TECHNICAL REPORT

THE DENSE PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

Ferenc Fodor

March 2001

No. 2001-1

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

THE DENSEST PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

FERENC FODOR

ABSTRACT. The densest packings of n congruent circles in a circle are known for $n \leq 12$ and n = 19. In this paper we exhibit the densest packings of 13 congruent circles in a circle. We show that the optimal configurations are identical to Kravitz's [11] conjecture. We use a technique developed from a method of Bateman and Erdős [1] which proved fruitful in investigating the cases n = 12 and 19 by the author [6,7].

1. Preliminaries and Results

We shall denote the points of the Euclidean plane \mathbf{E}^2 by capitals, sets of points by script capitals, and the distance of two points by d(P,Q). We use PQ for the line through P, Q, and \overline{PQ} for the segment with endpoints P, Q. $\angle POQ$ denotes the angle determined by the three points P, Q, Q in this order. C(r) means the closed disc of radius r with center Q. By an annulus $r < \rho \le s$ we mean all points P such that $r < d(P,Q) \le s$. We utilize the linear structure of \mathbf{E}^2 by identifying each point P with the vector \overrightarrow{OP} , where Q is the origin. For a point P and a vector \overrightarrow{a} by $P + \overrightarrow{a}$ we always mean the vector $\overrightarrow{OP} + \overrightarrow{a}$.

The problem of finding the densest packing of congruent circles in a circle arose in the 1960s. The question was to find the smallest circle in which we can pack n congruent unit circles, or equivalently, the smallest circle in which we can place n points with mutual distances at least 1. Dense circle packings were first given by Kravitz [11] for $n = 2, \ldots, 16$. Pirl [14] proved that the these arrangements are optimal for $n \leq 9$ and he also found the optimal configuration for n = 10. Pirl also conjectured dense configurations for $11 \leq n \leq 19$. For $n \leq 6$ proofs were given independently by Graham [3]. A proof for n = 6 and 7 was also given by Crilly and Suen [4]. Subsequent improvements were presented by Goldberg [8] for n = 14,16 and 17. He also found a new packing with 20 circles. In 1975 Reis [15] used a mechanical argument to generate remarkably good packings up to 25 circles. Recently, Graham et al. [9, 10] using computers established packings with more than 100 circles and improved the packing of 25 circles. In 1994 Melissen [12] proved Pirl's conjecture for n = 11 and the author [6, 7] proved it for n = 19 and n=12. The problem of finding the densest packing of equal circles in a circle is also mentioned as an unsolved problem in the book of Croft, Falconer and Guy [5]. Packings of congruent circles in hyperbolic plane were treated by K. Bezdek [2]. Analogous results of packing n equal circles in an equilateral triangle and square can be traced down in the doctoral dissertation of Melissen [13].

1991 Mathematics Subject Classification. Primary 52C15.
Key words and phrases. circle packings, density, optimal packing.

1

In this article we shall find the optimal configurations for n = 13. We are going to prove the following theorem.

Theorem 1. The smallest circle C in which we can pack 13 points with mutual distances at least 1 has radius $R = (2\sin 36^{\circ})^{-1} = \frac{1+\sqrt{5}}{2}$. The 13 points form the following two configuration as shown on Figure 1.

FIGURE 1. The optimal configurations for n = 13.

We shall prove Theorem 1 in the following way. We are going to show that it is possible to divide C(R) into a smaller circle C(S) and an annulus $S < \rho \le R$, choosing S such that there can be at most 4 points in C(S) and at most 10 points $S < \rho \le R$. Then we prove that the 4 points in C(S) form the configurations shown on Figure 1.

In the course of our proof we shall use the following two statements. Lemma 1, slightly modified here, originates from a paper of Bateman and Erdős [1]. Lemma 2 was used by the author in [6, 7].

Lemma 1 ([1]). Let $r, s, (s \ge \frac{1}{2})$ be two positive real numbers and suppose that we have two points P and Q which lie in the annulus $r \le \rho \le s$ and which have mutual distance at least 1. Then the minimum $\phi(r, s)$ of the angle $\angle POQ$ has the following values:

$$\phi(r,s) = \arccos \frac{s^2 + r^2 - 1}{2rs}, if 0 < s - 1 \le r \le s - 1/s;$$

$$\phi(r,s) = 2\arcsin \frac{1}{2s}, if 0 < s - 1/s \le r \le s \text{ or } s \le 1.$$

Lemma 2 ([6]). Let S be a set of n $(n \ge 2)$, points in the plane and C the smallest circle containing S. Let \vec{a} be a vector. There exist two points P_1, P_2 on the boundary of S, such that $d(P_1 + \vec{a}, O) + d(P_2 + \vec{a}, O) \ge 2r$, where r is the radius and O is the center of C.

2. Proofs

Let S = R - 1/R = 1. It was proved by Bateman and Erdős [1] that 7 points with mutual distances at least 1 can be packed into a unit circle in a unique way; one point is at the center of the circle, and the other 6 form a regular hexagon of unit side length with vertices on C(1). There cannot be any further points situated in the annulus $1 < \rho \le R$. The argument for 6 points is very similar. The radius of the circumcircle of 6 points with mutual distances at least 1 is 1, see [1]. Furthermore,

the 6 points either form a regular hexagon of unit side length with vertices on C(1), or a pentagon with all 5 vertices on C(1) and a sixth point at O. In both cases it is clear that there cannot be 7 points in the annulus $1 < \rho \le R$. Note that if there are exactly 9 points in the annulus $1 < \rho \le R$, then the 13 points must form the first configuration shown on Figure 1.

Lemma 3. There cannot be exactly 5 points in C(1).

Proof. Suppose, on the contrary, that there are 5 points in C(1). Bateman and Erdős [1] proved that the radius of the circumcircle of 5 points with mutual distances at least 1 is $d_5 = (2\cos 54^\circ)^{-1} = 0.85...$ The minimal radius is realized by a regular pentagon of unit side length. According to Lemma 2 there must be two points P and Q of the 5 such that $d_P = d(P, O) \ge d_Q = d(Q, O)$ and $d_P + d_Q \ge 2d_5$.

Furthermore, the 4 points other than P cannot all be in C(0.812). To see this suppose that they all are in C(0.812). By adding up the five central angles we obtain $3\phi(0.812,0.812)+2\phi(1,0.812)=360^{\circ}.12\ldots$ Therefore we may suppose that $d_P \leq 2d_5 - 0.812 = 0.8894\ldots$ Simple calculus shows that $2\phi(d_P,R)+2\phi(d_Q,R)$ takes on its minimum, under these circumstances, when $d_P=2d_5-0.812$ and $d_Q=0.812$, and the minimum is 126.197° .

Note further that not all 3 points other than P and Q can be in C(0.73). To see this add up the 5 central angles, $\phi(1,1) + 2\phi(0.73,0.73) + 2\phi(1,0.73) = 370^{\circ} \dots$ if P and Q are adjacent. If they are not adjacent, then the sum is $\phi(0.73,0.73) + 4\phi(1,0.73) = 360^{\circ}.8.\dots$ Hence, there is a point S such that $d_S = d(S,O) \geq 0.73$.

Let us also observe that $d_S \leq 0.762$ else the sum of the 8 central angles determined by the points in the annulus is $180^{\circ} + 126^{\circ}.2 + 2\phi(0.762, R) = 360^{\circ}.035...$ We can also conclude that it is not possible that the 2 remaining points are both in C(0.71). This follows from the fact that the sum of the 5 central angles would be larger than 360°. We must check two different scenarios. One is when P and Q are adjacent. Then the sum is either at least $\phi(1,1) + \phi(1,0.762) + \phi(0.71,0.71) + \phi(0.762,0.71) + \phi(0.71,1) = 60^{\circ} + 67^{\circ}.6 + 89^{\circ}.5 + 85^{\circ}.5 + 69^{\circ}.2 = 371^{\circ}...$, or $\phi(1,1) + 2\phi(0.762,0.71) + 2\phi(0.71,1) = 60^{\circ} + 2 \cdot 85^{\circ}.5 + 2 \cdot 69^{\circ}.2 = 369^{\circ}...$

If P and Q are not adjacent, then the sum of the 5 central angles is either $2\phi(1,0.762)+\phi(0.71,0.71)+2\phi(0.71,1)=2\cdot 67^{\circ}.6+89^{\circ}.5+2\cdot 69^{\circ}.2=363^{\circ}.1\ldots$, or $\phi(1,0.762)+\phi(0.71,0.762)+3\phi(0.71,1)=67^{\circ}.6+85^{\circ}.5+3\cdot 69^{\circ}.2=360^{\circ}.7\ldots$

Now, the sum of the 8 central angles is $4 \cdot 36^{\circ} + 2\phi(d_P, R) + 2\phi(d_Q, R) + 2\phi(0.73, R) + 2\phi(0.71, R) = 270 + 45^{\circ} + 48^{\circ}.8 = 363^{\circ}...$ Thus we have finished the proof of the lemma.

Proposition 1. Let $f(r) = \phi(r, R) + \phi(r, s)$ and $\frac{\sqrt{2}}{2} \le s \le 1$ fixed. If $R - 1 \le r \le \min\{0.77, s\}$, then f(r) is an increasing function of r.

Proof. To see this evaluate the derivative of f(r). Our goal is to show that

(1)
$$f'(r) = \frac{\frac{R-r^2}{r}}{\sqrt{(2rR)^2 - (r^2 + R)^2}} - \frac{\frac{r^2 - s^2 + 1}{r}}{\sqrt{(2rs)^2 - (s^2 + r^2 - 1)^2}} > 0$$

After rearrangement of the terms we obtain

(2)
$$\sqrt{\frac{(2rs)^2 - (s^2 + r^2 - 1)^2}{(2rR)^2 - (r^2 + R)^2}} > \frac{r^2 - s^2 + 1}{R - r^2}$$

Notice that $\frac{r^2-s^2+1}{R-r^2}$ takes on its maximum if r=s=0.77, and the maximum is less than 1. On the left hand side we can see that we decrease $(2rs)^2-(s^2+r^2-1)^2$ if we replace s by r because it is an increasing function of s. Now, we are going to show that

$$\frac{(2r^2)^2 - (2r^2 - 1)^2}{(2rR)^2 - (r^2 + R)^2} > 1.$$

After simplification we obtain

$$(2r^{2})^{2} - (2r^{2} - 1)^{2} - ((2rR)^{2} - (r^{2} + R)^{2}) = r^{4} - 2Rr^{2} + R.$$

This polynomial is zero if $r = \sqrt{R-1} = 0.78...$, therefore for $r \in [R-1, 0.77]$ it is positive. Thus, the inequality holds.

Let the 4 points in C(1) be labeled as P_1, \ldots, P_4 in clockwise direction. Let $d_i = d(P_i, O)$ and assume that d_1 is the largest of d_i , $i = 1, \ldots, 4$.

Proposition 2. In each sector determined by two consecutive points in C(1), there must be at least 2 points from the annulus $1 < \rho \le R$.

Proof. First, note that $d_i \leq 0.77$, i = 2, 3, 4 beacuse $4\phi(0.77, R) + 7 \cdot 36^{\circ} > 361^{\circ}$. Suppose, on the contrary, that in P_iOP_{i+1} there is only one point. The sum of the 9 central angles is not less than $252^{\circ} + \phi(d_i, R) + \phi(d_i, d_{i+1}) + \phi(d_{i+1}, R)$.

If i = 1, then we know that $d_2 \leq d_1$. Therefore by Proposition 1 the total angle is not less than $252^{\circ} + \phi(d_1, R) + \phi(d_1, R - 1) + \phi(R - 1, R)$. This function takes on its minimum at $d_{=}1$, where it is exactly 360°. If i = 4, then $d_4 \leq d_1$ and so we may repeat the previous argument such that we obtain the same formula for the total angle.

If i=2 or 3, then assume that $d_i \geq d_{i+1}$. Then, by Proposition 1 the total angle is not less than $252^{\circ} + \phi(d_i, R) + \phi(d_i, R-1) + \phi(R-1, R)$. This function takes on its minimum at $d_i = R-1$ and $d_i = 1$. It means that $d_i = R-1$ which gives 360° for the total angle, plus $2\phi(d_1, R) - 36^{\circ}$ which makes the total larger than 360° . \square

Now we will examine the positions of the points P_1, \ldots, P_4 . We are going to prove that $d_1 = 1$. Let the 9 points in the annulus $1 < \rho \le R$ be labeled by P_5, \ldots, P_{13} in clockwise direction such that P_5 is adjacent to the segment P_1O . Let c_i denote the unit circle centered at P_i . Furthermore, let $Q_i = c_i \cap c_{i-1}$ and $Q_1 = c_1 \cap P_1O$, $Q_0 = c_9 \cap P_1O$ be points in C(1). Let \mathcal{R} be the region of $C(d_1)$ which is not covered by the circular discs C_i . This is where P_2, P_3, P_4 can be situated. The vertical line P_1O cuts \mathcal{R} into two subregions, $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$. We are going to examine the diameter of \mathcal{R}_1 and \mathcal{R}_2 . We will show that if $d_1 < 1$, then \mathcal{R}_i , i = 1, 2 cannot accomodate two points. We are going to demonstrate this by proving that the diameter of \mathcal{R}_i , i = 1, 2 is less than 1. now, we try to maximize the diameter of \mathcal{R}_1 . We assume that P_5, \ldots, P_{13} are on the circle C(R).

Lemma 4. For a fixed value of $d_1 \in \left[\frac{\sqrt{2}}{2}, 1\right]$, the arc of c_1 between Q_0 and Q_6 is the longest if $\angle P_1OP_6 = 36^\circ + \psi$, where $\psi = \phi(d_1, R)$.

Proof. Notice that of two unit circles centered on C(R), the one whose center makes the smaller central angle with $\overline{P_1O}$ provides the longer arc on c_1 if their intersection is in c_1 . Let $\angle P_1OP_6 = \alpha$. For a fixed d_1 , $\alpha \in [36^\circ + \psi, 108^\circ - \psi]$. If d_1 is fixed it is enough to show that the intersection of the two unit circles in the extreme positions is in c_1 . Note that this intersection point $T(d_1)$ is always such that $\angle P_1OT(d_1) = 72^\circ$. Let $S = c_1 \cap OT(d_1)$ and let s = d(S, O). It is

FIGURE 2

enough to show that $d^2(S, P_6) = R^2 + s^2 - 2Rs\cos(36^\circ - \psi) \le 1$. The equation $R^2 + s^2 - 2Rs\cos(36^\circ - \psi) = 1$ can, after some transformations, be written as an algebraic equation for d_1 as follows.

$$(3\sqrt{5}+7)x^{12} + (-31-13\sqrt{5})x^{10} + (6\sqrt{5}+18)x^8 + (12\sqrt{5}+22)x^6 + (45+103\sqrt{5})x^4 + (-166-74\sqrt{5})x^2 + 47 + 21\sqrt{5} = 0$$

The above polyomial has only one root in $\left[\frac{\sqrt{2}}{2},1\right]$ and it is equal to 1. This proves our claim.

We assume that $\angle P_9OP_1=216^\circ-\psi$, where $\psi=\phi(d_1,R)$. This ensures that the part of P_1O which bounds \mathcal{R}_1 is maximal in length. We will also assume that the angles are $\angle P_6OP_7=\angle P_8OP_9=72^\circ-\psi$. This guarantees that the arcs of c_7 and c_9 are the longest possible. However, notice that in such a position $d(P_7,P_8)$ becomes less than 1.

Lemma 5. The diameter of \mathcal{R}_1 does not exceed 1 if $d_1 \in [0.745, 1]$

Proof. Notice that $\angle P_1OQ_7 = 90^\circ$ and $\angle P_1OQ_9 = 162^\circ$, and $d(Q_7, O) = d(Q_9, O)$ is a decreasing function of d_1 . Also, $d(Q_0, O)$ is a monotonically decreasing functions of d_1 . \mathcal{R}_1 is bounded by arcs of c_1, c_6, \ldots, c_9 , and the line P_1O . Its vertices are $Q_0, Q_1, Q_6, \ldots Q_9$ as shown on Figure 2.

Under these circumstances, the diameter of \mathcal{R}_1 can only be realized by a pair of the vertices Q_0, Q_6, Q_7, Q_9 . Note that $d(Q_7, Q_9)$ and $d(Q_0, Q_7)$ are both decreasing functions of d_1 , and by direct substitution we can see that they do not exceed 1 if $d_1 \in [0.745, 1]$.

Using the coordinates of Q_0 and Q_6 we may write $d^2(Q_0, Q_6) = 1$ as an algebraic equation for d_1 . Furthermore, after a sufficient number of transformations,

FIGURE 3

it may be written as a polynomial equation $p(Q_0, Q_6) = 0$ for d_1 . The Cartesian coordinates of Q_0 and Q_6 are the following.

$$Q_6 = (R(\sin(36^\circ + \psi) - \sin\psi), d + R(\cos(36^\circ + \psi) - \cos\psi));$$

$$Q_0 = (0, -R\cos(36^\circ - \psi) + \sqrt{R^2\cos^2(36^\circ - \psi) - R})$$

The polynomial equation is as follows.

$$p(Q_0,Q_6) = (-10 - 4\sqrt{5})d_1^4 + (-5 - 7\sqrt{5})d_1^6 + 14\sqrt{5}d_1^8 + (55 + 13\sqrt{5})d_1^{10} + (25 + 15\sqrt{5})d_1^{12} + (10 + 4\sqrt{5})d_1^{14} = 0$$

This equation has two roots in the $\left[\frac{\sqrt{2}}{2},1\right]$ interval, 0.744... and 1. By direct substitution we can check that $p(Q_0,Q_6)<1$ in (0.7448,1). In a similar manner we may write $d^2(Q_6,Q_9)=1$ as a polynomial equation for d_1 and check for roots in the designated interval. Note that $d(O,Q_9)=R\cos(36^\circ-\psi)-\sqrt{(1-R^2\sin^2(36^\circ-\psi))}$. The graph of the function $d(Q_6,Q_9)$ is shown on Figure 2.

This function has no zeros in the interval [0.745, 1].

Lemma 6. If $P_9, P_{10}, P_{11} \in P_3OP_4$, then is not possible that $d_1 \in [\sqrt{2}/2, 0.745]$.

Proof. For every value of d_1 there is a d_m such that none of the three points P_2, P_3, P_4 can be closer to O than d_m . We may obtain d_m from the the following equation.

$$\phi(d_1, d_1) + \phi(d_1, d_m) = 180^{\circ}$$

Easy calculation shows that $d_m = \frac{1}{d_1} - d_1$. Clearly, d_m is a monotonically decreasing function of d_1 . Furthermore, let $d_M = \sqrt{1 - d_1^2}$. We claim that it

is not possible that both d_3 and d_4 are less than or equal to d_M . This may be shown simply by examining the function that describes the sum of the four central angles determined by the points P_1, \ldots, P_4 . It is $f(d_1) = \phi(d_1, d_1) + 2\phi(d_M, d_1) + \phi(d_M, d_M)$. Simple calculus shows that

(3)
$$\frac{df(d_1)}{d d_1} = -2 \frac{1}{d_1^2 \sqrt{4 - 1/d_1^2}} + 2 \frac{d_1}{(1 - d_1^2)^{3/2} \sqrt{4 - \frac{1}{1 - d_1^2}}}$$

It is a simple exercise to show that (3) is larger than or equal to 0 in the interval $[\frac{\sqrt{2}}{2},1]$. In particular, $f(\frac{\sqrt{2}}{2})=360^{\circ}$, which proves our claim. Also note that $\phi(d_M,d_1)=90^{\circ}$.

Now, we are going to add up the four central angles, $\angle P_iOP_{i+1}$. The sum of the angles is as follows $\phi(d_1,d_2)+\phi(d_2,d_3)+\phi(d_3,R)+72^\circ+\phi(d_4,R)+\phi(d_4,d_1)$. Note that $\phi(d_2,d_1)$ is not less than $\phi(d_1,d_1)$ and that by Lemma 2, $\phi(d_2,d_3)+\phi(d_3,R)$ takes on its minimum when $d_2=d_1$ and $d_3=d_m$. The same is true for $\phi(d_4,R)+\phi(d_4,d_1)$ so we may assume that $d_4=d_M$. Whence, the sum of the angles is $\phi(d_1,d_1)+\phi(d_m,d_1)+\phi(d_m,R)+72^\circ+\phi(d_M,R)+\phi(d_M,d_1)$. After simplification we obtain

$$F(d_1) = \phi(d_M, R) + \phi(d_m, R) + 342^{\circ}.$$

 $F(d_1)$ is a decreasing function of d_1 and it is larger than 360° on the interval $[\sqrt{2}/2, 0.735]$.

In the interval [0.735,0745] we will write the total angle differently. First, notice that if $d_1 \geq \frac{1-R+\sqrt{6-R}}{2} = 0.7376\ldots$, then $d_m \leq R-1$, so we may omit $\phi(d_m,R)$. Case 1. $d_3 \geq 0.62$ The sum of the angles is not less than $\phi(d_1,d_1) + \phi(d_1,0.62) + \phi(0.62,R) + \phi(d_M,R) + \phi(d_M,d_1) + 72^\circ$, which is equal to $162^\circ + \phi(0.62,R) + \phi(0.62,d_1) + \phi(d_1,d_1)$. This is a decreasig function of d_1 and its value at 0.745 is 360.2° .

Case 2. $d_3 < 0.62$ Notice that one of d_2 and d_4 has to be larger than or equal to 0.732 or $2\phi(0.62, 0.732) + 2\phi(0.732, 0.745) > 360^\circ$. Moreover, none of d_2 and d_4 can be less than 0.72 or else $\phi(0.745, 0.745) + \phi(0.745, 0.62) + \phi(0.62, 0.72) + \phi(0.72, 0.745) > 360^\circ$. In this case the total angle is not less than $2\phi(0.72, R) + 2\phi(0.732, R) + 2\phi(d_1, R) + 216^\circ > 362^\circ$.

Lemma 7. If $P_{10}, P_{11}, P_{12} \in P_4OP_1$, then d_1 cannot be in $[\sqrt{2}/2, 0.745]$.

Proof. The total angle is not less than $2\phi(d_1,d_1) + \phi(d_m,d_1) + \phi(d_m,R) + 72^\circ + \phi(d_1,R)$ which is larger than or equal to $72^\circ + 2\phi(d_1,d_1) + \phi(d_1,R) + \phi(R-1,d_1)$ in the [0.737, 0.745] interval. This function is decreasing and its value exceeds 360°.2 at $d_1 = 0.745$. Note that $\phi(d_1,d_1) + \phi(d_1,R)$ is a decreasing function in the designated interval.

In $[\sqrt{2}/2, 0.737]$, the total angle is larger than or equal to $252^{\circ} + \phi(d_1, d_1) + \phi(d_m, R) + \phi(d_1, R)$ which is also a decreasing function of d_1 and its value at $d_1 = 0.737$ is 366° To see that this note that $\phi(d_m, R) + \phi(d_1, R)$ is a decreasing function of d_1 .

Now, the only possibility is that $d_1 = 1$. We saw in Lemma 5, that in this case the diameter of \mathcal{R}_1 and \mathcal{R}_2 is equal to 1 and this diameter is realized by Q_0 and

 Q_6 . Therefore the four points in C(1) must be in the configuration shown in the second part of Figure 1.

References

- [1] P. Bateman, P. Erdős, Geometrical extrema suggested by a lemma of Besicovitch, Amer. Math. Monthly, 58, (1951), 306-314.
- [2] K. Bezdek, Ausfüllungen eines Kreises durch kongruente Kreise in der hyperbolischen Ebene, Studia Sci. Math. Hungar, 17, (1982), 353-356.
- [3] H.S.M. Coxeter, M.G. Greening and R.L. Graham, Sets of points with given maximum separation (Problem E1921), Amer. Math. Monthly, 75, (1968), 192-193.
- [4] T. Crilly, S. Suen, An improbable game of darts, Math. Gazette, 71, (1987), 97-100.
- [5] H.T. Croft, K.J. Falconer, R.K. Guy, Unsolved Problems in geometry, Springer Verlag New York, Berlin, Heidelberg, 1991.
- [6] F. Fodor, The densest packing of 19 congruent circles in a circle, Geom. Dedicata 74, (1999), 139-145.
- [7] F. Fodor, The densest packing of 12 congruent circles in a circle, Beitrage Alg. Geom. 41, (2000), 401-409.
- [8] M. Goldberg, Packing of 14, 16, 17 and 20 circles in a circle, Math Mag., 44, (1971), 134-139.
- [9] R.L. Graham, B.D. Lubachevsky, Dense packings of 3k(k+1)+1 equal disks in a circle for k=1,2,3,4 and 5, Proc. First Int. Conf., "Computing and Combinatorics" COCOON'95, Springer Lecture Notes in Computer Science, **959** (1996), 303-312.
- [10] R.L. Graham, B.D. Lubachevsky, Curved hexagonal packings of equal disks in a circle, Discrete Comp. Geom., 18, (1997), 179-194.
- [11] S. Kravitz, Packing cylinders into cylindrical containers