
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

CLIFFORD AND GRASSMANN HOPF
ALGEBRAS VIA THE BIGEBRA PACKAGE

FOR MAPLE(R)

(REVISED AUGUST 2004)

RAFAL ABLAMOWICZ

AND

BERTFRIED FAUSER

DECEMBER 2002

No. 2002-5

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Clifford and Graßmann Hopf algebras via the

BIGEBRA package for Maple

Rafa l Ab lamowicz a and Bertfried Fauser b

aDepartment of Mathematics, Box 5054, Tennessee Technological University,
Cookeville, TN 38505, USA

bMax Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26
04103 Leipzig, Germany

Abstract

Hopf algebraic structures will replace groups and group representations as the lead-
ing paradigm in forthcoming times. K-theory, co-homology, entanglement, statistics,
representation categories, quantized or twisted structures as well as more geomet-
ric topics of invariant theory, e.g., the Graßmann-Cayley bracket algebra, are all
covered by the Hopf algebraic framework. The new branch of experimental math-
ematics allows one to easily enter these fields through direct calculations using
symbolic manipulation and computer algebra system (CAS). We discuss problems
which were solved when building the BIGEBRA package for Maple and CLIFFORD 1

to handle tensor products, Graßmann and Clifford algebras, coalgebras and Hopf
algebras. Recent results showing the usefulness of CAS for investigating new and in-
volved mathematics provide us with examples. An outlook on further developments
is given.

Key words: BIGEBRA, CLIFFORD, Maple, Hopf algebra, Clifford bi-convolution,
Graßmann Hopf algebra, quantum Yang-Baxter equation, co-quasi triangular
structure

1 The CLIFFORD package is described in [3]
Email addresses: rablamowicz@tntech.edu (Rafa l Ab lamowicz),

Fauser@mis.mpg.de (Bertfried Fauser).
URLs: http://www.math.tntech.edu/rafal/ (Rafa l Ab lamowicz),

http://clifford.physik.uni-konstanz.de/~fauser (Bertfried Fauser).

Preprint submitted to Elsevier Science August 17, 2004

1 Aim of the paper

The first aim of this paper is to present the features of BIGEBRA, a Maple
package. BIGEBRA was built to deal with tensored Clifford and Graßmann al-
gebras, and it relies on CLIFFORD [1,2]. While the emphasis here is more on the
package, we nevertheless provide novel results in the last section on quantum
Yang-Baxter equations derived from a Clifford bi-convolution. CLIFFORD and
BIGEBRA are meanwhile available for Maple V, 6, 7, 8, and 9. 2

Secondly, we will not pass an opportunity to mention the subject of experimen-
tal mathematics. We strongly believe that experimental mathematics based on
algorithmic approach has already been been changing research and teaching
of mathematics and theoretical physics [9]. The main aspects of experimental
mathematics, in our view, are as follows:

Computations

Various results have been achieved by brute force calculations. CAS simplifies
difficult computations with non-commutative algebras, and it allows one to
tackle problems impossible for hand calculations. It makes fewer errors and
its results can be validated. A CAS cannot and does not replace knowledge of
the mathematics behind the problem and it requires that all concepts be well
defined and sound.

Checking Assertions

Having a CAS at hand, one can easily check one’s own assertions. A single
counter-example uncovers one’s misconceptions and leads to a more sound
understanding of the subject. Indeed, when checking a theorem on examples,
one can occasionally find that it is not valid or that it has not been correctly
formulated. This in turn helps with finding errors in the computer code (Never
trust any result generated by a computer!) and/or with coming up with a
proper formulation of such ill-stated theorem.

Developing New Mathematics

It has proved to be necessary to develop new mathematics for solving problems
in physics. For example, we have introduced the Hopf gebra as a weakened
form of a Hopf algebra. Using a CAS this was done by first exploring the
set of principles which yielded correct physical results and then by fixing the
mathematics of the new structure.

2 Package homepage is located at http://math.tntech.edu/rafal/. Maple(R) is
available from http://www.maplesoft.com.

2

Teaching

Having a well developed CAS, it can be useful in teaching! Students can check
their own prejudices by exemplifying them directly on a computer. This re-
quires a stable code which does not allow for illegal input, etc. CLIFFORD′s
code is stable while BIGEBRA still needs knowledge of the user because to
gain speed, type and input checking is hardly done since it is time consuming.
Hence, CLIFFORD (and with some restrictions BIGEBRA) can be effectively used
in teaching Graßmann and Clifford algebras and cogebras. Students can make
their own experiments and develop –given a CAS which is stable under sil-
ly input– a sound understanding of the mathematical structures in question.
Teaching mathematics or physics using a CAS allows one to abstract from
technical details on the first approach. However, if the goal is that students
develop an understanding of the topic, they should be encouraged to recalcu-
late by hand and to recode themselves. Otherwise no deep understanding will
ensue. A good example how this can be achieved is [22].

Experimental Mathematics

Having the opportunity to deal with a CAS opens a field of experimental
mathematics. This includes partly the other topics given above but it should
not be underestimated due to its own dynamics. Exploring mathematics by
doing particular experiments and by strengthening or weakenning one’s own
assumptions is of extreme value as it allows one to enter a new mathematical
field quickly and in a reliable way.

Algorithmic Understanding

We share a growing belief [11] that computer usage not only allows one to
successfully complete non-trivial computations but also, through a develop-
ment of algorithms, contributes to a better understanding of the problem. The
so called algorithmic approach leads to achieving a computational proficiency
that in turn leads to a deeper mastery of the subject on the theoretical level.

2 The BIGEBRA package

We concentrate in this article on BIGEBRA and its features which generally go
beyond those of CLIFFORD and Maple. We assume that the reader is somewhat
familiar with the syntax and features of Maple, see, e.g., [22], while CLIFFORD

is described in [3].

The package loads with the following commands while the linear algebra pack-
age linalg is loaded for convenience only. CLIFFORD needs to be loaded first

3

to assure functionality of BIGEBRA:
> restart:with(Clifford):with(linalg):with(Bigebra);

[&cco, &gco, &gco d , &gco pl , &map, &v , EV , VERSION , bracket , contract ,

drop t , eps, gantipode, gco unit , gswitch, hodge, linop, linop2 , lists2mat ,

lists2mat2 , make BI Id , mapop, mapop2 , meet , op2mat, op2mat2 , pairing,

peek , poke, remove eq , switch, tcollect , tsolve1]

The output is a list with available functions; some of them are for internal use
only. CLIFFORD and BIGEBRA come with an extensive online help page system
which is included in the Maple online help and can be searched. It contains
not only the syntax of the procedures but even a good deal of unpublished
mathematics. It is meant to present to the user the mathematical concepts
at hand. Help topics may be reached in Maple fashion with the command
?Bigebra followed by the enter key.

2.1 Tensor product

Given the functionality of CLIFFORD to compute with Clifford algebras, we
need two more key features to enter the realm of bi- and Hopf algebras. The
first one is the tensor product and some functions to manipulate it with while
the second is the coproduct. The latter, however, follows naturally from the
algebra structure on the linear dual space [16].

Maple comes with a define facility whose function is to introduce ampersand
operators &<name> that are associative (flat), commutative (orderless), linear
or multilinear. This facility unfortunately has two drawbacks:

• It cannot deal with user-defined scalars (ring elements). This is mathemati-
cally insensitive since any definition of a linear or multilinear function must
include a linearity with respect to “scalars” that one wants to compute
with. For example, we want to consider multilinear and associative tensor
products over arbitrary rings such as the integers, polynomial rings etc.

• It produces code which gives wrong output.

Therefore, BIGEBRA comes with its own define procedure. Remembering that
Graßmann basis multivectors are denoted as Id, e1, e2, ei, e1we2, e1we3,
eiwej,..., let us explore properties of the associative (flat) multilinear oper-
ators &t and &r (comments in the code are separated by #).

In CLIFFORD and BIGEBRA almost everything can be treated as scalars, hence
one can compute over function spaces etc. A generic tensor product of BIGEBRA
is given by &t.
> out[1]:=e1+e2 &t e3, &t(e1+e2,e3):
> out[2]:=&t(&t(-e1)):

4

> out[3]:=&t(2.5*e1):
> out[4]:=&t(a*e1+2*e2,sin(phi)*e3):
> out[1];out[2],out[3];out[4];

e1 + (e2 &t e3), (e1 &t e3) + (e2 &t e3)

−&t(e1), 2.5 &t(e1)

a sin(φ) (e1 &t e3) + 2 sin(φ) (e2 &t e3)

The patched define which ships with BIGEBRA can handle tensor products
over quite general rings. Here we give an example where we define a tensor
product &r over the polynomial ring Z[x] with integer coefficients.
> ‘type/mydomain‘:=proc(expr) type(expr,polynom(integer,x)) end proc:
> define(‘&r‘,flat,multilinear,domain=’mydomain’):
> out[1]:=type(2*x+3*x^5+5,mydomain): #true since in Z[x]
> out[2]:=type(x/2 ,mydomain): #false since fraction
> out[3]:=type(2*y^2+3*y-1,mydomain): #false wrong indeterminate
> out[1],out[2],out[3];

true, false, false

Now we are ready to use the new tensor product &r over Z[x] :
> out[1]:=&r(2.5*x,4*y):
> out[2]:=&r(3*x^2-x+5,x-x^4):
> out[3]:=&r(3*y*x^2-x-5,x*y-x^4):
> out[1];out[2];out[3];

4 x (2.5 &r y)

3 x3 (1 &r 1)−3 x6 (1 &r 1)−x2 (1 &r 1)+x5 (1 &r 1)+5 x (1 &r1)−5 x4 (1 &r 1)

3 x3 (y &r y)−3 x6 (y &r 1)−x2 (1 &r y)+x5 (1 &r 1)−5 x (1 &r y)+5 x4 (1 &r 1)

Observe, that real numbers like 2.5 or the variable y are still not treated as
scalars but integers and x belonging to Z[x] are.

2.2 Basic tools

Having defined a tensor product, we need to have tools for operating with
tensors. Let us fix notation as follows: A single term having no prefactors
&t(b1,...,bn), where b1, . . . , bn are Graßmann basis multivectors, will be
called a tensor basis monom or a word that is composed from letters of the
Graßmann multivector alphabet. A tensor monom is a tensor basis monom
with a “scalar” prefactor where “scalar” means a ring element, a function, a
polynomial, or just a number. A tensor polynom, or just a tensor, is a sum

5

of tensor monoms. It is the multilinearity that guarantees that every tensor
can be written as a linear combination of some tensor basis monoms (Hilbert
basis theorem). The i-th place in a list of arguments of a tensor will be called
the i-th slot .

Acting on a tensor means:

• Removing or grafting of terms from or into a tensor
• Rearranging the tensor
• Acting with operators on n-slots producing m-slots

The first set of operations is given by peek and poke. They work as expected:
peek takes as an argument a number of the slot which it intends to remove
and returns a sequence of lists of the removed terms and the remaining tensor.
Procedure poke needs three arguments: a tensor, a Graßmann multivector
which will be put into the i-th place, and the slot number i.
> f:=x->’peek’(x,2):x:=&t(e1,a*e2+b*e3,e3):f(x)=eval(f(x));

peek(&t(e1 , a e2 , e3)+&t(e1 , b e3 , e3), 2) = ([a e2 , e1 &t e3], [b e3 , e1 &t e3])

> g:=x-> ’poke’(x,e2,3):x:=&t(e1,a*e2+b*e3):g(x)=eval(g(x));

poke((e1 &t a e2)+ (e1 &t b e3), e2 , 3) = &t(e1 , a e2 , e2)+&t(e1 , b e3 , e2)

The second group of operations consists of switches –also called crossings or
braids– which allow to reorder the tensors. In any CAS, it would be easy, say,
to multiply the i-th and the j-th slots of a tensor and place the output into
the k-th slot. However, mathematical reasons disallow such a brute method.
If one demands that any reordering process be generated from the reordering
rules of generators, one has to assume that a crossing is a natural transfor-
mation in a functorial sense and obeys coherence, see [12–14]. In fact these
two conditions imply the quantum Yang Baxter equation which is discussed
below. The Graßmann Hopf algebraic graded crossing and the ordinary switch
(swap) of two elements fulfill these properties.

The switch procedure swaps two adjacent tensor slots in a general tensor
polynomial, while the graded switch gswitch respects the grading of the fac-
tors. Both functions take as a second argument i, the number of the tensor
slot to act on, that is, to switch the i-th and the (i + 1)-st tensor entries.
> f1:=x->’switch’(x,2):x:=&t(e1,e2,e3,e4):f1(x)=eval(f1(x));

switch(&t(e1 , e2 , e3 , e4), 2) = &t(e1 , e3 , e2 , e4)

> f2:=x->’gswitch’(x,2):x:=&t(e1,e2,e3,e4):f2(x)=eval(f2(x));

gswitch(&t(e1 , e2 , e3 , e4), 2) = −&t(e1 , e3 , e2 , e4)

6

> x:=&t(e1,e2,e3we4,e5):f2(x)=eval(f2(x));

gswitch(&t(e1 , e2 , e3we4 , e5), 2) = &t(e1 , e3we4 , e2 , e5)

Notice the different signs for switch and gswitch depending in the latter
morphism on the grading of the Graßmann multivector elements.

Furthermore, BIGEBRA allows to act with any operator on tensors. We distin-
guish such operations by the number of input and output slots. An ordinary
endomorphism is a 1 → 1 map while, e.g., a product is a 2 → 1 map. Func-
tions which are currently available are mapop and mapop2 for 1 → 1 and 2 → 2
operators, &map for 2 → 1 operators and contract for 2 → 0 operators. Let
us first show a linear operator proj1 acting on a certain tensor slot:
> proj1:=proc(x) vectorpart(x,1) end proc: L:=x->’mapop’(x,2,proj1):
> x:=&t(Id,e1+e1we2,e3):L(x)=eval(L(x));

mapop(&t(Id , e1 , e3) + &t(Id , e1we2 , e3), 2, proj1) = &t(Id , e1 , e3)

where vectorpart(x, n) projects on the n-vector part of x in the Graßmann
basis. Let us define a general element x in a Graßmann or Clifford algebra over
a two dimensional vector space and a general operator Rop given by its matrix
R in a co-contravariant canonical basis:
> restart:with(Clifford):with(linalg):with(Bigebra):
> dim_V:=2: #set dimension to 2
> bas:=cbasis(dim_V): #generate a list of basis monoms
> X:=add(x[i]*bas[i],i=1..2^dim_V): #general element
> R:=matrix(2^dim_V,2^dim_V,(i,j)->r[i,j]): #matrix with entries r[i,j]
> Rop:=proc(x) linop(x,R) end proc: #the operator Rop
> ’X’=X;’R’=evalm(R);

X = x1 Id + x2 e1 + x3 e2 + x4 e1we2

R =




r1, 1 r1, 2 r1, 3 r1, 4

r2, 1 r2, 2 r2, 3 r2, 4

r3, 1 r3, 2 r3, 3 r3, 4

r4, 1 r4, 2 r4, 3 r4, 4




The action of Rop on Graßmann multivectors and tensors is computed as
> out[1]:=Rop(Id):out[2]:=Rop(X):out[3]:=mapop(&t(e1,Id,e2),2,Rop):
> out[1];out[2];out[3];

r1, 1 Id + r2, 1 e1 + r3, 1 e2 + r4, 1 e1we2

(r4, 4 x4 + r4, 1 x1 + r4, 2 x2 + r4, 3 x3) e1we2 + (r1, 1 x1 + r1, 2 x2 + r1, 3 x3 + r1, 4 x4) Id

+ (r2, 1 x1 + r2, 2 x2 + r2, 3 x3 + r2, 4 x4) e1 + (r3, 2 x2 + r3, 3 x3 + r3, 4 x4 + r3, 1 x1) e2

r1, 1 &t(e1 , Id , e2)+r2, 1 &t(e1 , e1 , e2)+r3, 1 &t(e1 , e2 , e2)+r4, 1 &t(e1 , e1we2 , e2)

7

Operators may also be defined as any Maple procedure.

The next class of operations is the application of product maps, i.e., 2 → 1,
which have two adjacent entry slots and one output slot. Examples of such
operations which are predefined in BIGEBRA are the Graßmann and the Clifford
products, and the contractions. User defined functions may be applied also.
They are mapped onto tensors via the &map function which takes a tensor, the
slot number and the (product) function as input parameters:
> trm:=&t(Id,e1,e2,Id):
> out[1]:=‘&map(&t(Id,e1,e2,Id),2,wedge)‘,‘ --> ‘,&map(trm,2,wedge):
> out[2]:=‘&map(&t(Id,e1,e2,Id),2,cmul[K])‘,‘ --> ‘,&map(trm,2,cmul[K]):
> out[3]:=‘&map(&t(Id,e1,e2,Id),2,LC,K)‘,‘ --> ‘, &map(trm,2,LC,K):
> out[1];out[2];out[3];

&map(&t(Id , e1 , e2 , Id), 2 ,wedge), −− > , &t(Id , e1we2 , Id)

&map(&t(Id , e1 , e2 , Id), 2 , cmul [K]), −− > , &t(Id , e1we2 , Id)+K1, 2 &t(Id , Id , Id)

&map(&t(Id , e1 , e2 , Id), 2 ,LC ,K), −− > , K1, 2 &t(Id , Id , Id)

Note that the Clifford product cmul[K] and the left contraction LC(..., K) de-
pend on an arbitrary bilinear form K which is then passed on as an additional
parameter to the procedure &map. This mechanism can then be used to deal
with different Clifford algebras in different tensor slots.

As a last example of actions on tensors we examine the evaluation and other
2 → 0 mappings with values in the base ring. A very important case is given by
an evaluation which employs the action of dual elements w.r.t. the canonical
basis on multivectors. In fact one would need a new kind of basis vectors,
however, for technical reasons of the current version of BIGEBRA, it is the user
who has to take responsibility for keeping track of the tensor slots which are
to contain co(multi)vectors.
> out[1]:=[EV(Id,Id),EV(e1,e2),EV(e1,e1)]: # eval = Kronecker delta
> out[2]:=‘contract(&t(Id,e1,e1+e2+e3,Id),2,EV)‘, ‘ --> ‘ ,

contract(&t(Id,e1,e1+e2+e3,Id),2,EV):
> out[1];out[2];

[1, 0, 1]

contract(&t(Id , e1 , e1 + e2 + e3 , Id), 2 ,EV), −− > , Id &t Id

2.3 Graßmann Hopf algebra

A Graßmann Hopf algebra is a vector space that is a Graßmann algebra and
a Graßmann coalgebra fulfilling certain compatibility laws [21]. Since the al-
gebra side is well known, we give some explanation on the coalgebra side.

8

A coproduct on an algebra can be defined as the categorial dual of a product
via a bilinear form (pairing) defined on the vector space. This law is called
product coproduct duality [16]. Now, it is easy to check that covectors may
form a covector Graßmann algebra V ∨, where ∨ is the Graßmann exterior
product on co-multivectors. Using duality via the evaluation map 〈. | .〉 we
find

〈w | x ∧ y〉 = 〈w(1) | y〉〈w(2) | x〉,
〈w ∨ w′ | x〉 = 〈w | x(2)〉〈w′ | x(1)〉 (1)

where we have used Sweedler’s notation for the coproduct

∆(x) =
∑

(x)

x(1) ⊗ x(2)

with the summation symbol usually dropped. The evaluation map is given
by the function EV from the package. The Graßmann coproduct &gco is seen
to be a split of the homogeneous multivectors into pairs where the sign of
permutation is taken into account. We give one example with symbolic indices
a and b :
> &gco(eaweb);

(Id &t eaweb) + (ea &t eb) − (eb &t ea) + (eaweb &t Id)

The first compatibility law valid in a Hopf algebra is that the product is
an coalgebra homomorphism and the coproduct is an algebra homomorphism,
see [9]. Furthermore, an antipode S exists by definition in any Hopf algebra. An
antipode is a particular endomorphism of the vector space underlying the Hopf
algebra which is a convolutive inverse of the unit. In BIGEBRA, the antipode in
the Graßmann Hopf algebra is called gantipode and it is known to be equal
to the grade involution. We check this in dimension 2:
> dim_V:=2:
> ‘S^‘=matrix(2^dim_V,2^dim_V,(i,j)->EV(bas[i],gantipode(bas[j])));

Sˆ =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




> ‘Grade_Inv‘=matrix(2^dim_V,2^dim_V,(i,j)->EV(bas[i],gradeinv(bas[j])));

Grade Inv =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




9

The above described tools allow us to perform all algebraic manipulations in
a Graßmann Hopf algebra, also using symbolic indices.

2.4 Clifford bi-convolution

A Clifford bi-convolution Conv(B, C) for the given choice of two bilinear form-
s B and C is a space endowed with a Clifford algebra structure C`(B) and a
Clifford coalgebra structure co-C`(C). The Clifford product and the Clifford
coproduct are both unital and associative but not all such bi-convolutions
posses an antipode. 3 However if an antipode exists then one can prove that
the Clifford bi-convolution Conv(B, C) is a Clifford Hopf algebra [9,18]. Since
we are interested in Clifford algebras C`(B) over a general bilinear form B,
we will introduce the Clifford product via the Chevalley deformation [6]. Let
x be an element in V, the space of generators, and let u be a general element
in V ∧ (=

∧
V). Then, one defines the action of x on u as

γx ◦ u = ix(u) + x ∧ u

where ix is the inner product or contraction w.r.t. B given as LC(x,...). The
action is then extended to a map ◦ : V ⊗ V 7→ V by demanding that

ix(y) = B(x,y), iu∧v(w) = iu(iv(w))

ix(u ∧ v) = ix(u) ∧ v + û ∧ ix(v)

with û = (−1)∂uu being the grade involution, e.g., [9]. It is a remarkable fact
that this product can be directly defined via a deformation called cliffordiza-
tion by Rota and Stein [20]. It may also be called a Drinfeld twist, see below.
Using the undeformed Graßmann product ∧ and coproduct ∆ one can write

u ◦ v = B∧(u(2), v(1)) u(1) ∧ v(2)

∆∧ ∆∧
B∧

∧

Tangle 1. Rota sausage that defines the Clifford product

3 An antipode does not exist when det(1 − BC) = 0, see [10].

10

Here B∧ is the scalar valued bilinear form tied to the inner product B via the
counit ε as B∧(a, b) = ε(ia(b)). In particular, ε is a projection onto the scalar
part whereas ia(b) is the (left) contraction of b by a given as scalarpart and
LC(a,b), respectively. A collection of such generalized grade free product and
coproduct formulas can be found in [8]. We exemplify this in the BIGEBRA
package as follows: 4

> restart:with(Clifford):with(Bigebra):unprotect(gamma):

> Gamma:=proc(u) local x; x:=op(procname); LC(x,u)+wedge(x,u) end proc:

> out[1]:=gamma[e1](Id)=Gamma[e1](Id):

> out[2]:=gamma[e1](e2)=Gamma[e1](e2):

> out[3]:=gamma[e1](e2we3)=Gamma[e1](e2we3):

> out[1],out[2];out[3];

γe1 (Id) = e1 , γe1 (e2) = B1, 2 Id + e1we2

γe1 (e2we3) = B1, 2 e3 − B1, 3 e2 + e1we2we3

If we do the same using the cliffordization process, which we will make explicit
by defining a function cliff in order to avoid using the internal function cmul
that gives the Clifford product, we get
> cliff:=proc(x,y) local a1,a2,a3,a4,a5,a6,a7;

a1:=&gco(x);a2:=&gco(y); #applying Grassmann coproduct to each input
a3:=&t(a1,a2); #tensoring a1 and a2
a4:=contract(a3,2,scalarpart@LC); #contracting two inner tensor slots
a5:=&map(a4,1,wedge); #applying Grassmann wedge product to the two

#remaining tensor slots
a6:=drop_t(a5); #removing tensor symbol from 1-slot tensors
a7:=clicollect(simplify(a6)); #collecting and simplifying final result
return a7; #returning final result
end proc:

> out[1]:=e1 &C e2we3 = cliff(e1 ,e2we3):

> out[2]:=e1we2 &C e2we3 = cliff(e1we2,e2we3):

> out[1];out[2];

e1 &C e2we3 = B1, 2 e3 − B1, 3 e2 + e1we2we3

e1we2 &C e2we3 =

− (−B2, 2 B1, 3 + B2, 3 B1, 2) Id + B2, 2 e1we3 − B1, 2 e2we3 − B2, 3 e1we2

The most interesting structure which we can now access computationally with
the BIGEBRA package is that of a Clifford bi-convolution. In any pair (U, V) of
structures having a product on V ⊗ V and a coproduct on U, which need not
to be a bialgebra or Hopf algebra at all, one can define a convolution product
between morphisms f, g, . . . : U → V, see [9]. We consider here the Graßman-
n Hopf algebra and its endomorphisms, and define the star or convolution

4 See [3] for scalarpart, wedge, and LC procedures.

11

product ? of endomorphisms according to Sweedler [21] as

(f ? g)(x) = m ◦ (f ⊗ g) ◦ ∆(x)

where ◦ is the composition of maps. The element x can be dropped safely. Re-
member that the antipode is the convolutive inverse of the identity morphism
1V on V.

In the following we will compute an antipode for the Graßmann Hopf algebra,
for a twisted Graßmann Hopf algebra where only the product is deformed,
and for the Clifford bi-convolution where both structure maps, product and
coproduct, have been deformed. The last case is currently beyond the deforma-
tion theory, where only one structure map is deformed. We choose dimension 2
for the generating space which gives 4 dimensional Graßmann and Clifford al-
gebras. The output is suppressed in most steps since it is very long. In the first
step, defining equations for the three antipodes are stored in eq_gr, eq_cl and
eq_bc.
> dim_V:=2:bas:=cbasis(dim_V):

> B:=matrix(dim_V,dim_V,(i,j)->b[i,j]): #scalar product

> BI:=matrix(dim_V,dim_V,(i,j)->c[i,j]): #coscalar product

> make_BI_Id(): ## <== initialize the Clifford coproduct

> S:=matrix(2^dim_V,2^dim_V,(i,j)->s[i,j]): #antipode template

> Sop:=proc(x) linop(x,S) end proc: #operator using S

> X:=add(x[i]*bas[i],i=1..2^dim_V): #general element

> eq_gr:=drop_t(&map(mapop(&gco(X),1,Sop),1,wedge)-gco_unit(&t(X),1)):

> eq_cl:=drop_t(&map(mapop(&gco(X),1,Sop),1,cmul)-gco_unit(&t(X),1)):

> eq_bc:=drop_t(&map(mapop(&cco(X),1,Sop),1,cmul)-gco_unit(&t(X),1)):

In a second step we solve these equations using the BIGEBRA tangle solver
tsolve1:
> sol_gr:=tsolve1(clicollect(eq_gr),

[seq(seq(s[i,j], i=1..2^dim_V),j=1..2^dim_V)],[seq(x[i],i=1..2^dim_V)]):

> sol_cl:=tsolve1(clicollect(eq_cl),
[seq(seq(s[i,j], i=1..2^dim_V),j=1..2^dim_V)],[seq(x[i],i=1..2^dim_V)]):

> sol_bc:=tsolve1(clicollect(eq_bc),
[seq(seq(s[i,j], i=1..2^dim_V),j=1..2^dim_V)],[seq(x[i],i=1..2^dim_V)]):

Before we display these morphisms in a matrix form, we compute a normal-
ization factor N for the antipode Sbc of the Clifford bi-convolution to simplify
the output, which will be given as Sbc = NS ′

bc. Here the primed antipode S ′
bc

is the actual one and the unprimed one is the normalized one.
> N:=linalg[det](linalg[diag](1$dim_V)- B &* BI):

> S_GR:=subs(sol_gr[1],evalm(S)):

> S_CL:=subs(sol_cl[1],evalm(S)):

> S_BC:=map(simplify@expand,subs(sol_bc[1],N*evalm(S))):

> S_GR=evalm(S_GR),S_CL=evalm(S_CL),S_bc=map(simplify,evalm(S_BC));

12

S GR =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




, S CL =




1 0 0 b1, 2 − b2, 1

0 −1 0 0

0 0 −1 0

0 0 0 1




,

S bc =




−c2, 1 b1, 2 + 1 − c1, 2 b2, 1 + c2, 1 b2, 1 + c1, 2 b1, 2 0 0 b1, 2 − b2, 1

0 −1 0 0

0 0 −1 0

c1, 2 − c2, 1 0 0 1




Proposition 1 (dim V=2) The antipode Sbc of a Clifford bi-convolution is
up to a factor identical with the antipode S∧ of the Graßmann Hopf algebra
if and only if the cliffordization is performed with a symmetric scalar prod-
uct and a symmetric coscalar product (both derivable from a quadratic and a
coquadratic form via polarization in char 6= 2).

Corollary 1 The recursive formula for computing the antipode given by Mil-
nor and Moore [16] and currently used in the Connes-Kreimer renormalization
procedure cannot be applied in general to Clifford bi-convolutions with antisym-
metric part in the scalar and coscalar product

S(x) = ε(x) − x − S(x′
(1))x

′
(2), S(Id) = Id

where the primed coproduct is over proper cuts only, i.e., x′
(i) 6= Id.

Note however that bilinear forms having antisymmetric parts are involved in
the process of Wick normal ordering in QFT [7]. A CAS is a valuable help
here to find explicit examples of such structures.

3 Deformation and quantum Yang-Baxter equation

In this section we want to use BIGEBRA to make the relation between cliffordized
products, coproducts and standard deformation theory explicit. We keep the
definitions from the previous section, i.e., dim_V=2, the settings for the scalar
product B, the coscalar product BI, and the general element X. For further
reference we need an explicit form BW of the scalar product extended to

∧
V .

We also recall the matrix form of the Graßmann antipode, this time from the
BIGEBRA builtin function gantipode. We compute the convolutive inverse BS
of the bilinear form BW that will be needed later.
> BW:=matrix(2^dim_V,2^dim_V,(i,j)->EV(cmul(bas[i],bas[j]),Id)):

13

> S_Gr:=matrix(2^dim_V,2^dim_V,(i,j)->EV(bas[i],gantipode(bas[j]))):
> BS:=evalm(BW &* S_Gr):
> BW=evalm(BW),S_gr=evalm(S_Gr),BS=evalm(BS);

BW =




1 0 0 0

0 b1, 1 b1, 2 0

0 b2, 1 b2, 2 0

0 0 0 b2, 1 b1, 2 − b2, 2 b1, 1




, S gr =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




,

BS =




1 0 0 0

0 −b1, 1 −b1, 2 0

0 −b2, 1 −b2, 2 0

0 0 0 b2, 1 b1, 2 − b2, 2 b1, 1




Note that the convolutive inverse BS is just the scalar product w.r.t the neg-
ative bilinear form equal to the product of matrices BW and S_gr.

BW

BS

Tangle 2. Convolutive inverse of BW and BS

Proposition 2 Every exponentially generated endomorphism B has a convo-
lutive inverse BS = B ◦ S = S ◦ B.

A quasi triangular structure is an element R ∈ V ⊗ V which satisfies, among
others, the following condition:

ŝw ◦ ∆C`(x) = (R(1) ⊗ R(2)) ◦ ∆Gr(x) (2)

sw

∆C` =

∧ ∧R

∆Gr

Tangle 3. Definition of the quasi triangular structure R. Note that R = BS.

see, e.g., [15]. Note that our definition is somewhat different due to our reversed
ordering of tensor products of dual elements. The task is now to define a general

14

element R and try to compute all possible solutions to equation (2). Therefore
we begin by defining R.
> Y:=add(y[i]*bas[i],i=1..2^dim_V):

> R:=proc(x,y) local bas,tr_tbl; option remember;
bas:=cbasis(dim_V):
tr_tbl:=table([seq(op(Clifford:-extract(bas[i]))=i,i=1..2^dim_V)]);
R[tr_tbl[op(Clifford:-extract(x))],tr_tbl[op(Clifford:-extract(y))]]

end proc:

> RR:=add(add(contract(&t(bas[i],bas[j]),1,R)*
&t(bas[i],bas[j]),i=1..2^dim_V),j=1..2^dim_V):

Now the actual computation starts by evaluating the l.h.s. and r.h.s. of (2):
> Leq:=gswitch(&cco(X),1):

> Req:=&map(&map(switch(switch(&t(RR,&gco(X)),2),1),3,wedge),1,wedge):

Note that in the right hand side of the equation Req, two switches were used
to put R between the x(i)’s of the coproduct and are not part of formula (2)
while the graded switch in the l.h.s. of the equation Leq is generic. This time
we show directly how to solve tangle equations:
> eq:=tcollect(Leq-Req):

> vars:={seq(seq(R[i,j],i=1..2^dim_V),j=1..2^dim_V)}:
> T:={seq(seq(&t(bas[i],bas[j]),i=1..2^dim_V),j=1..2^dim_V)}:
> CO:={seq(x[i],i=1..2^dim_V)}:
> sys:={}:
> for t in T do

for co in CO do
sys:={op(sys),coeff(coeff(eq,t),co)};

end do:end do:

> sol:=solve(sys,vars):

> matR:=matrix(2^dim_V,2^dim_V,(i,j)->R[i,j]):

> ‘R‘=subs(sol,evalm(matR));

R =




1 0 0 0

0 −c1, 1 −c2, 1 0

0 −c1, 2 −c2, 2 0

0 0 0 c2, 1 c1, 2 − c2, 2 c1, 1




We have put the solution once more into the matrix form for convinience.
Inspection of this result shows that our R is the convolutive inverse of the
coscalar product, and hence, it is exponentially generated. In fact it is an
axiom of a quasi triangular structure that a convolutive inverse exists. We can
check our assertion explicitly for arbitrary exponentially generated operators

S ◦ exp K = exp(−K)

for any bilinear form K.

15

> eq1:=gco_unit(gco_unit(&t(X,Y),2),1):
> eq2:=simplify(drop_t(contract(contract(&t(&gco(X),&gco(Y)),

2,scalarpart@cmul[-K]),1,scalarpart@cmul[K])))*Id:
> is(eq1=eq2);

true

Corollary 2 The (co-)cliffordizations with respect to (co-)bilinear forms −K
and K are convolutive inverse w.r.t. the Graßmann Hopf convolution.

We are now ready to check that our quasi triangular structure fulfills the
quantum Yang Baxter equation. We do this first for the graded switch of the
Graßmann Hopf convolution, which is trivially a braid. We compute
> Z:=add(z[i]*bas[i],i=1..2^dim_V): eq0:=&t(X,Y,Z):
> eq1:=gswitch(gswitch(gswitch(eq0,1),2),1):
> eq2:=gswitch(gswitch(gswitch(eq0,2),1),2):
> is(eq1=eq2);

true

=

Tangle 4. Quantum Yang Baxter equation – The crossing may be the switch or any
deformed switch, see below.

where we have not shown the cumbersome terms but simply checked that both
sides evaluate to the same result, which establishes the assertion.

sw =⇒ sw

BS

Tangle 5. Left tangle depicts the switch, while the right tangle defines the deformed
switch Bsw.

Now we compute the quantum Yang Baxter equation for Bsw, a deformed
crossing defined in Tangle 5.

Bsw12Bsw23Bsw12 = Bsw23Bsw12Bsw23.

To check this assertion we calculate with BIGEBRA :
> bw:=proc(x,y) local i,j;

16

add(add(BW[i,j]*EV(bas[i],y)*EV(bas[j],x),i=1..2^dim_V),j=1..2^dim_V)
end proc:

> Bsw:=proc(x,i) tcollect(gswitch(contract(&gco(&gco(x,i+1),i),i+1,bw),i))
end proc:

> eq3:=Bsw(Bsw(Bsw(eq0,1),2),1):

> eq4:=Bsw(Bsw(Bsw(eq0,2),1),2):

> is(eq3=eq4);

true

which proves our claim in dim_V=2. As a last demonstration, we check the
remaining properties of a quasi triangular structure to be valid for an expo-
nentially generated endomap where RS is the convolutive inverse of R.

R(S(a), b) = RS(a, b), RS(a, S(b)) = R(a, b), R(S(a), S(b)) = R(a, b).

Hence we generate the endomap ‘R’ and apply to its arguments the Graßmann
antipode:

> R:=’R’:

> out[1]:=‘R‘=matrix(2^dim_V,2^dim_V,(i,j)->
scalarpart(cmul[R](bas[i],bas[j]))):

> out[2]:=‘RS‘=matrix(2^dim_V,2^dim_V,(i,j)->
scalarpart(cmul[R](gantipode(bas[i]),bas[j]))):

> out[1];out[2];

R =




1 0 0 0

0 R1, 1 R1, 2 0

0 R2, 1 R2, 2 0

0 0 0 R2, 1 R1, 2 − R2, 2 R1, 1




RS =




1 0 0 0

0 −R1, 1 −R1, 2 0

0 −R2, 1 −R2, 2 0

0 0 0 R2, 1 R1, 2 − R2, 2 R1, 1




> out[3]:=‘RSS‘=matrix(2^dim_V,2^dim_V,(i,j)->
scalarpart(cmul[R](gantipode(bas[i]),gantipode(bas[j])))):

> out[4]:=‘SR‘=matrix(2^dim_V,2^dim_V,(i,j)->
scalarpart(cmul[R](bas[i],gantipode(bas[j])))):

> out[3];out[4];

17

RSS =




1 0 0 0

0 R1, 1 R1, 2 0

0 R2, 1 R2, 2 0

0 0 0 R2, 1 R1, 2 − R2, 2 R1, 1




SR =




1 0 0 0

0 −R1, 1 −R1, 2 0

0 −R2, 1 −R2, 2 0

0 0 0 R2, 1 R1, 2 − R2, 2 R1, 1




Comparing the matrix representations gives us the desired result when we
recall that the convolutive inverse is given by the ‘scalar product‘ -R on the
generating space.

We can compute along the same lines as exemplified above the Yang Baxter
matrix, a 16 by 16 matrix, which represents the action of R on V ⊗V. Since the
output of these computations is quite lengthy we will give only some further
results and not the explicit matrix. The actual worksheet is available from the
home page of the second author.

Remark 1 The Yang Baxter matrix of our 2 dimensional example has de-
terminant 1 and is a function of all four parameters of the quasi triangular
structure R.

A further question is, if this structure is really quasi triangular or only trian-
gular. Due to our reversed indexing in duals, we have to check for triangularity
to see whether the Yang Baxter matrix squares to the unity.

Remark 2 The Yang Baxter matrix of our 2 dimensional example is trian-
gular if and only if the exponentially generated endomap is derived from a
symmetric bilinear form on the generating space. This has deep implications
for ordering process in quantum field theory, see [7].

We expect such assertions to be true in higher dimensions, though that needs
an algebraic proof. However, having solutions in low dimensions allows in
many cases to prove by induction a general hypothesis. This is the step from
experimental mathematics to ‘pure’ mathematics.

18

4 Conclusions

The present paper was intended to show how a CAS allows to ask questions
of research interest and to come up with low dimensional solutions. During
this process we have worked out examples showing how to use the BIGEBRA

package and how to attack more advanced problems.

We hope that it became obvious from our presentation of the CLIFFORD [3]
and BIGEBRA packages that the ability to compute, via a CAS, allows to build
a sound knowledge about mathematical problems and that there is a need for
experimental mathematics in education and research.

This article is, due to restrictions in space, obviously not able to give a com-
plete review of all abilities of the CLIFFORD and BIGEBRA packages. Therefore
the interested reader is invited to check the package home page 5 for the doc-
umentation. Both packages come with a built-in online help where, for every
function, syntax, synopsis and examples, and sometimes a more advanced
mathematical background is provided. A printable ps or pdf version of over
500 pages is available there also. For those who wish to have a look at and
a feel for the packages, there is a possibility to access them online over the
web 6 .

There are tremendously many open problems coming with a bi-convolution of
mathematical and physical type. It is not yet clear, under which conditions
antipodes exist in higher dimensions. In dimension 3 a Clifford bi-convolution
has in general no antipode, hence further relations between scalar and coscalar
product have to be found. Only very little is known about the nature of the
crossings derived from antipodal bi-convolution, but see [10]. The axiomatics,
in terms of morphims and category theory of Clifford bi-convolutions, is under
consideration but not yet finished [17,19]. Clifford bi-convolutions are deeply
connected to the renormalization process of the quantum filed theory. Howev-
er, there one has to go beyond the scheme presented in this paper, see [4,5]. A
CAS and especially CLIFFORD and BIGEBRA are ideally suited to explore this
exciting field.

Finally we want to emphasize that the present article contains Maple output
(with only a minor TEX cosmetics) which was generated by processing a Maple
worksheet.

Acknowledgment: The second author, B.F., acknowledges gratefully finan-
cial support from University of Konstanz, LS Prof. Heinz Dehnen, to present

5 url: http://math.tntech.edu/rafal/
6 url: http://clifford.physik.uni-konstanz.de/~ fauser

19

a preliminary version of this paper at the ACA 2002 in Volos, Greece.

References

[1] Ab lamowicz, R., and Fauser, B.: CLIFFORD - A Maple Package. Tennessee
Technological University, http://math.tntech.edu/rafal/ (2004)

[2] Ab lamowicz, R., and Fauser, F.: BIGEBRA - A Maple Package. Tennessee
Technological University and University of Konstanz,
http://math.tntech.edu/rafal/ (2004)

[3] Ab lamowicz, R., and Fauser, B.: Mathematics of CLIFFORD - A Maple Package
for Clifford and Graßmann Algebras. Submitted (2004)

[4] Brouder, Ch.: A quantum field algebra, math-ph/0201033

[5] Brouder, Ch., Fauser, B., Frabetti, A., and Oeckl, R.: Quantum field theory and
Hopf algebra cohomology [formerly ‘Let’s twist again’] J. Phys. A: Math. Gen:
37(22) (2004) 5895–5927, hep-th/0311253

[6] Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Collected
Works Vol. 2, Pierre Cartier, Catherine Chevalley, eds. (Springer-Verlag, Berlin,
1997)

[7] Fauser, B.: On the Hopf-algebraic origin of Wick normal-ordering, Journal of
Physics A: Mathematical and General 34 (2001) 105–115, hep-th/0007032

[8] Fauser, B.: Grade free product formulae from Graßmann-Hopf gebras, in
Clifford Algebras, R. Ab lamowicz, ed. (Birkhäuser, Boston, 2004) 279–303

[9] Fauser, B.: A Treatise on Quantum Clifford Algebras (Habilitationsschrift,
Konstanz, 2002), arXiv:math.QA/0202059

[10] Fauser, B., and Oziewicz, Z.: Clifford Hopf gebra for two dimensional space,
Miscellanea Algebraicae 2(1) (2001) 31–42, math.QA/0011263

[11] Gruel, G.-M., and Pfister, G.: A Singular Introduction to Commutative Algebra
(Springer-Verlag, New York, 2002)

[12] Kelly, G.M., and Laplaza, M.L.: Coherence for compact closed categories,
Journal of Pure and Applied Algebra 19 (1980) 193-213

[13] Lyubashenko, V.: Modular transformations for tensor categories, Journal of
Pure and Applied Algebra 98 (1995) 279–327

[14] Lyubashenko, V.: Tangles and Hopf algebras in braided categories, Journal of
Pure and Applied Algebra 98 (1995) 245–278

[15] Majid, S.: Foundations of Quantum Group Theory (Cambridge University
Press, Cambridge, 1995)

20

[16] Milnor, J.M., and Moore, J.C.: On the structure of Hopf algebras, Annals of
Mathematics 81 (1965) 211–264

[17] Oziewicz, Z.: The Dirac operator as graph and the Clifford Hopf-gebra, in
Analysis of Dirac Operators, J. Ryan, and D. Struppa, eds. (Pitman, Research
Notes in Mathematics) 394 (Addison Wesley Longman Limited, Harlow, Essex,
1998)

[18] Oziewicz, Z.: Guest editor’s note: Clifford algebras and their applications,
International Journal of Theoretical Physics 40(1) (2001) 1–13

[19] Oziewicz, Z.: Operad of graphs, convolution and Hopf gebra, Contemporary
Mathematics 318 (2003) 175–197

[20] Rota, G.-C., and Stein, J.A.: Plethystic Hopf algebras, Proc. Natl. Acad. Sci.
USA 91 (1994) 13057–13061

[21] Sweedler, M.E.: Hopf Algebras (W. A. Benjamin, Inc., New York, 1969)

[22] Wright, F.: Computing with Maple (Chapman & Hall/CRC, Boca Raton, 2002)

Submitted: August 17, 2004; Revised: TBA.

21

