A GENERALIZATION OF A GRAPH RESULT OF HALIN AND JUNG

DR. GALEN E. TURNER, III
AND
DR. ALLAN D. MILLS

SEPTEMBER 2003

No. 2003-4

A GENERALIZATION OF A GRAPH RESULT OF HALIN AND JUNG

GALEN E. TURNER III AND ALLAN D. MILLS

Abstract

This paper provides a partial generalization to matroid theory of the result of Halin and Jung that each simple graph with minimum vertex degree at least 4 has K_{5} or the octahedron $K_{2,2,2}$ as a minor.

1. Introduction

The matroid notation and terminology used here will follow Oxley [4]. For a graph G, the associated simple graph will be denoted by \widetilde{G}. Similarly, the simple matroid associated with a matroid M will be denoted by \widetilde{M}. We shall use $\delta(G)$ to denote the minimum vertex degree of a graph G. The purpose of this paper is to present an extension of the following result of Halin and Jung [1].

Theorem 1.1. If G is a simple graph such that $\delta(G) \geq 4$, then G has a K_{5} - or $K_{2,2,2}$-minor.

It is natural when attempting to extend a graph result concerning vertex degrees to matroid theory to allow cocircuit size to play the role of vertex degree in graph theory. We denote the minimum cocircuit size of a matroid M by $g^{*}(M)$.
Theorem 1.2. If M is a 3-connected binary matroid such that $g^{*}(M) \geq 4$, then M has a minor isomorphic to $M\left(K_{2,2,2}\right), M\left(K_{5}\right), M^{*}\left(K_{3,3}\right)$, or F_{7}.

2. The Proof

The proof of Theorem 1.2 will use the following lemmas. The first is due to Hall [2].

Lemma 2.1. If G is a 3-connected graph, then G has no $K_{3,3}$-minor if and only if either G is planar or $\widetilde{G} \cong K_{5}$.

The remaining three lemmas are results of Seymour [5] and they are restated as Proposition 11.2.3, Lemma 11.2.8, and Theorem 13.2.2 in [4].

[^0]\[

A_{10}=\left[$$
\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1
\end{array}
$$\right] \quad A_{12}=\left[I_{6} \left\lvert\, $$
\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}
$$\right.\right]
\]

Figure 1. $G F(2)$ representations of R_{10} and R_{12}.

Lemma 2.2. If M is a 3-connected binary matroid, then M has no F_{7}^{*} minor if and only if either M is regular or $M \cong F_{7}$.

The next lemmas involve the matroids R_{10} and R_{12}. The matrices A_{10} and A_{12} shown in Figure 1 are $G F(2)$-representations of R_{10} and R_{12}, respectively.

Lemma 2.3. Let e be an element of R_{10}. Then $R_{10} / e \cong M^{*}\left(K_{3,3}\right)$.
Lemma 2.4. Let M be a 3-connected regular matroid. Then either M is graphic or cographic, or M has a minor isomorphic to one of R_{10} and R_{12}.

Next we present the proof of Theorem 1.2.
Proof. Let M be a 3 -connected binary matroid such that $g^{*}(M) \geq 4$. Suppose $M=M^{*}(G)$ for some graph G and has no minor isomorphic to $M^{*}\left(K_{3,3}\right)$. Then G has no minor isomorphic to $K_{3,3}$. It follows from Lemma 2.1 that either G is planar or $G \cong K_{5}$. Thus M is either graphic or $M \cong M^{*}\left(K_{5}\right)$. If M is graphic then Theorem 1.1 implies that M has an $M\left(K_{5}\right)$-minor or an $M\left(K_{2,2,2}\right)$-minor. On the other hand, if $M \cong M^{*}\left(K_{5}\right)$, then M has cocircuits of size 3; a contradiction. We conclude that the result holds if M is cographic.

Now suppose M is a 3 -connected regular matroid and $g^{*}(M) \geq 4$. Then Lemma 2.4 implies that M is either graphic or cographic, or has a minor isomorphic to R_{10} or R_{12}. Since the result holds if M is graphic or cographic, we may assume that M has a minor isomorphic to R_{10} or R_{12}. If M has an R_{10}-minor then it follows from Lemma 2.3 that M has an $M^{*}\left(K_{3,3}\right)$-minor. We may now assume that M has an R_{12}-minor. As the matroid R_{12} is regular but not graphic, it follows that R_{12} has a minor isomorphic to $M^{*}\left(K_{5}\right)$ or $M^{*}\left(K_{3,3}\right)$. Since R_{12} is self-dual, we conclude that it has an $M\left(K_{5}\right)$ - or $M^{*}\left(K_{3,3}\right)$-minor. Thus M has such a minor.

Now suppose M is a 3 -connected non-regular binary matroid so that $g^{*}(M) \geq 4$. Then M has an $F_{7^{-}}$or F_{7}^{*}-minor. If M has an F_{7}-minor then the result holds, so we may assume that M has an F_{7}^{*}-minor. It follows from Lemma 2.2 that $M \cong F_{7}^{*}$. However F_{7}^{*} has cocircuits of size 3 ; a
contradiction. We conclude that the result holds for all 3-connected binary matroids.

ACKNOWLEDGEMENT

This work was partially supported by a T.T.U. Faculty Research Grant.

References

[1] Halin, R. and Jung, H. A., Über Minimalstrukturen von Graphen, insbesondere von n-fach zusammenhängenden Graphen, Math. Ann. 152 (1963), 75-94.
[2] Hall, D. W., A note on primitive skew curves, Bull. Amer. Math. Soc. 49 (1943), 935-937.
[3] Oxley, J. G., The binary matroids with no 4-wheel minor, Trans. Amer. Math. Soc. 301 (1987), 63-75.
[4] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
[5] Seymour, P. D., Decomposition of regular matroids, J. Combin. Theory. Ser. B 28 (1980), 305-359.

Mathematics Department, Louisiana Tech. University, Ruston, LA
E-mail address: gturner@coes.latech.edu
Mathematics Department, Tennessee Tech. University, Cookeville, TN
E-mail address: amills@tntech.edu

[^0]: 1991 Mathematics Subject Classification. 05B35.

