DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

A GENERALIZATION OF A GRAPH RESULT OF HALIN AND JUNG

DR. GALEN E. TURNER, III AND DR. ALLAN D. MILLS

SEPTEMBER 2003

No. 2003-4

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

A GENERALIZATION OF A GRAPH RESULT OF HALIN AND JUNG

GALEN E. TURNER III AND ALLAN D. MILLS

ABSTRACT. This paper provides a partial generalization to matroid theory of the result of Halin and Jung that each simple graph with minimum vertex degree at least 4 has K_5 or the octahedron $K_{2,2,2}$ as a minor.

1. INTRODUCTION

The matroid notation and terminology used here will follow Oxley [4]. For a graph G, the associated simple graph will be denoted by \widetilde{G} . Similarly, the simple matroid associated with a matroid M will be denoted by \widetilde{M} . We shall use $\delta(G)$ to denote the minimum vertex degree of a graph G. The purpose of this paper is to present an extension of the following result of Halin and Jung [1].

Theorem 1.1. If G is a simple graph such that $\delta(G) \geq 4$, then G has a K_5 - or $K_{2,2,2}$ -minor.

It is natural when attempting to extend a graph result concerning vertex degrees to matroid theory to allow cocircuit size to play the role of vertex degree in graph theory. We denote the minimum cocircuit size of a matroid M by $g^*(M)$.

Theorem 1.2. If M is a 3-connected binary matroid such that $g^*(M) \ge 4$, then M has a minor isomorphic to $M(K_{2,2,2})$, $M(K_5)$, $M^*(K_{3,3})$, or F_7 .

2. The Proof

The proof of Theorem 1.2 will use the following lemmas. The first is due to Hall [2].

Lemma 2.1. If G is a 3-connected graph, then G has no $K_{3,3}$ -minor if and only if either G is planar or $\widetilde{G} \cong K_5$.

The remaining three lemmas are results of Seymour [5] and they are restated as Proposition 11.2.3, Lemma 11.2.8, and Theorem 13.2.2 in [4].

¹⁹⁹¹ Mathematics Subject Classification. 05B35.

	г	1	1	0	Ο	1		Γ	1	1	1	0	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	
$A_{10} =$	I_5	1	1	1	0	1		I_6	1	1	0	1	0	0	
		1	1	1	1	0	Λ		1	0	0	0	1	0	
		0	1	1	1	1	$A_{12} =$		0	1	0	0	0	1	
		1	0	1	1	1								1	
		1	0	0	T	1			0	0	0	1	1	1	

FIGURE 1. GF(2) representations of R_{10} and R_{12} .

Lemma 2.2. If M is a 3-connected binary matroid, then M has no F_7^* -minor if and only if either M is regular or $M \cong F_7$.

The next lemmas involve the matroids R_{10} and R_{12} . The matrices A_{10} and A_{12} shown in Figure 1 are GF(2)-representations of R_{10} and R_{12} , respectively.

Lemma 2.3. Let e be an element of R_{10} . Then $R_{10}/e \cong M^*(K_{3,3})$.

Lemma 2.4. Let M be a 3-connected regular matroid. Then either M is graphic or cographic, or M has a minor isomorphic to one of R_{10} and R_{12} .

Next we present the proof of Theorem 1.2.

Proof. Let M be a 3-connected binary matroid such that $g^*(M) \ge 4$. Suppose $M = M^*(G)$ for some graph G and has no minor isomorphic to $M^*(K_{3,3})$. Then G has no minor isomorphic to $K_{3,3}$. It follows from Lemma 2.1 that either G is planar or $G \cong K_5$. Thus M is either graphic or $M \cong M^*(K_5)$. If M is graphic then Theorem 1.1 implies that M has an $M(K_5)$ -minor or an $M(K_{2,2,2})$ -minor. On the other hand, if $M \cong M^*(K_5)$, then M has cocircuits of size 3; a contradiction. We conclude that the result holds if M is cographic.

Now suppose M is a 3-connected regular matroid and $g^*(M) \ge 4$. Then Lemma 2.4 implies that M is either graphic or cographic, or has a minor isomorphic to R_{10} or R_{12} . Since the result holds if M is graphic or cographic, we may assume that M has a minor isomorphic to R_{10} or R_{12} . If M has an R_{10} -minor then it follows from Lemma 2.3 that M has an $M^*(K_{3,3})$ -minor. We may now assume that M has an R_{12} -minor. As the matroid R_{12} is regular but not graphic, it follows that R_{12} has a minor isomorphic to $M^*(K_5)$ or $M^*(K_{3,3})$. Since R_{12} is self-dual, we conclude that it has an $M(K_5)$ - or $M^*(K_{3,3})$ -minor. Thus M has such a minor.

Now suppose M is a 3-connected non-regular binary matroid so that $g^*(M) \ge 4$. Then M has an F_7 - or F_7^* -minor. If M has an F_7 -minor then the result holds, so we may assume that M has an F_7^* -minor. It follows from Lemma 2.2 that $M \cong F_7^*$. However F_7^* has cocircuits of size 3; a

contradiction. We conclude that the result holds for all 3-connected binary matroids. $\hfill \Box$

ACKNOWLEDGEMENT

This work was partially supported by a T.T.U. Faculty Research Grant.

References

- Halin, R. and Jung, H. A., Über Minimalstrukturen von Graphen, insbesondere von n-fach zusammenhängenden Graphen, Math. Ann. 152 (1963), 75–94.
- [2] Hall, D. W., A note on primitive skew curves, Bull. Amer. Math. Soc. 49 (1943), 935–937.
- [3] Oxley, J. G., The binary matroids with no 4-wheel minor, Trans. Amer. Math. Soc. 301 (1987), 63-75.
- [4] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
- [5] Seymour, P. D., Decomposition of regular matroids, J. Combin. Theory. Ser. B 28 (1980), 305–359.

 $\label{eq:main} Mathematics \ Department, \ Louisiana \ Tech. \ University, \ Ruston, \ LA \ E-mail \ address: \ \texttt{gturner@coes.latech.edu}$

Mathematics Department, Tennessee Tech. University, Cookeville, TN $E\text{-}mail \ address: amills@tntech.edu$