible for all x, t ∈ R, where P (A) and Q(A) are

polynomials in A with real coefficients.

Proof. For any x, t ∈ R deÞne an operator Kx,t : L2(0,∞)→ L2(0,∞) by

(Kx,tf)(w) =
R∞

0
kx,t(s, w)f(s)ds where

kx,t(s, w) :=
P∞

k=1 cke
−µk(w+s)+xP (µk)+tQ(µk), ck > 0. It is straightforward to

see that Kx,t is well deÞned. Claim 1: −1 is not an eigenvalue of the operator

Kx,t. This can be seen from the following consideration.

hKx,tf, fi =
Z ∞

0

(Kx,tf)(w)f̄(w)dw

=

Z ∞

0

µZ ∞

0

∞X
k=1

cke
−µk(w+s)+xP (µk)+tQ(µk)f(s)ds

¶
f̄(w)dw

=
∞X

k=1

cke
xP (µk)+tQ(µk)

µZ ∞

0

f(s)e−sµkds

¶Z ∞

0

f̄(w)e−wµkdw

=
∞X

k=1

cke
xP (µk)+tQ(µk)

µZ ∞

0

f(s)e−sµkds

¶Z ∞

0

f(w)e−wµkdw

=
∞X

k=1

cke
xP (µk)+tQ(µk)

¯̄̄Z ∞

0

f(s)e−sµkds
¯̄̄2
≥ 0.



15

Thus

h(I +Kx,t)f, fi = hf, fi+ hKx,tf, fi = kfk2 + hKx,tf, fi ≥ 0

Hence, −1 is not an eigenvalue of Kx,t. This completes the proof of claim 1.

Claim 2: Kx,t is a compact operator. To prove this it suffices to show that

kx,t(s, w) ∈ L2

³
(0,∞)× (0,∞)

´
[5]. Let c = (ck) ∈ `2. For Þxed x, t ∈ R

Z ∞

0

Z ∞

0

|cje−µj(w+s)+xP (µj)+tQ(µj)|2dsdw

= |cj |2e2xP (µj)+2tQ(µj )

Z ∞

0

Z ∞

0

e−2µj(w+s)dsdw

=
|cj |2
4µ2

j

e2xP (µj)+2tQ(µj ) ≤ |cj |2
²2
e2xP (kDk)+2tQ(kDk)

(4.2)

where D is a diagonal operator constructed from the matrices (4.1) as described

at the beginning of the section. Then (4.2) implies thatÃZ ∞

0

Z ∞

0

|cje−µj(w+s)+xP (µj)+tQ(µj)|2dsdw
!1/2

≤ |cj |
²
exP (kDk)+tQ(kDk).

This, in turn, implies that the series
P∞

k=1 cke
−µk(w+s)+xP (µk)+tQ(µk) converges

absolutely, and hence, since L2 is a Banach space kx,t(s,w) ∈ L2

³
(0,∞) ×

(0,∞)
´
. This completes the proof of claim 2.

Let U be a unitary transformation which diagonalizes A, i.e., there exists

a diagonal inÞnite matrix D such that D = UAU−1. The construction of such

operators U and U−1 was described at the beginning of this section. Let {ej}

be the standard basis, and let Dej = µjej , j ∈ N. Let α,β ∈ `2

α = (α1, . . . ,αn, . . .)
t, β = (β1, . . . ,βn, . . .)

t
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be such that ck := ᾱkβk > 0 for any k ∈ N. According to Lemma 2.2 the operator

equation D �B+ �BD = α⊗β has the solution �B = R∞0 e−sD(α⊗β)e−sDds. Thus,

we have

�B(x1, . . . , xn, . . .) =

Z ∞

0

e−sD(α⊗ β)(e−sµ1x1, . . . , e
−sµnxn, . . .)ds

=

Z ∞

0

∞X
j=1

ᾱje
−sµjxj(e

−sµ1β1, . . . , e
−sµnβn, . . .)ds

= (. . . ,

Z ∞

0

∞X
j=1

ᾱje
−sµjxje

−sµiβids| {z }
ith component

, . . .)

= SR(x1, . . . , xn, . . .)

.

where operators R : `2 → L2 and S : L2 → `2 are deÞned in Lemma 4.3. Then

according to Lemma 2.1,

I + exP (D)+tQ(D) �B = I + exP (D)+tQ(D)SR is invertible iff I + RexP (D)+tQ(D)S

is invertible. Now

RexP (D)+tQ(D)S(f)(w) = RexP (D)+tQ(D)(. . . ,

Z ∞

0

f(s)e−sµiβids, . . .)(w)

= R(. . . ,

Z ∞

0

f(s)e−sµiβie
xP (µi)+tQ(µi)ds, . . .)(w)

=
∞X

j=1

ᾱj

Z ∞

0

f(s)e−sµiβie
xP (µi)+tQ(µi)ds · e−wµj

=

Z ∞

0

∞X
k=1

ᾱkβke
−µk(w+s)+xP (µk)+tQ(µk)f(s)ds

= (Kx,tf)(w).

Since I +Kx,t is invertible it follows that I + e
xP (D)+tQ(D) �B is invertible. Let

B := U−1 �BU ,

h := α1(ū11, . . . , ū1n, . . .)
t + . . .+ αn(ūn1, . . . , ūnn, . . .)

t + . . .
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g := β1(q11, . . . , qn1, . . .)
t + . . .+ βn(q1n, . . . , qnn, . . .)

t + . . .

where U = (uij) and U
−1 = (qij). Notice also that U

−1(α⊗β)U = h⊗ g. Then

one checks
AB +BA = U−1DUU−1 �BU + U−1 �BUU−1DU

= U−1(D �B + �BD)U

= U−1(α⊗ β)U = h⊗ g.
This proves part (i) of the theorem. Since

I + exP (A)+tQ(A)B = U(I + exP (D)+tQ(D) �B)U−1

and I + exP (D)+tQ(D) �B is invertible, statement (ii) of the theorem follows.

The previous theorem was a special case of the operator A made up of

inÞnitely many normal matrices. What happens if all the conditions of

Theorem 4.5 are satisÞed except for the normality of matrices Ak? Thus, suppose

an operator A : `2 → `2 is given which has the following matrix representation

in the standard basis {ei}

A =



A1

A2

A3

. . .

Ak

. . .


where Ak (k ∈ N) is a square matrix of size nk placed on the main diagonal of

the inÞnite matrix A, and there exists a positive integer n0 such that the size

of each Ak is less than or equal to n0. All the entries of A which are not shown
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are equal to zero. Assume that there exists a real number M > 0 such that

kAkk ≤M for all k. Also assume that all eigenvalues {µi} of A are positive and

constitute a bounded sequence. Then, there exists a similarity transformation

Sk such that SkAkS
−1
k = �Ak ∀k ∈ N where �Ak is in Jordan canonical form.

Thus, from the previous section

�Ak = Dk +Nk, DkNk = NkDk

where Dk is a diagonal matrix and Nk is a nilpotent matrix. Moreover, Sk is

chosen in such a way that all 1× 1 Jordan blocks in �Ak appear at the bottom of

�Ak. Next, construct operators �A,S, S
−1,D and N in the same way as described

before. Notice that SAS−1 = �A and �A = D +N so that DN = ND, where D

is a diagonal operator and N is a nilpotent operator. Now

SkAkS
−1
k =

Ã
Sk

kSkk

!
AkkSkkSk = �Ak.

Let Tk =
Sk

kSkk . It can be seen that kTkk = 1, implying that T is bounded. It is

easy to see that, under the assumption of boundedness of T−1, Proposition 4.1

and Remark 4.2 carry over to operators A,D and T . Using arguments similar

to those of theorem 4.5 and theorem 3.2 we can prove the following

Theorem 4.6. Let {Ak} be a sequence of matrices of bounded size such that

all eigenvalues {µi} of the Ak�s are positive and constitute a bounded sequence

such that inf
i∈N
µi > 0. Let A : `2 → `2 be an operator constructed as in the
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discussion preceding the statement of this theorem. If there is a positive real

numberM such that kAkk ≤M for all k and the operator T−1 is bounded from

`2 onto `2, then there always exist non-trivial vectors h, g ∈ `2 and a bounded

linear operator B : `2 → `2 such that

(i) AB +BA = h⊗ g, and

(ii) I + exP (A)+tQ(A)B is invertible for all x, t ∈ R, where P (A) and Q(A) are

polynomials in A with real coefficients.
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