
DEPARTMENT OF MATHEMATICS

TECHNICAL REPORT

THE DENSE PACKING OF 13

CONGRUENT CIRCLES IN A CIRCLE

Ferenc Fodor

March 2001

No. 2001-1

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505



THE DENSEST PACKING OF 13 CONGRUENT CIRCLES IN A

CIRCLE

FERENC FODOR

Abstract. The densest packings of n congruent circles in a circle are known
for n � 12 and n = 19. In this paper we exhibit the densest packings of
13 congruent circles in a circle. We show that the optimal con�gurations are
identical to Kravitz's [11] conjecture. We use a technique developed from a
method of Bateman and Erd}os [1] which proved fruitful in investigating the
cases n = 12 and 19 by the author [6, 7] .

1. Preliminaries and Results

We shall denote the points of the Euclidean plane E2 by capitals, sets of points
by script capitals, and the distance of two points by d(P;Q). We use PQ for the
line through P , Q, and PQ for the segment with endpoints P , Q. \POQ denotes
the angle determined by the three points P ,O,Q in this order. C(r) means the
closed disc of radius r with center O. By an annulus r < � � s we mean all points
P such that r < d(P;O) � s. We utilize the linear structure of E2 by identifying

each point P with the vector ~OP , where O is the origin. For a point P and a vector

~a by P + ~a we always mean the vector ~OP + ~a.
The problem of �nding the densest packing of congruent circles in a circle arose

in the 1960s. The question was to �nd the smallest circle in which we can pack
n congruent unit circles, or equivalently, the smallest circle in which we can place
n points with mutual distances at least 1. Dense circle packings were �rst given
by Kravitz [11] for n = 2; : : : ; 16. Pirl [14] proved that the these arrangements are
optimal for n � 9 and he also found the optimal con�guration for n = 10. Pirl
also conjectured dense con�gurations for 11 � n � 19. For n � 6 proofs were
given independently by Graham [3]. A proof for n = 6 and 7 was also given by
Crilly and Suen [4]. Subsequent improvements were presented by Goldberg [8] for
n = 14; 16 and 17. He also found a new packing with 20 circles. In 1975 Reis
[15] used a mechanical argument to generate remarkably good packings up to 25
circles. Recently, Graham et al. [9, 10] using computers established packings with
more than 100 circles and improved the packing of 25 circles. In 1994 Melissen [12]
proved Pirl's conjecture for n = 11 and the author [6, 7] proved it for n = 19 and
n = 12. The problem of �nding the densest packing of equal circles in a circle is
also mentioned as an unsolved problem in the book of Croft, Falconer and Guy [5].
Packings of congruent circles in hyperbolic plane were treated by K. Bezdek [2].
Analogous results of packing n equal circles in an equilateral triangle and square
can be traced down in the doctoral dissertation of Melissen [13].
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In this article we shall �nd the optimal con�gurations for n = 13. We are going
to prove the following theorem.

Theorem 1. The smallest circle C in which we can pack 13 points with mutual

distances at least 1 has radius R = (2 sin 36Æ)�1 = 1+
p
5

2
. The 13 points form the

following two con�guration as shown on Figure 1.

Figure 1. The optimal con�gurations for n = 13.

We shall prove Theorem 1 in the following way. We are going to show that it
is possible to divide C(R) into a smaller circle C(S) and an annulus S < � � R,
choosing S such that there can be at most 4 points in C(S) and at most 10 points
S < � � R. Then we prove that the 4 points in C(S) form the con�gurations shown
on Figure 1.

In the course of our proof we shall use the following two statements. Lemma 1,
slightly modi�ed here, originates from a paper of Bateman and Erd}os [1]. Lemma 2
was used by the author in [6, 7].

Lemma 1 ([1]). Let r; s; (s � 1
2
) be two positive real numbers and suppose that we

have two points P and Q which lie in the annulus r � � � s and which have mutual

distance at least 1. Then the minimum �(r; s) of the angle \POQ has the following

values:

�(r; s) = arccos s
2
+r2�1
2rs , if 0 < s� 1 � r � s� 1=s;

�(r; s) = 2 arcsin 1

2s , if 0 < s� 1=s � r � s or s � 1:

Lemma 2 ([6]). Let S be a set of n (n � 2), points in the plane and C the smallest

circle containing S. Let ~a be a vector. There exist two points P1; P2 on the boundary

of S, such that d(P1+~a;O)+ d(P2+~a;O) � 2r, where r is the radius and O is the

center of C.
2. Proofs

Let S = R�1=R = 1. It was proved by Bateman and Erd}os [1] that 7 points with
mutual distances at least 1 can be packed into a unit circle in a unique way; one
point is at the center of the circle, and the other 6 form a regular hexagon of unit
side length with vertices on C(1). There cannot be any further points situated in
the annulus 1 < � � R. The argument for 6 points is very similar. The radius of the
circumcircle of 6 points with mutual distances at least 1 is 1, see [1]. Furthermore,
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the 6 points either form a regular hexagon of unit side length with vertices on C(1),
or a pentagon with all 5 vertices on C(1) and a sixth point at O. In both cases it
is clear that there cannot be 7 points in the annulus 1 < � � R. Note that if there
are exactly 9 points in the annulus 1 < � � R, then the 13 points must form the
�rst con�guration shown on Figure 1.

Lemma 3. There cannot be exactly 5 points in C(1).

Proof. Suppose, on the contrary, that there are 5 points in C(1). Bateman and
Erd}os [1] proved that the radius of the circumcircle of 5 points with mutual distances
at least 1 is d5 = (2 cos 54Æ)�1 = 0:85 : : : . The minimal radius is realized by a
regular pentagon of unit side length. According to Lemma 2 there must be two
points P and Q of the 5 such that dP = d(P;O) � dQ = d(Q;O) and dP+dQ � 2d5.

Furthermore, the 4 points other than P cannot all be in C(0:812). To see this
suppose that they all are in C(0:812). By adding up the �ve central angles we
obtain 3�(0:812; 0:812)+2�(1; 0:812) = 360Æ:12 : : : . Therefore we may suppose that
dP � 2d5 � 0:812 = 0:8894 : : : . Simple calculus shows that 2�(dP ; R) + 2�(dQ; R)
takes on its minimum, under these circumstances, when dP = 2d5 � 0:812 and
dQ = 0:812, and the minimum is 126:197Æ.

Note further that not all 3 points other than P and Q can be in C(0:73). To
see this add up the 5 central angles, �(1; 1)+2�(0:73; 0:73)+2�(1; 0:73) = 370Æ : : :
if P and Q are adjacent. If they are not adjacent, then the sum is �(0:73; 0:73) +
4�(1; 0:73) = 360Æ:8 : : : . Hence, there is a point S such that dS = d(S;O) � 0:73.

Let us also observe that dS � 0:762 else the sum of the 8 central angles deter-
mined by the points in the annulus is 180Æ + 126Æ:2 + 2�(0:762; R) = 360Æ:035 : : : .
We can also conclude that it is not possible that the 2 remaining points are both
in C(0:71). This follows from the fact that the sum of the 5 central angles would
be larger than 360Æ. We must check two di�erent scenarios. One is when P and Q
are adjacent. Then the sum is either at least �(1; 1) + �(1; 0:762) + �(0:71; 0:71)+
�(0:762; 0:71) + �(0:71; 1) = 60Æ + 67Æ:6 + 89Æ:5 + 85Æ:5 + 69Æ:2 = 371Æ : : : , or
�(1; 1) + 2�(0:762; 0:71) + 2�(0:71; 1) = 60Æ + 2 � 85Æ:5 + 2 � 69Æ:2 = 369Æ : : : .

If P and Q are not adjacent, then the sum of the 5 central angles is either
2�(1; 0:762)+ �(0:71; 0:71)+ 2�(0:71; 1) = 2 � 67Æ:6+ 89Æ:5+ 2 � 69Æ:2 = 363Æ:1 : : : ,
or �(1; 0:762)+ �(0:71; 0:762)+ 3�(0:71; 1) = 67Æ:6+ 85Æ:5+ 3 � 69Æ:2 = 360Æ:7 : : : .

Now, the sum of the 8 central angles is 4 � 36Æ + 2�(dP ; R) + 2�(dQ; R) +
2�(0:73; R) + 2�(0:71; R) = 270 + 45Æ + 48Æ:8 = 363Æ : : : . Thus we have �nished
the proof of the lemma. �

Proposition 1. Let f(r) = �(r; R) + �(r; s) and
p
2
2
� s � 1 �xed. If R� 1 � r �

minf0:77; sg, then f(r) is an increasing function of r.

Proof. To see this evaluate the derivative of f(r). Our goal is to show that

(1) f 0(r) =
R�r2
rp

(2rR)2 � (r2 +R)2
�

r2�s2+1
rp

(2rs)2 � (s2 + r2 � 1)2
> 0

After rearrangement of the terms we obtain

(2)

s
(2rs)2 � (s2 + r2 � 1)2

(2rR)2 � (r2 +R)2
>
r2 � s2 + 1

R� r2
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Notice that r2�s2+1
R�r2 takes on its maximum if r = s = 0:77, and the maximum is

less than 1. On the left hand side we can see that we decrease (2rs)2�(s2+r2�1)2

if we replace s by r because it is an increasing function of s. Now, we are going to
show that

(2r2)2 � (2r2 � 1)2

(2rR)2 � (r2 +R)2
> 1:

After simpli�cation we obtain

(2r2)2 � (2r2 � 1)2 � ((2rR)2 � (r2 +R)2) = r4 � 2Rr2 +R:

This polynomial is zero if r =
p
R� 1 = 0:78 : : : , therefore for r 2 [R � 1; 0:77]

it is positive. Thus, the inequality holds. �

Let the 4 points in C(1) be labeled as P1; : : : ; P4 in clockwise direction. Let
di = d(Pi; O) and assume that d1 is the largest of di, i = 1; : : : ; 4.

Proposition 2. In each sector determined by two consecutive points in C(1), there
must be at least 2 points from the annulus 1 < � � R.

Proof. First, note that di � 0:77, i = 2; 3; 4 beacuse 4�(0:77; R) + 7 � 36Æ > 361Æ.
Suppose, on the contrary, that in PiOPi+1 there is only one point. The sum of the
9 central angles is not less than 252Æ + �(di; R) + �(di; di+1) + �(di+1; R).

If i = 1, then we know that d2 � d1. Therefore by Proposition 1 the total angle
is not less than 252Æ + �(d1; R) + �(d1; R � 1) + �(R � 1; R). This function takes
on its minimum at d=1, where it is exactly 360Æ. If i = 4, then d4 � d1 and so we
may repeat the previous argument such that we obtain the same formula for the
total angle.

If i = 2 or 3, then assume that di � di+1. Then, by Proposition 1 the total angle
is not less than 252Æ+�(di; R)+�(di; R� 1)+�(R� 1; R). This function takes on
its minimum at di = R� 1 and di = 1. It means that di = R� 1 which gives 360Æ

for the total angle, plus 2�(d1; R)�36Æ which makes the total larger than 360Æ. �

Now we will examine the positions of the points P1; : : : ; P4. We are going to
prove that d1 = 1. Let the 9 points in the annulus 1 < � � R be labeled by
P5; : : : ; P13 in clockwise direction such that P5 is adjacent to the segment P1O.
Let ci denote the unit circle centered at Pi. Furthermore, let Qi = ci \ ci�1 and
Q1 = c1\P1O, Q0 = c9\P1O be points in C(1). Let R be the region of C(d1) which
is not covered by the circular discs Ci. This is where P2; P3; P4 can be situated.
The vertical line P1O cuts R into two subregions, R = R1 [ R2. We are going to
examine the diameter of R1 and R2. We will show that if d1 < 1, then Ri, i = 1; 2
cannot accomodate two points. We are going to demonstrate this by proving that
the diameter of Ri, i = 1; 2 is less than 1. now, we try to maximize the diameter
of R1. We assume that P5; : : : ; P13 are on the circle C(R).

Lemma 4. For a �xed value of d1 2 [
p
2
2
; 1], the arc of c1 between Q0 and Q6 is

the longest if \P1OP6 = 36Æ +  , where  = �(d1; R).

Proof. Notice that of two unit circles centered on C(R), the one whose center
makes the smaller central angle with P1O provides the longer arc on c1 if their
intersection is in c1. Let \P1OP6 = �. For a �xed d1, � 2 [36Æ +  ; 108Æ �  ].
If d1 is �xed it is enough to show that the intersection of the two unit circles in
the extreme positions is in c1. Note that this intersection point T (d1) is always
such that \P1OT (d1) = 72Æ. Let S = c1 \ OT (d1) and let s = d(S;O). It is
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Figure 2

enough to show that d2(S; P6) = R2 + s2 � 2Rs cos(36Æ �  ) � 1. The equation
R2 + s2 � 2Rs cos(36Æ �  ) = 1 can, after some transformations, be written as an
algebraic equation for d1 as follows.

(3
p
5+7)x12+(�31�13

p
5)x10+(6

p
5+18)x8+(12

p
5+22)x6+(45+103

p
5)x4+

(�166� 74
p
5)x2 + 47 + 21

p
5 = 0

The above polyomial has only one root in [
p
2

2
; 1] and it is equal to 1. This proves

our claim. �

We assume that \P9OP1 = 216Æ �  , where  = �(d1; R). This ensures that
the part of P1O which bounds R1 is maximal in length. We will also assume that
the angles are \P6OP7 = \P8OP9 = 72Æ �  . This guarantees that the arcs of c7
and c9 are the longest possible. However, notice that in such a position d(P7; P8)
becomes less than 1.

Lemma 5. The diameter of R1 does not exceed 1 if d1 2 [0:745; 1]

Proof. Notice that \P1OQ7 = 90Æ and \P1OQ9 = 162Æ, and d(Q7; O) = d(Q9; O)
is a decreasing function of d1. Also, d(Q0; O) is a monotonically decreasing functions
of d1. R1 is bounded by arcs of c1; c6; : : : ; c9, and the line P1O. Its vertices are
Q0; Q1; Q6; : : : Q9 as shown on Figure 2.

Under these circumstances, the diameter of R1 can only be realized by a pair of
the vertices Q0; Q6; Q7; Q9. Note that d(Q7; Q9) and d(Q0; Q7) are both decreasing
functions of d1, and by direct substitution we can see that they do not exceed 1 if
d1 2 [0:745; 1].

Using the coordinates of Q0 and Q6 we may write d2(Q0; Q6) = 1 as an alge-
braic equation for d1. Furthermore, after a suÆcient number of transformations,
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it may be written as a polynomial equation p(Q0; Q6) = 0 for d1. The Cartesian
coordinates of Q0 and Q6 are the following.
Q6 = (R(sin(36Æ +  )� sin ); d+R(cos(36Æ +  )� cos ));

Q0 = (0;�R cos(36Æ �  ) +
p
R2 cos2(36Æ �  )�R)

The polynomial equation is as follows.

p(Q0; Q6) = (�10 � 4
p
5)d41 + (�5 � 7

p
5)d61 + 14

p
5d81 + (55 + 13

p
5)d101 + (25 +

15
p
5)d121 + (10 + 4

p
5)d141 = 0

This equation has two roots in the [
p
2

2
; 1] interval, 0:744 : : : and 1. By direct

substitution we can check that p(Q0; Q6) < 1 in (0:7448; 1). In a similar manner we
may write d2(Q6; Q9) = 1 as a polynomial equation for d1 and check for roots in the

designated interval. Note that d(O;Q9) = R cos(36Æ� )�p(1�R2 sin2(36Æ� )).
The graph of the function d(Q6; Q9) is shown on Figure 2.

This function has no zeros in the interval [0:745; 1]. �

Lemma 6. If P9; P10; P11 2 P3OP4, then is not possible that d1 2 [
p
2=2; 0:745].

Proof. For every value of d1 there is a dm such that none of the three points
P2; P3; P4 can be closer to O than dm. We may obtain dm from the the follwing
equation.

�(d1; d1) + �(d1; dm) = 180Æ

Easy calculation shows that dm = 1
d1
� d1. Clearly, dm is a monotonically

decreasing function of d1. Furthermore, let dM =
p
1� d21. We claim that it
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is not possible that both d3 and d4 are less than or equal to dM . This may be
shown simply by examining the function that describes the sum of the four central
angles determined by the points P1; : : : ; P4. It is f(d1) = �(d1; d1) + 2�(dM ; d1) +
�(dM ; dM ). Simple calculus shows that

(3)
df(d1)

d d1
= �2 1

d21
p
4� 1=d21

+ 2
d1

(1� d21)
3=2
q
4� 1

1�d2
1

It is a simple exercise to show that (3) is larger than or equal to 0 in the interval

[
p
2
2
; 1]. In particular, f(

p
2
2
) = 360Æ, which proves our claim. Also note that

�(dM ; d1) = 90Æ.
Now, we are going to add up the four central angles, \PiOPi+1. The sum of the

angles is as follows �(d1; d2)+�(d2; d3)+�(d3; R)+72Æ+�(d4; R)+�(d4; d1). Note
that �(d2; d1) is not less than �(d1; d1) and that by Lemma 2, �(d2; d3) + �(d3; R)
takes on its minimum when d2 = d1 and d3 = dm. The same is true for �(d4; R) +
�(d4; d1) so we may assume that d4 = dM . Whence, the sum of the angles is
�(d1; d1)+�(dm; d1)+�(dm; R)+ 72Æ+�(dM ; R)+�(dM ; d1). After simpli�cation
we obtain

F (d1) = �(dM ; R) + �(dm; R) + 342Æ:

F (d1) is a decreasing function of d1 and it is larger than 360Æ on the interval

[
p
2=2; 0:735].
In the interval [0:735; 0745] we will write the total angle di�erently. First, notice

that if d1 � 1�R+
p
6�R

2
= 0:7376 : : : , then dm � R � 1, so we may omit �(dm; R).

Case 1. d3 � 0:62 The sum of the angles is not less than �(d1; d1) + �(d1; 0:62) +
�(0:62; R) + �(dM ; R) + �(dM ; d1) + 72Æ, which is equal to 162Æ + �(0:62; R) +
�(0:62; d1) + �(d1; d1). This is a decreasig function of d1 and its value at 0:745 is
360:2Æ.

Case 2. d3 < 0:62 Notice that one of d2 and d4 has to be larger than or equal to 0:732
or 2�(0:62; 0:732)+2�(0:732; 0:745)> 360Æ. Moreover, none of d2 and d4 can be less
than 0:72 or else �(0:745; 0:745) + �(0:745; 0:62) + �(0:62; 0:72) + �(0:72; 0:745) >
360Æ. In this case the total angle is not less than 2�(0:72; R) + 2�(0:732; R) +
2�(d1; R) + 216Æ � 362Æ.

�

Lemma 7. If P10; P11; P12 2 P4OP1, then d1 cannot be in [
p
2=2; 0:745].

Proof. The total angle is not less than 2�(d1; d1) + �(dm; d1) + �(dm; R) + 72Æ +
�(d1; R) which is larger than or equal to 72Æ +2�(d1; d1) + �(d1; R) + �(R� 1; d1)
in the [0:737; 0:745] interval. This function is decreasing and its value exceeds
360Æ:2 at d1 = 0:745. Note that �(d1; d1) + �(d1; R) is a decreasing function in the
designated interval.

In [
p
2=2; 0:737], the total angle is larger than or equal to 252Æ + �(d1; d1) +

�(dm; R) + �(d1; R) which is also a decreasing function of d1 and its value at d1 =
0:737 is 366Æ To see that this note that �(dm; R)+�(d1; R) is a decreasing function
of d1. �

Now, the only possibility is that d1 = 1. We saw in Lemma 5, that in this case
the diameter of R1 and R2 is equal to 1 and this diameter is realized by Q0 and
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Q6. Therefore the four points in C(1) must be in the con�guration shown in the
second part of Figure 1.
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