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Two Research Traditions Separated by a Common
Subject:  Mathematics and Mathematics Education1

Annie Selden
Mathematics Department

Tennessee Technological University

Abstract
"There are no proofs in mathematics education."2  While this is true, claims are made in
mathematics education research and evidence is provided for them.  In this talk, I will
explore the nature of such research, the kinds of claims and evidence, and what such
research might have to offer teachers of mathematics, especially at the undergraduate
level.  Along the way, I will point out differences between the ways research is done in
the two fields.

The above title is meant to be both provocative and descriptive.  While I will talk
about how research in the two fields -- mathematics and mathematics education -- differs,
I would like to note, at the outset, something that mathematicians and mathematics
education researchers have in common -- a love of mathematics and a desire that more
people (especially our students) learn to love, appreciate, and work with mathematical
ideas flexibly.  That said, there is also much that separates the two fields that could
possibly lead to some misunderstandings of the aims and methods of those engaged in
mathematics education research.

Having obtained a Ph.D. in mathematics and published several papers in my field
(semigroups), I became increasingly interested in the problems my students were having.
As a result, some fifteen years ago, I decided to take mathematics education at the
undergraduate level as a serious research commitment.  Consequently, I feel I have a
"foot in both camps" and can understand and empathize with both.  Indeed, many
mathematicians I know seem to consider me a "math ed person" and a number of
mathematics education researchers consider me a mathematician.

While much of what I have to say will be about research in mathematics
education generally (i.e., at all levels, K-16+), many of the examples, and some of my
remarks, will apply specifically to research in mathematics education at the
undergraduate level, sometimes abbreviated as RUME.

                                                          
1 This paper was written in preparation for the author's AWM-MAA Invited Address at the MathFest in
Burlington, Vermont, August 3, 2002.  This address is given annually by the recipient of AWM's Louise
Hay Award for Contributions to Mathematics Education.  For more information on this award, see
http://www.awm-math.org/hayaward.html.
2 This statement has been attributed to Henry Pollak by Schoenfeld (2000, 2001).
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What Mathematics Education Research Is and Is Not

A number of mathematics education researchers have published articles for the
mathematics community describing the field; these have appeared in such places as
Notices of the AMS and the College Mathematics Journal (Artigue, 1999,  2001;
Schoenfeld, 1994, 2000, 2001; Selden & Selden, 1993, 2001; see also McKnight, Magid,
Murphy, & McKnight, 2000, or Niss, 1999).  These articles have provided inspiration for
what follows, but the particular perspective expressed here is my own.

Describing, much less defining, the nature of mathematics education research is a
daunting, virtually impossible, task.  Indeed, a similar thing might be said about
mathematics.  When mathematicians were surveyed (Mura, 1993, 1995) and asked, "How
would you define mathematics?", 33% replied, "I wouldn't,"  a view I sympathize with.
Still I will try to give some idea of the nature of research in mathematics education, the
kinds of questions asked, and the kinds of answers, or partial answers, provided.

To describe a concept or idea, it is often best to provide both examples and
nonexamples -- to say what it is and what it is not.  I begin with the later.

What mathematics education research is not.  It is not curriculum development
per se, although it may involve developing some bits of curricula. It is not descriptions of
interesting courses one has developed, although mathematics education research may
involve the description of some teaching.  Likewise, it is not writing a new textbook,
developing an online course, or implementing a new way of teaching, although
sometimes new/revised courses or pedagogies may come about as a result of research.  It
is not the development of novel assessment procedures, although novel/interesting tasks
proposed by researchers are sometimes adapted for tests/examinations.  It is not (local)
evaluation studies that seek to answer questions like:  Does our new algebra course really
work?  It is not institutional/departmental research yielding results such as:  Almost
everyone who fails our calculus readiness test and takes calculus anyway, fails it.  It is
also not interesting mathematics for use with one's students if one only had the time (e.g.,
CMJ's Classroom Capsules).  While these are all useful, and even scholarly, activities,
they are not mathematics education research.

Mathematics education research is also not research about learning per se (with no
consideration given to what is learned).  To a large extent it concerns features specific to
mathematics and different from those of interest in psychology such as the brief
learning/memory of a string of nonsense symbols.  So far, only a few general education,
pedagogy, or psychology studies (e.g., Miller, 1956) seem to have been informative or
useful in mathematics education research.  One cannot assume, for example, that general
cooperative group learning strategies will necessarily be appropriate for mathematics or
for a specific content area within mathematics, such as conceptual difficulties with limit.

Mathematics education research is also not a collection of interesting anecdotes
about student (mis-)conceptions or behavior vis-à-vis mathematical concepts.  However,
such informal observations can sometimes help one formulate interesting, researchable
questions.
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What is mathematics education research?  It is disciplined inquiry3 into the
learning and teaching of mathematics, often involving close observations of students
actively involved in challenging mathematical tasks.  It is conducted using a variety of
methodologies and it is domain specific -- it's about mathematics.  Niss (1999), in an
article explaining the nature of mathematics education research for mathematicians,
described it as "the scientific and scholarly field of research and development which aims
at identifying, characterising, and understanding phenomena and processes actually or
potentially involved in the teaching and learning of mathematics at any educational
level" (p. 5).

Mathematics education researchers study how people learn
and are taught mathematics, as well as the phenomena that influence
teaching and learning.   These include aspects of mathematics (calculus,
functions, proofs), cognition (problem solving, misconceptions),
psychological factors (motivation, affect, visualization), teaching
methods (lecturing, cooperative learning, uses of technology and writing),
change (individual teacher, institutional), and culture (gender, equity, the
surrounding culture, cross-cultural comparisons).  Research methods
and background are borrowed from anthropology, sociology, and
psychology, especially cognitive psychology, as well as from philosophy
and artificial intelligence.  (Selden & Selden, 1993, p. 432)

Since research in mathematics education is a social science, no single study can
possibly hope to answer most useful questions definitively.  Indeed, research in
mathematics education "is a very different enterprise from research in mathematics . . .
Findings are rarely definitive; they are usually suggestive.  Evidence is not on the order
of proof, but it is cumulative, moving towards conclusions that can be considered to be
beyond a reasonable doubt."  (Schoenfeld, 2000, p. 649).
 For mathematics education research, one needs a solid understanding of the
mathematics at, and beyond, the level at which the students being observed are working.
In addition, mathematics education researchers, just like mathematicians, put a great deal
of thought into selecting their research questions.  They must be new, nontrivial,
nonobvious, and the potential answer(s) should be interesting.  In comparing mathematics
and mathematics education research, Schoenfeld (1999) said, “The hard part of being a
mathematician is not solving problems; it’s finding one that you can solve, and whose
solution the mathematical community will deem sufficiently important to consider an
advance. In any real research (in particular, education research), the bottleneck issue is
that of problem identification – being able to focus on problems that are difficult and
meaningful but on which progress can be made.”

The research question comes first.  After it has been carefully formulated, one
then selects appropriate data collection and analysis methods.  If one wanted to know
how many students continued on, and succeeded in, traditional mathematics courses after
taking a reform college algebra or calculus course, one would use some quantitative
methods, probably some simple statistics.  On the other hand, if one wanted to know how
students approached problems in an engineering mechanics course after taking a reform

                                                          
3 John Mason of the Open University has described research in mathematics education as disciplined
noticing.  For details, see Part V (pp. 151-216) of his new book (Mason, 2002).
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calculus course or a traditional version, one would use a qualitative research method such
as individual in-depth task-based interviews (Roddick, in press).

While researchers rarely write about how they decide on their data collection and
analysis methods, occasionally one gains such insights from texts on research methods.
For example, when Susan Pirie and Rolph Schwarzenberger wanted find out whether, and
how, pupil-pupil discussion aided mathematical understanding, they considered a variety
of data collection methods finally settling on audio-recording and taking notes -- from
across the room -- as the least intrusive.  For their analysis, after first considering
ethnomethodology and conversational analysis, which focus on the organization of the
talk, and sociolinguistics, which focuses on how social factors affect talk, they finally
settled on discourse analysis as the most appropriate for the mathematical aspects of the
pupils' talk (Pirie, 1998).

 Some examples from my own work.  In a series of three studies, John Selden and
I investigated calculus students' problem-solving abilities.  For the first study, we
developed five moderately non-routine first calculus problems, administered them to paid
volunteer C students as a test, complete with prizes for the best papers.  The result, much
to our surprise, was that not one student could solve a single problem completely, despite
many of them currently being enrolled in Calculus II (Selden, Mason, & Selden, 1989).
It then occurred to us that perhaps the students did not have the basic calculus skills
needed to solve the non-routine problems.  We thus devised a routine test consisting of
precisely those calculus skills we considered necessary to solve our non-routine
problems.  Under similar volunteer testing conditions, we gave A and B students the
same non-routine test, followed by this routine test.  The most striking result was that
only 9% of the problems were completely solved by these students, while having good
calculus skills (Selden, Selden, & Mason, 1994).

We then decided to investigate the "folk theorem" that one really learns the
mathematics of a given course in a subsequent course that uses it.  Consequently, under
similar conditions, we tested students who had taken all three semesters of calculus and
were midway through a differential equations course.  This time we got 14% completely
correct solutions (Selden, Selden, Hauk, & Mason, 2000).  We concluded that these
students could not access their knowledge during problem solving.  It may be that, when
client disciplines, such as engineering, lament that many students cannot work applied
problems, it is really the novelty that perplexes them.

In a more recent study, we investigated whether mathematics and secondary
mathematics education majors at the beginning of a transition course could validate (i.e.,
check the correctness of) similar students' "proofs" of the elementary number theory
theorem:  For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3.
There were four such "proofs" -- one correct and three incorrect.  The students were
interviewed individually using "think aloud" protocols.  Perhaps the most surprising
result was that 46% of the time, these students could not correctly judge whether these
purported "proofs" was indeed proofs -- a result that could have been obtained equally
well by tossing a coin.  At the end of the interview, when asked how they read proofs,
these students indicated that the checked the logic, followed the reasoning step-by-step,
and read for understanding -- several times even citing specific examples of how they had
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read a particular proof the night before in order to understand it (Selden & Selden, in
press).

What Kinds of Questions Are Asked in Mathematics Education Research?

One can study an individual student, or pair of students, learning some piece of
mathematics (a cognitive perspective).  Or, one can study the interactions within a
classroom, or within the broader school culture that do, or do not, promote the learning of
mathematics (a socio-cultural perspective).  One can also coordinate these two
perspectives, trying to understand how both psychological and social factors are
involved.

In the case of individual cognition, one wants to know how students come to
understand aspects of mathematics or how they develop effective mathematical
practices, good problem-solving skills, or the ability to generate reasonable conjectures
and to produce proofs. What goes on in students' minds as they grapple with mathematics
and how might we influence that positively? More specifically, consider the difficulties
that students have with the concept of limit. Does the everyday notion of speed limit
as a bound present a cognitive obstacle? Does the early introduction of monotone
increasing sequences constitute a didactic obstacle? Are there some, as yet neglected,
everyday or school-level conceptions that university mathematics teachers might
effectively build on? What is the influence of affect, ranging from beliefs through
attitude to emotion, on effective mathematical practice? What roles do intrinsic and
extrinsic motivational factors play?

From a social perspective, whether of a single classroom or some broader
community, one seeks information on how social interactions affect the group as well
as the individuals involved. For example, how might one change the classroom culture
so students came to view mathematics, not as passively received knowledge, but as
actively constructed knowledge? Or, how might one restructure an entire curriculum
to achieve this effect? What are the effects of various cooperative learning strategies
on student learning? What kinds of interactions are most productive? Are some
students advantaged while others are disadvantaged by the introduction of cooperative
learning? Which students succeed in mathematics? Which students continue in
mathematics and why? What is the effect of gender, race, or social class upon
success in mathematics? In coordinating the psychological and social perspectives,
any of the above questions might be asked, along with inquiry into the relationship
between the two perspectives. For example, how does an individual's contribution
affect a whole class discussion and conversely?   (Selden & Selden, 2001, p. 237)

Answering the above kinds of questions requires labor-intensive, qualitative studies,
usually with small numbers of students.

Yet, there are other interesting kinds of questions that might be asked and
answered using more quantitative studies and relatively large numbers of students.  There
are enormous cross-national studies like the Third International Mathematics and Science
Study, TIMSS, that can keep researchers busy for years (e.g., Schmidt, McKnight, &
Raizen, 1996; see also http://ustimss.msu.edu/).  But there are also useful questions
regarding affect, beliefs, motivation, and other topics, that one can answer using
questionnaire data.  For example, to what extent do U.S. college students' values and
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beliefs about mathematics and mathematics learning resemble those of their instructors?
One such study is currently being considered for publication.

 Another kind of study, often referred to as a meta-analysis, considers data
from a number of studies to see whether together they point to some consistent general
conclusion.  One such study asked:  What causes talented students to opt out of
mathematics majors?  The answer seems to lie in the perceived poor quality of
mathematics instruction as compared with that found in other disciplines (Linn & Kessel,
1996). Or, what is the effect of supplemental instruction (SI), a.k.a. help sessions, on
students' grades and retention?  One answer, after examining 177 courses in college
algebra, calculus, and statistics from 45 institutions, concludes that  SI students obtained
better course grades than non-SI students and had a better chance of being able to
continue on to the next mathematics course (Burmeister, Kenney, & Nice, 1996).

There are also evaluation studies that provide information about the effects of
curriculum reform efforts on large numbers of students.  For example, what are some
longer-range effects on students of a given calculus reform project?  During college,
Project Calc students, on average, took one more mathematics course than traditional
students (Bookman, 2001).  For the C4L Project, project students, on average, were found
to take more calculus courses than traditional students (Schwingendorf, McCabe, &
Kuhn, 2000).  Such research tends to be generalizable, in the sense of providing detailed
information about the students, the teaching, the project implementation, and the
observed outcomes; this contrasts with institutional research providing purely local
feedback to administrators, such as the percentage of remedial mathematics students who
obtained a grade of C or better and went on to succeed in subsequent mathematics
courses.

What One Can and Cannot (Reasonably) Expect From Mathematics Education
Research

Mathematics education research, especially at the university level, is a relatively
young field with an applied, or an applicable, character.  Interesting questions, suitably
modified for investigation, can arise when one encounters learning difficulties in one's
classroom.  For example, are remedial college algebra students handicapped because they
do not understand the notation?  Are real analysis students having difficulty because they
can't generate suitable generic examples on which to build proofs? (Cf.  Dahlberg and
Housman, 1997; Rowland, 2002). Would drawing diagram help such students construct
proofs? (Cf. Gibson, 1998.)

What research cannot tell us.  Despite sometimes arising from everyday
questions that may occur during teaching, mathematics education research does not
usually provide immediately applicable prescriptive teaching information, rather it
provides general guidance and hints that might help with teaching and curriculum design.
While mathematics education research may inform us, it cannot tell us which curricula or
pedagogies are "best" because such decisions necessarily involve value judgments about
what is important for students to know (Hiebert, 1999).  For example, if engineering
students use computer algebra systems such as Mathematica or Maple, research cannot
tell us which calculus and matrix algebra computations students should perform
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flawlessly by hand.  It might, however, advise us on the extent to which our chosen
curricula, once implemented, have succeeded in attaining our goals.

What research can tell us.  Mathematics education research does provide
empirical results about what students and teachers do, or do not, know and understand.  It
can include the design, implementation, and study of the effects of specially designed
curricula; French researchers refer to this as didactic engineering.  (A sampling of some
of these empirical results is given below).  More recently, there have been studies of how
mathematics is used in the workplace by automobile workers, nurses, bankers, biologists,
and other scientists (Smith, 1999;  Hoyles, Noss, & Pozzi, 2001; Noss & Hoyles, 1996;
Smith, Haarer, & Confrey, 1997; Roth, 1999).

However, perhaps more importantly, mathematics education research provides us
with ideas/concepts and the corresponding words to talk with.  I am not referring to
unnecessary jargon, but rather to new conceptualizations and new metaphors for thinking
about and observing mathematical behavior. It is very difficult to notice patterns of
behavior or thought without having appropriate concepts.  One needs a lens with which to
focus, or frame, what one is seeing.  (Cf.  Selden & Selden, 2001).

Concepts to Think and Talk With

Below are a few examples of concepts that researchers in mathematics education
have found useful; they have been used to help formulate research questions, select
research methodologies, analyze data, and draw conclusions.  They also provide us words
with which to think and to conceptualize phenomena.

             Concept definition versus concept image.  We all have experienced the
mismatch between concepts as stated in definitions and as interpreted by our students.

The terms concept definition and concept image distinguish between
a formal mathematical definition and a person's ideas about a particular mathematical
concept, such as function. An individual's concept image is a mental structure consisting
of all of the examples, non-examples, facts, and relationships, etc., that he or
she associates with a concept. It need not, but might, include the formal mathematical
definition and appears to play a major role in cognition. (See Tall and Vinner, 1981.)
Furthermore, while contemplating a particular mathematical problem, it might
be that only a portion of one's concept image, called the evoked concept image,
is activated. These ideas make it easier to understand and notice various aspects
of a student's thinking, for example, to understand the thinking of a student who
conceives of functions mainly graphically or mainly algebraically without much
recourse to the formal definition.  (Selden & Selden, 2001, p. 240)

Students' knowledge about a concept, like limit, is often compartmentalized with the
formal definition perhaps only loosely connected with other facts and examples about
that concept.  This explains why students can often quote the formal definition, more or
less accurately, when asked to do so, but fail to use it in other appropriate situations.
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Epistemological,4 cognitive, and didactic obstacles.  Another set of ideas that has
proved to have powerful explanatory power is that of various kinds of obstacles.
 

When applied to the learning of mathematics, these refer, respectively, to
obstacles that arise from the nature of particular aspects of mathematical
knowledge, from an individual's cognition about particular mathematical
topics, or from particular features of the mathematics teaching. An obstacle
is a piece of, not a lack of, knowledge, which produces appropriate
responses within a frequently experienced, but limited context, and is
not generalizable beyond it (Brousseau, 1997). Using the historical
development of function as a guide, it has been found that one
epistemological obstacle that students need to overcome is the idea
of function as expression, just as was the case with Euler (Sierpinska, 1992).
(Selden & Selden, 2001, p. 240-241).

In making the transition from high school to university mathematics, students
frequently encounter new ways of conceptualizing previously well-known concepts --
ways that can conflict with well-honed prior mathematical practices -- causing them
considerable difficulty.  Such didactic obstacles, often require students to make quite
difficult reconstructions of their mathematical knowledge.  For example, in high school
geometry, the tangent line to a circle is often defined to be that unique straight line that
touches the circle at just one point and is perpendicular to the radius at the point of
contact.  However, upon coming to calculus, the tangent to a function at a point is defined
as the limit of approximating secant lines, and somewhat later, as the line whose slope is
given by the value of the derivative at that point.  Research in France by Castela (as
reported in Artigue, 1992, p. 209-210) found that many of the 372 secondary students
questioned, after having studied analysis (i.e., calculus) for a year, had great difficulty
determining from a graph whether a given line was tangent to a particular function at an
inflection point or a cusp.

Another example is provided by the treatment of equality in analysis.  Whereas in
secondary school algebra and trigonometry, students have grown used to proving that two
expressions are equal by transforming one into another using known equivalences, in
analysis one can prove two numbers a and b are equal by showing that for every 0ε > ,
one has | |a b ε− < .  That this idea is not an easy one is indicated by a French study in
which more than 40% of entering university students thought that if two numbers A and B
are less than 1/N for every positive integer N, then they are not equal, only infinitely close
(Artigue, 1999, p. 1379).  Indeed, various notions related to the concept of infinity
provide examples of epistemological obstacles.

Didactic contract.  Students often come to classroom situations with well-
entrenched sets of  (often tacit) expectations about how the teaching and learning will
take place -- about the respective roles of the teacher and the students vis-à-vis the
subject.  This seems to be particularly so in mathematics.  Brousseau (1997) described
this by saying that everything happens as if there were a contract between the

                                                          
4 The idea of epistemological obstacle was introduced by G. Bachelard, and subsequently G. Brousseau
brought this idea into mathematics education research via his theory of didactical situations (1997).  B.
Cornu, and somewhat later A. Sierpinska, analyzed epistemological obstacles in the development of the
limit concept and linked these to students' difficulties.
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mathematics teacher and the mathematics students and referred to this as the didactic
contract.5  In U.S. mathematics classes, it is often the case that, and hence students expect
that, the teacher will first invite students' questions, which will be primarily of the sort,
"How do you work problem #7?"  Only after this will the teacher introduce the new
material and work some sample problems before finally assigning similar homework
exercises.  This seems to be a well established tradition; at least as early as the eighth
grade, students expect this pattern.  The teacher is also expected to be an authority who
delivers well-laid out lectures which contain copious detailed sample solutions to model
problems, answers all questions (preferably, briefly), and clearly delineates her/his
expectations of students.  While students find this dull, they also find it comforting.

Any attempt to change this didactic contract without adequate initial explanation
and preparation by the teacher -- referred to as renegotiating the didactic contract -- can
result in student unease, complaints, or even outright rebellion.  Even when explicit
attention is given to renegotiation of the didactic contract, students can feel and express
considerable discomfort.  This happened in a number of reform calculus courses in the
U.S. (e.g., Bookman & Friedman, 1994, p. 114).  It also happened in the Warwick
Analysis Project, an experimental first-year university analysis course in which students
considered a carefully structured sequence of questions that developed the rationale for
the main definitions, constructed the central arguments behind the main theorems, and
used those theorems in subsequent arguments.  One student said, “What I would really
like is if we could have a lecture, and then be given a set of question based on the lecture,
and do it in class.”  (Alcock & Simpson, 2001, p. 104)

To renegotiate the didactic contract takes effort on the part of the teacher.  In the
method of scientific debate, a way of teaching calculus/analysis to first-year French
university students that emphasizes conjecture, discussion, and argument and culminates
in proof, this new contract is clearly delineated for the students in the first few class
sessions.  In addition, the teacher must continue to act in accordance with the contract
and insist that students do so, too.  (Cf.  Tall, 1991, pp. 136-7, 224-229.)

In the process of renegotiating the didactic contract, one may want to consider the
related, but independently developed, ideas of classroom social norms and
sociomathematical norms.  Social norms refer to "those aspects of classroom social
interactions that become normative."  Every class develops these -- whether students  are
expected to sit quietly and take notes or that they should explain their thinking, offer
alternative explanations, and make sense of other students' reasoning.  Sociomathematical
norms are related specifically to mathematics.  In a traditional class, a sufficient
mathematical justification in response to "How did you get that?" might be "That's the
rule."   However, to promote the idea that explanations have to be mathematical, a
teacher might respond to a student's proposed interpretation of a differential equation by
saying, "Tell us why you made that conclusion" (Yackel, Rasmussen, & King, 2000).

Process-object duality.  There are many concepts in mathematics, such as
function, that can be viewed both as processes -- as having calculational or procedural
aspects -- or as objects -- as entities that can be acted upon, perhaps by other processes.
Often, the process, or its precursor in the form of some concrete action, is taught and
experienced first.  For example, function might first be encountered via concrete actions,

                                                          
5 The notion of a contract to describe and analyze the interactions of people goes back at least to Jean-
Jacques Rousseau who wrote about the social contract.
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for example, by computing x2+1 for some specific numbers, thought of as “first square
the number, then add 1.”  Subsequently, it may become possible to think in terms of
general inputs and outputs, without invoking a particular algorithm.  Later, functions may
come to be seen as objects in their own right, e.g., as things which can be acted upon, say
by a differential operator.  A great many individual concepts such as limits, sequences,
cosets, and quotient groups,  have been investigated using an action-process-object-
schema (APOS) view (see Dubinsky & McDonald, 2001).  Somewhat similarly, Sfard
(1991) has described an individual’s journey from an operational (process) to a structural
(object) conception as reification.

Often,  a single mathematical notation is used to designate both process and object
conceptions.  For example, 5+4x stands for the process of adding 5 to the product of 4
and x, as well as the result of that process.  In order to be able to deal with mathematics
flexibly, students need both the process and object views of many concepts, as well as the
ability to move between the two views when appropriate.  Concepts that can be viewed
both as processes and objects are sometimes called procepts (Tall, 1991).  Students need
our help -- in order to be aware of both process and object views and in navigating
successfully between them.

Differences and Similarities Between Research in Mathematics and Mathematics
Education

The following is a highly personal and eclectic perspective, detailing various
aspects of being in, and doing, research in both mathematics and mathematics education.
Since the most noticeable difference seems to be that there are no proofs in mathematics
education, I will begin there.

The roles of proofs, evidence, conjectures, and definitions.  Mathematicians
specialize in proofs, long deductive arguments, that establish the truth of theorems
(mathematical facts).  Mathematics education researchers rarely make long deductive
arguments, rather they look for regularities in the behaviors they observe and report their
observations and their conclusions.  These conclusions are necessarily tentative; they are
based on data collected using a variety of suitable methods.  Since the evidence (data) is
empirical, no single study can be conclusive.  One is looking for compelling evidence.
Even for a single study, whenever possible, data from several sources, such as one's own
field notes, audio- or videotapes, and interviews of participants, are compared to see
whether they all point to the same, or similar, conclusions -- a process known as
triangulation.  (For more details, see Schoenfeld, 2000, p. 648 or Schoenfeld, 2001, p.
234.)

Results in mathematics education calls (sic) for synthesis and interpretation in
ways unlike mathematics.  A mathematician, before using a result, typically does
no more than check its proof.  Unless an error is discovered, a result true one year
is true the next.  In mathematics education research, the situation is less clear-cut.
Even very careful observations only suggest, but do not prove, general principles.
Corroboration by other studies is important.  The discovery of additional information
can make what previously appeared firmly established, less so later.  (Selden & Selden,
1993, p. 432)
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 Mathematicians, perhaps after some initial observations, conjectures, and
experimenting with what seems interesting or important, make formal if-and-only-if
definitions that stabilize the concepts they investigate.  They work within formal systems,
whose axioms may have been inspired by the consideration of real world problems;
however, the results they deduce may, or may not, turn out to be applicable.
Mathematics education researchers, on the other hand, investigate and seek to describe
what's out there -- the learning/teaching of mathematics by actual students and teachers.
That means they are dealing with things in the world, and consequently, the definitions
they use are necessarily descriptive.

Definitions [in mathematics education research] do not have, perhaps cannot
have, mathematical precision.  (Try catching the meaning of "understanding" exactly.)
Redundancy can be useful, whereas in mathematics, it is usually avoided, possibly
because it impedes the comprehension of complex proofs.  Perhaps because of such
differences, those unfamiliar with education research occasionally dismiss as "jargon"
the introduction of concepts not easily expressible with mathematical precision.
(Selden & Selden, 1993, p. 432)

Issues involved in doing research and getting it published.  Mathematicians
rarely have to consider differing philosophical/theoretical perspectives.  While techniques
of proof may vary from one subfield to another, with proofs in analysis looking quite
different from those of algebraic topology, still there is a "gold standard" and it is proof.
By contrast, in mathematics education research a single situation can be analyzed from
several different philosophical/theoretical perspectives.  For example, a person's
knowledge can be viewed as something, perhaps ever changing, that exists "in the head."
Such knowledge might be seen as individually developed or as a socially and culturally
mediated, taking either a Piagetian or a Vygotskian stance.  (Cf.  Selden & Selden,
November 2001.)  The mind might even be viewed as some sort of information
processing device.  Or, one can view knowledge as situated, that is, as consisting of how
an individual interacts with, or functions in, various situations and consider learning to be
a kind of cognitive apprenticeship (Lave & Wenger, 1991).

Mathematicians do not need to worry about expenses associated with collecting
data.  Nor do they need to be concerned about ethical considerations making sure that the
research does no harm to participating students and teachers and that confidentiality is
maintained.  Along with this goes the hassle of satisfying the university's human subjects
committee or institutional review board that sometimes seems more intent on assuring
that the university not be sued, than on helping the research conduct a careful,
confidential, and ethical study.

Undergraduate and graduate students in mathematics learn, or do not learn, to
prove theorems by taking courses and seminars in which they are asked to prove
theorems.  As undergraduates, perhaps they have taken one "transition to proof" course.
They are not often asked to make reasonable, interesting conjectures.  Mathematics
education graduate students, on the other hand, often take at least one course in research
methodology, covering various qualitative and quantitative methods.  They may also
conduct small pilot studies in other courses.  They may have some practice, but probably
not enough, in formulating interesting, manageable, research questions.
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Furthermore, the way one presents one's research for publication, in mathematics
and mathematics education, also has similarities and differences.  It seems pretty clear-
cut in mathematics whether one has established what one has claimed -- either one has
presented an error-free proof or one hasn't.  This is not to say that refereeing a
mathematics manuscript is easy, but only that value judgments of a manuscript's worth
consist of whether a result is nontrivial, nonobvious, new, and interesting to a significant
number of a journal's readers.

For mathematics education research papers, on the other hand, in addition to
asking whether the authors have addressed an interesting question, there are other
considerations.  What theoretical framework have the authors used?  Is it appropriate for
the study at hand?  Have the authors chosen an appropriate methodology?  Have they
described it in sufficient detail that readers can tell the study was carefully executed?
What claims are they making?  What evidence do they marshal in support of these
claims?  Is that evidence appropriate?  Is the data presented in a clear and understandable
way?  Have the authors drawn appropriate inferences?  Do they indicate, via a literature
review, how their work relates to that of others on the same topic?  If they give
implications for teaching, are these based upon their research and/or other results found
in the literature?  If it's a quantitative study, are the statistical methods used appropriate?
If it's a qualitative study, does it provide "thick descriptions" of the students and what was
observed?  Is enough information and detail given so the study is replicable by others?
(Cf.  Hanna, 1998; Lester & Lambdin, 1998.)

It might seem that some of these questions are matters of common sense and
unlikely to be answered negatively.  But my own experience on the Editorial Panel for
the Journal for Research in Mathematics Education, reading some 15-20 manuscripts per
year, suggests any of them can have a negative answer.  Perhaps because the nature of
mathematics education research is not well understood, and sometimes the boundary
between what is and what is not such research is somewhat fuzzy, a number of people --
mathematics teachers, mathematicians, masters students in education -- submit their
interesting ideas for classroom use or poorly thought-out studies to mathematics
education research journals.

In addition, one usually needs more reviewers (referees) for a mathematics
education research manuscript -- usually, three to five, with four quite common.  Editors
need advice on several aspects of a manuscript, especially for those which are far
removed from their own expertise.  A given paper might need reviewers with expertise in
discourse analysis, socio-cultural perspectives, semiotics, or ethnography, or if there is
significant quantitative data, in statistics -- not to mention mathematics itself.  Reviewers
(referees) not only comment on what is wrong with a paper, but also make helpful
suggestions for its improvement, especially if the recommendation is "revise, resubmit,
re-review."  If a manuscript is not research, but contains useful ideas for teaching,
reviewers generally try to suggest publications that do have an interest in such work, e.g.,
The Mathematics Teacher or PRIMUS.  If the research addresses an interesting question,
but a reviewer finds problems with the methodology, he/she may advise using the work
as a pilot study or make suggestions for further investigation.

The emphasis seems to be on ensuring that only high quality work gets published,
while at the same time encouraging the development of researchers which are in short
supply.  This contrasts with my own experience with referees in mathematics;  I found
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comments on my early papers to be direct and to-the-point, but occasionally needlessly
acerbic.  Instead of feeling welcomed as a potential future colleague, a novice researcher
might well interpret such remarks as saying, "If you can't cut it, get out."  It seems that
such attitudes towards mentoring are not dead yet in mathematics departments at some
research universities.  Recently, the chair of Berkeley's mathematics department said,
"One of our goals is to cultivate self-reliance.  Berkeley is a tough place.  Berkeley is not
a warm and fuzzy place.  Students react to this atmosphere:  Some thrive, and others
don't."6

Public perceptions of the two fields.  Mathematics, and consequently research in
mathematics, has the advantage of being considered hard and potentially useful to science
and technology; ergo to the economy.  Furthermore, the history of mathematics goes back
thousands of years, giving it a well-established pedigree.  Mathematics education
research, on the other hand, is a relatively young field, even if one goes back to work in
psychology by Thorndike (1922).  Furthermore, much of that early research, done in the
connectionist and behaviorist traditions of psychology, is in what is today referred to as
the “agricultural model” in which one class of students, just like one field of corn, is
given some treatment, while another class is considered the control group.  Such studies,
which rarely concerned what was in students' minds, have not been found to be very
useful.  It is simply not as easy to control the variables when students, rather than corn
plants, are being considered.  Thus, the current foundations of mathematics education
research can really only be traced back about as far as the cognitive science revolution of
the 60's, or even somewhat later.  This lack of a long history and the variety of existing
research paradigms may contribute to confusion about what is and is not research.  And
while mathematicians are quite often held in awe (perhaps for the wrong reasons),
mathematics education researchers sometimes feel their work is misunderstood, if not
denigrated.  It is certainly no help when some on both sides of the "math wars" call on
differing bits of research to support entrenched political points of view about the teaching
and learning of school mathematics.

Some positives and negatives of being a mathematics education researcher.
Mathematics education researchers seem to have exceptionally high service demands put
on them.  Of course, both mathematicians and mathematics educators are called on for
their share of committee work and student advising.  Beyond that, mathematicians may
occasionally be called on to do such things as coach the Putnam Prize team or assist with
school mathematics contests.  Mathematics educators, while being much fewer in number
in a department of mathematics, are often called upon to train teaching assistants, conduct
workshops for teachers, supervise student teachers, and apply for education grants (that
almost always have a large component of mostly service, with a little research "around
the edges").

Despite a few negatives to becoming a mathematics education researcher, such as
greater service demands, there are a great many positives.  If one is doing research about
undergraduates' learning, one can find many interesting, potentially researchable,
questions arising out of one's teaching.  If one listens carefully and wonders why are
students doing or saying something, and if one further assumes that they are genuinely

                                                          
6 This remark was made at an NSF VIGRE workshop after a third-year review caused Berkeley to lose its
grant (Mackenzie, 2002, p. 1390).
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engaged in sense-making, then one may be led to a researchable question, especially as so
much research remains open at the undergraduate level.  This is not to say that a few
casual observations are research, but that appropriately reformulated, they can lead to
conjectures and research questions.  Contrast this with mathematics.  It is rare, except
perhaps at a major research university, to have conjectures or research ideas arise directly
out of one's interaction with students.

Another positive is the number of currently available, and perhaps soon-to-be
available jobs, in academia.  A survey of 48 institutions with doctoral programs in
mathematics education, conducted in 1999, reported that almost 80% of then-current
faculty would be eligible for retirement in the next ten years, with 38 (of the 48)
anticipating hiring a total of approximately 75 faculty members in the next five years
(Reys, Glasgow, Ragan, & Simms, 2001).  This does not include the many other
opportunities for mathematics education researchers, in mathematics and education
departments, at other colleges and universities in the U.S.  Freshly-minted mathematics
education PhD's of my acquaintance have gotten as many as half a dozen interviews at
top colleges and universities, whereas a new mathematics PhD may consider himself
lucky to get one or two.  The job prospects for mathematicians in academia, although
getting better, are hardly excellent.  This "acute shortage" of mathematics education
PhD's was highlighted in a recent AMS Notices article -- in each of the previous two
years, there were more than 300 advertised openings in mathematics education.  At the
University of Missouri-Columbia in the year 2000, for eight openings in mathematics,
including postdocs, there were over 400 applicants, whereas for three tenure-track
positions in mathematics education, there were fewer than twenty applicants (Reys,
2001).

The Kinds of Claims Made and Evidence Provided

In reports of quantitative studies, it is important that the researcher indicate
explicitly what indicator(s) have been used to measure a particular construct such as
student knowledge.  For example, test, examination, or course grades, a national test such
as the NAEP or NELS,7 a researcher-designed test/questionnaire, or some combination
thereof  might be used as indicators of student knowledge.  Researchers, and readers,
must use caution when interpreting correlations between proxy measures for such
concepts as student knowledge and teacher knowledge. 

For example, in the 70's several studies of the relationship between student
learning and teacher knowledge took as the indicator of teacher knowledge the number of
university-level mathematics courses successfully completed; using this indicator, no

                                                          
7The National Assessment of Educational Progress (NAEP), also known as "The Nation's
Report Card," is mandated by Congress and conducted by Educational Testing Service biennially to
provide a "snapshot" of what U.S. students in grades 4, 8, and 12 know
and can do.  The National Education Longitudinal Study (NELS:88) was conducted for the National Center
of Educational Statistics, part of the U.S. Department of Education, in 1988.  A 1 1/2 hour multiple-choice
test, covering reading, history, mathematics, and science, was given to thousands of 8th, 10th, and 12th
graders across the country; in addition, extensive questionnaire responses were gathered from students,
their parents, the school, and two of each student's teachers.
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relationship was found. In these studies, no attempt was made to measure what the
teachers actually knew, for example, by a research-designed test or task-based interviews.
At the time, Begle concluded, somewhat too hastily in retrospect, that "the effects of a
teacher's subject matter knowledge . . . seem to be far less (emphasis added) powerful
than most of us realized.  . . . Our attempts to improve mathematics education would not
profit from further studies of teachers."  (School Mathematics Study Group, NLSMA
Report, 1972; Begle, 1979; as cited in Fennema & Franke, 1992, p. 148)

Yet, subsequent studies of teachers' mathematical knowledge have proved
informative.  For example, an in-depth report of one senior preservice K-8 teacher who
had completed her first three years as a mathematics major, showed that despite wanting
to teach for both procedural and conceptual  knowledge, she could not give conceptual
explanations for common middle school topics, e.g., she had no conceptual explanation
of pi and did not know its relevance to the circumference and area of a circle (Eisenhart,
Borko, Underhill, Brown, Jones, & Agard, 1993).  Thus, it would seem that successful
completion of even a number of advanced college mathematics courses is not sufficient.
What is lacking?  Leping Ma's (1999) in-depth comparative study of 23 U.S. and 72
Chinese elementary school teachers reported that while both could do and explain
procedures, the vast majority of the Chinese teachers had a thorough conceptual
understanding of such topics as place value, whereas many of the U.S. teachers lacked
this.  Many other earlier studies (e.g., Ball, 1989; Lampert, 1990) had also found a lack of
conceptual understanding.8

What inferences might we draw?  One possibility is that undergraduate
mathematics courses aren't addressing the kinds of mathematical understanding K-8
teachers need.  Indeed, this is one of the conclusions of the National Research Council
Study, Adding It Up:  Helping Children Learn Mathematics (Kilpatrick, Swafford, &
Findell, 2001).  For details, see chapter 10, "Developing Proficiency in Teaching
Mathematics."

For both qualitative and quantitative research it is important for researchers to
explicitly describe their background assumptions, theoretical perspectives, the kinds of
research questions asked, their data collection and analysis methods, and to make a clear
argument that links their data to their conclusions.  (Cf:  Lester and Wiliam, 2000).  In
addition, in order for qualitative research with just a few students to be generalizable, the
researcher should provide "thick" descriptions of the students, the classroom situation,
the teaching, etc., so readers can judge for themselves whether their situations are
sufficiently similar to that of the researcher so as to use the results meaningfully.
Ultimately it is up to readers to determine whether the evidence presented in support of a
claim is convincing.  Of course, if an article is published in a reputable journal, a reader
has the assurance that at least the editor(s) and several reviewers have found the question
interesting, the claims made reasonable, and the evidence marshaled in support of them
convincing.  (See below, for a sampling of questions reviewers ask.)

                                                          
8 In a phenomenon inexplicable to some mathematics education researchers including one journal editor of
my acquaintance, the study reported in Leping Ma's (1999) book seems to have resonated with, and
disturbed, many U.S. mathematicians.  Whereas prior research studies reporting similar findings remain
virtually unknown to mathematicians, Ma's book has elicited numerous mentions and several reviews by
mathematicians (e.g., Howe, 1999), as well as an AMS news release (dated August 12, 1999) referring to
her study as "groundbreaking."
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It is sometimes said that qualitative research is mainly descriptive, that while it
can be useful for building theory, uncovering students' (mis-)conceptions, and suggesting
interventions, it cannot identify generalizable strategies for academic success.  Critics of
education research sometimes suggest that only rigorous controlled experimental, or
quasi-experimental, field research, often in the form of control group vs. experimental
group studies, should be used especially in making policy or curriculum decisions
(Carnine & Gersten, 2000).  They often look to medical research as the sine qua non, and
as a consequence, tend to label educational research as unscientific, especially when it is
qualitative, descriptive, and based on small numbers of students.  However, to a large
extent, studies which begin with one, or more, null hypotheses and students (somewhat)
randomly assigned to either the treatment or the control group, have been found
uninformative and have been given up within the mathematics education research
community (Schoenfeld, 1994;  Kilpatrick, 1992).  Furthermore, even in traditional
scientific disciplines, information can be gained by considering just a few cases.  For
example, recently an entirely new insect order -- the first since 1914 -- was named and
described based on just two extant museum specimens (Klass, Zompro, Kristensen, &
Adis, 2002).  Also in cognitive neuropsychology, studies of just one or two patients with
specific brain lesions can provide information on functions of small regions of the cortex.
(See for example, Dehaene, 1999, ch. 7.)

Furthermore, mathematics education research is not meant to be a "hard science"
in the sense of physics.  Results are often suggestive, and rarely predictive.  However,
information and insights are gained on a wide variety of questions using a variety of
research methods and theoretical perspectives.  Data are collected and analyzed, evidence
is provided, and arguments linking claims to that evidence are given.  Corroboration of
results by subsequent studies is important.  "Nevertheless, research in mathematics
education shares a powerful ‘pyramiding’ characteristic with other sciences; results rely
on careful observations, are separated from investigators' opinions, and are subject to
community scrutiny, so that subsequent work can be based on them (Selden & Selden,
2001, p. 238).

 A Sampling of Results from Research in Mathematics Education

The following is a potpourri of recent results, mostly from research in collegiate
mathematics education.  For topics such as functions, variable, calculus, linear algebra,
proof, problem solving, and assessment, it ranges over students' misconceptions, their
ways of thinking and working, their difficulties, the time needed to become flexible
knowers and users of mathematics, the effects of reform versus traditional calculus, and
the influences of beliefs, everyday language, gender, and the surrounding culture on the
teaching and learning of mathematics.

Variables and functions.  While secondary students' conceptions, and
misconceptions, in algebra have been quite well studied (see Kieran, 1992), less is known
about beginning college students' conceptions.  University mathematics courses usually
assume a good knowledge of high school algebra, in particular, an understanding of
variable as a general number, as a specific unknown, and as an indicator of a variable
quantity in a functional relationship.  While all these uses of variable are included in the
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secondary school curriculum, a study at a private Mexico university suggests these
distinctions are not clear to many incoming students (Trigueros & Ursini, in press).

Perhaps because functions play a central and unifying role in mathematics, there
have been many studies on what students do, and do not, know about functions at various
stages.  For example, beginning college students often have limited concept images that
include various polynomial examples, but usually not the constant function, as well as a
few other functions, such as log, exponential, and trig, that they have studied in class.

Research from France, England, Israel, Poland, and the United
States has revealed numerous common student misconceptions.
Functions are seen as rules with regularities; this is the “function
as formula” idea.  Functions are often identified with just one  representation
--  either the symbolic or the graphical.  A change in the independent
variable is seen as causing a change in the dependent variable, with the
consequence that constant functions are often not considered functions.
The vertical line test is used almost exclusively in determining
whether a given example is a function.  Even functions expressed via
polar coordinates are tested this way!  (Selden & Selden, 1993, p. 439 )

Furthermore, it seems to take even our best students until early in their graduate school
careers to exhibit a flexible knowledge of function, especially when confronted with an
unfamiliar problem.  Carlson (1998) found this when she interviewed students who had
just received A's in college algebra, second-semester honors calculus, and first-year
graduate mathematics courses.  (For more on functions, see Harel & Dubinsky, 1992;
Leinhardt, Zaslavsky, & Stein, 1990; or Thompson, 1994.)

Calculus.  Results on student learning of calculus abound.  For example,
Williams (1991) found U.S. college calculus students often had a dynamic view of limit
in terms of "approaching" which they were reluctant to give up, despite his attempts to
have them adopt a more formal view of limit by presenting them with situations to
engender cognitive conflict.  Although Williams did use the concept definition/concept
image distinction, he saw students' resistance to change as influenced by their prior
experiences with graphs of simple functions, the value they put on simple techniques for
getting answers, and on the tendency to view anomalous problems as minor exceptions to
the rules.

In a study about students' sources of conviction, college calculus students with
external sources of conviction, such as the teacher or text, viewed calculus as a collection
of facts and procedures to be memorized, claimed they neither understood nor valued the
underlying theory, and had misconceptions of limit as bound or unreachable.  In contrast,
those with internal sources of conviction, such as appeals to empirical evidence, intuition,
logic, or consistency, thought mathematics was supposed to make sense, that calculus
was logical and consistent, expressed frustration when told in class to use a formula but
not why it works, and paid a lot of attention to how formulas are derived and how
theorems are proved (Szydlik, 2000).

Students with at least two semesters of single-variable calculus were observed  as
they sketched the graphs of functions given information about their first and second
derivatives, limits, and continuity; they were also interviewed.  The students tended to
examine one interval at a time, using mostly facts about the first derivative, and found it
difficult to put together information across contiguous intervals.  Baker, Cooley, and
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Trigueros (2000) concluded these students had two distinct, but interrelated, schema  --
one for properties, the other for intervals -- which they had difficulty coordinating.

After teaching and studying a conceptual calculus course for first-year Australian
university students, White and Mitchelmore (1996) conjectured that a major source of
students' difficulties in applying calculus lies in an underdeveloped concept of variable --
variables are treated as symbols to be manipulated rather than as quantities to be related.
They suggested that entrance requirements for calculus courses be made more stringent in
terms of variable understanding or an appropriate precalculus course be offered at
university level.  Another paper reports on the effects on subsequent mathematics,
physics, and engineering courses of having three versions of calculus -- traditional,
Harvard, Calculus using Mathematica -- simultaneously available to students in both
small and large sections.  No significant difference in grades was found, regardless of the
variety of calculus studied.  Even allowing for switching between sections, the authors
believe "math departments are justified in teaching traditional and reformed calculus
concurrently" (Armstrong & Hendrix, 1999).

Everyday knowledge and intuition can get in the way.  Courses for preservice
teachers often include a some beginning concepts on sets and infinity.  These students
often think that "is an element of" is transitive; perhaps using their everyday experience
with "in," wherein if one has an aspirin in one's cosmetic bag inside one's purse, one
normally says one has an aspirin in one's purse (Zazkis & Gunn, 1997).  To make matters
worse, their teachers may use "in" for both "is an element of" and "contained in."

Using their prior experiences and intuitions, naive students generally use one, or
more, of three criteria -- inclusion, single infinity (i.e., all infinite sets have the same
cardinality), and 1-1 correspondence -- to judge the size of infinite sets.  In Israel, where
preservice secondary teachers routinely take a year-long traditional course on set theory,
the 1-1 correspondence criteria is presented as the method for determining cardinality,
often with total disregard for these students' pre-existing intuitions regarding infinity.
When interviewed after the course, students thought 1-1 correspondence was suitable for
comparing the cardinality of infinite sets, but this was not accompanied by an increased
tendency to reject other criteria, illustrating once again how hard it is to dislodge strongly
held incorrect intuitions (Tsamir, in press).

There are many more examples of recent research in undergraduate mathematics
education, including work on preservice teachers' beliefs and knowledge, on linear
algebra, the influence of language, and assessment.  (For a compact summary of
somewhat older results, see Selden & Selden, 1993, pp. 436-439.)

What RUME Might Have to Offer University Teachers of Mathematics

While research on undergraduate mathematics education is growing, it is a young
field and much more needs to be done.  Thus far, work has concentrated mainly on a few
areas, such as function, calculus, and pre-service teachers, that overlap with research at
the pre-university level.  Much less work has been done on undergraduate students'
attitudes, beliefs, and motivation; their understandings of, and difficulties with, concepts
from other content areas such as linear algebra, modern algebra, and real analysis; their
understandings and use of formal definitions; their approaches to nonroutine problem
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solving and proof; on teaching strategies that work; or on university teachers attitudes,
beliefs, and values.

Still, some hints and suggestions for teaching can be gleaned from existing
research, with more anticipated when more is known.  As Artigue has said,

. . . research carried out at the university level helps us to understand
better the difficulties in learning that our students have to face, the surprising
resistance to solutions of some of these difficulties, and the limits and
dysfunction of our teaching practices.   In various cases research has led
to the development of teaching designs that have proved to be effective,
at least in experimental environments.  (Artigue, 1999, p. 1384)

Studies make us aware of which mathematical concepts are students are likely to find
particularly difficult, and sometimes even why.  Sometimes it is everyday knowledge,
such as limit as a bound, that gets in the way of learning new concepts.  Other times, it is
earlier (tacitly assumed) techniques or conventions, such as how one establishes equality
of two objects, that provide an obstacle to new learning.

One thing seems pretty certain, there are no easy fixes to some of these problems.
While we would like inexpensive and easy solutions, most of the time these do not exist.
Most reform, or experimental, courses require significant changes and more effort on
both the teachers' and students' parts.

One essential reason is that the problems are not only with the content of
the teaching (it is not enough to write or adopt new textbooks); the problems
are related to the forms of students' work, the modes of interaction between
teachers and students, and the forms and contents of students' assessment.
Changes are not so easy to achieve; they require time and institutional
support, and they are not merely a matter of personal good will.  (Artigue,
1999, p. 1385)

However, I feel some small innovations, whether these be the use of writing prompts or
occasional group work, initiated by individual teachers can bring about worthwhile
learning experiences for students.

There is other work on cognitive conflict teaching, on problems/tasks from
research that one might use in one's teaching or assessment of students, on the care that
needs to be exercised when implementing technology in teaching, and on being careful
not to "dumb-down" curricula, especial problems and projects.

What I'd Like to See Happen:  Two Suggestions

In closing, I'd like to make two suggestions for our community to consider.  The
first comes from last year's AWM Louise Hay Awardee, Pat Shure, who made an
excellent suggestion in her invited address to this group.  I want to reiterate it very
emphatically.  Pat suggested that

 . . . we advocate for a Mathematical Education Research Institute [MERI]
modeled on the same principles as MSRI [Mathematical Sciences Research
Institute] whose funding comes primarily from NSF with additional support 
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from other government agencies, private foundations, and academic and
commercial sponsors.  The Institute would run programs to involve researchers
from all of the overlapping areas of mathematics education."  (Shure, 2001)

Finally, I'd like to put forth a suggestion that John and I have been thinking about
for a long time.  We know a number of excellent, dedicated university teachers of
mathematics who put a great deal of time and thought into developing courses, especially
single-section upper-division courses where there is great freedom to innovate.  Often
these are very successful.  However, knowledge of them disappears when the innovator
no longer teaches the course.  Such courses should be written up and preserved so they
can be replicated and others can benefit -- either in a print or on-line journal.  Our
suggestion is that the mathematician team up with a mathematics education researcher to
provide a detailed description of the course, explaining the ideas behind the innovation,
what new/different pedagogies were used, what materials were found to be effective,
what assignments/projects were undertaken by the students with what results.  But most
important of all, the authors should provide informed conjectures about why the course
was effective, using mathematics education research theory and results so informed
modifications can be made.  Although not their main purpose, such articles would
provide a published, and refereed, record of the "scholarship of teaching" for
tenure/promotion.

Thanks for listening.
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