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Abstract

We discuss set-valued dual chains in a finite state space setting. Several dif-
ferent notions of duality for Markov chains are introduced, and their properties
and constructive techniques are investigated. Our goal is to understand perfect
rejection sampling algorithms proposed by Fill and successively by Fill, Machida,
Murdoch, and Rosenthal in the light of duality, which will culminate in demonstrat-
ing their intimate connection with strong stationary duality and presenting a new
interpretation in terms of set-valued dual chains.

1 Introduction

1.1 Duality in Markov chains

Duality between two homogeneous Markov processes relates the process of inter-
est with its “dual” one, and has been used in the work of Karlin and McGregor [11],
Siegmund [15], Liggett [13], Harris [8], and many others. Among several different for-
mulations which have been proposed, Liggett’s notion of duality has naturally extended
others (see, e.g., Cox and Rosler [2] for examples of such duality). Here we will present
Liggett’s duality in discrete state space setting (Section 2.3 of [13] for general Markov
processes). We denote by P = [P(z,y)] a Markov transition matrix, and write P7 for
the transpose [P (x,y)] := [P(y, z)], and P" for the n-step transition matrix [P"(z, )]
(i.e., the n-th power of the matrix P).

Definition 1.1. Let P and P be Markov transition matrices on the respective discrete
(countably infinite or finite) state spaces S and S, and let T' = [['(z*, x)] be a nonnegative
bounded matrix on S x S. Then P is said to be a Liggett I'-dual of P if the duality
relation TPT = PT holds, that is, if

(1.1) ZF(x*,z)P(w,z) = Z P(z*,2")T(2*, z)

2€8 2*e8

holds for every (z*,z) € S x S.
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In Definition 1.1 we call S a dual state space, and T a duality function. The duality
relation (1.1) clearly implies that T' (P")T = I’ (PT)” = P"T for every integer n > 1.
Suppose that S is a finite state space, and that S is a subcollection of subsets of S.
Then a Liggett I'-dual with specific duality function

1 if *
(1.2) (2", z) = Hrers
0 otherwise,

is called a set-valued dual.

We denote by X = (Xy)n=0,1,...  Markov chain on some probability space (€2, F,P),
and write Py(-) for the conditional probability P(- | Xy = z) with the underlying Markov
chain X. From now on a Markov chain X and its Markov transition matrix P are used
interchangeably, and simply called a chain. When X is a set-valued dual for X, the
duality relation (1.1) is equivalently characterized by

(1.3) Py(X, €2*) = Pp(z € X)), (z*,2) €S xS.

The dual state space S = {S, 0} has a trivial set-valued dual with both S and () being
necessarily a absorbing states. In what follows it is assumed that a dual state space S
is strictly larger than the trivial {S,(}. In Section 2 we begin with our investigation on
set-valued duality for an arbitrary subcollection S of subsets.

Another notion of duality was introduced by Diaconis and Fill [4] in the course of
their investigation on strong stationary duality. Let S and S* be discrete state spaces.
Here we assume that (X™*,X) = (X7, X,)n=0,1,.. is a bivariate Markov chain, and
that the marginal processes X* = (X})n=0.1,... and X = (X, )p=0,1,... take values on the
respective state spaces S* and S, where §* is considered as a dual state space. A matrix
A =[A(z*,z)] is called a link from S* to S if it is a probability transition matrix from
S* to S, that is, if it is nonnegative and satisfies ), s A(z*,2z) = 1 for every z* € S*.

Definition 1.2. Let A be a link from S* to §. Then X* is said to be a A-linked dual of
X, if (a) X* and X are Markovian, (b) X and X are conditionally independent given
(Xo,...,Xp) for every n > 0, and (c) it satisfies

(1.4) P(X, €| X; ==3,..., X, =z) = Az}, )

n ny’

for every n > 0 and for every possible value (zf,...,z}) of (X§,...,X}).

In the rest of Section 1 we assume that X is an ergodic chain with stationary
distribution 7. Then a notion of strong stationary duality can be introduced in terms
of A-linked duality, though it is not necessarily the one defined by Diaconis and Fill [4]
[cf. Definition 2.1 and Theorem 2.4(b) of [4]].

Definition 1.3. A A-linked dual X* is called a strong stationary dual for X if (a) the
chain X™ is absorbed to a single absorbing state, denoted by oo, and (b) the link A
satisfies A(o0, ) = 7 (-).

In Section 3 we discuss connections between A-linked and Liggett duality. In Sec-
tion 4 we lay out a foundation of set-valued strong stationary duality.



1.2 Perfect rejection sampling algorithm

Since Propp and Wilson [14] first introduced the coupling from the past (CFTP)
algorithm, a possibility of perfect sampling has become an important consideration in
Markov chain Monte Carlo (MCMC) practice (see Wilson [18] for extensive bibliography
on the subject). Fill [5] and successively Fill, Machida, Murdoch, and Rosenthal [7]
proposed a different perfect sampling algorithm based on rejection sampling method.
In this subsection we describe their perfect rejection sampling algorithm in relation with
set-valued duality.

Assuming that P is ergodic with stationary distribution 7, we can introduce the
time-reversed Markov transition matrix P by P(z,y) := n(y) P(y, ) /n(x). Let & :=
(£(z) : z € S) be a collection of S-valued random variables ¢(z) satisfying P(z,y) =
P(¢(z) = y). Then we call ¢ collectively a transition rule for P. By viewing ¢ as a
random map from S to itself, we can define the image £(z*) := {£(2) : z € *} and the
inverse image ¢ !(z*) := {z € S : £(2) € z*} for any subset z* of S. In Algorithm 1.4
we denote by X,, = (Xo,...,X,) a Markov chain up to time n.

Algorithm 1.4. If the algorithm stops in Step 3, then we accept the value X,, = z,, in
Step 1 as an observation from 7; otherwise, reject the value and restart the routine.

Step 1. Sample a path X,, = (zg,...,z,) from the chain P with initial state Xy = x.

Step 2. Impute & from the conditional distribution £(¢ | £(z;) = ;_1) independently
fori=1,...,n, and generate a set-valued path X7, with initial state Xo = {zo} and
recursively by X = 5;1(XZ-*_1) fori=1,...,n.

Step 3. If X' = S, then stop.

The use of a transition rule ¢ for P is fit into the viewpoint of set-valued duality.
When the backward path (X,,,...,X) is viewed as if it were sampled from the time-
reversed f’, the path X coincides with a set-valued dual for P. In Section 2.1 we
present such a construction of dual chain via transition rule ¢. In Section 4.2 we confirm
this observation, and conclude that X is a set-valued strong stationary dual for X,.
Here the role of oo in Definition 1.3 is played by S, which immediately indicates that
P(X, €| X} =S8)=mn(), as desired.

Algorithm 1.5. Tt executes Algorithm 1.4 with Steps 2’ and 3’ in the place of Steps 2
and 3.

Step 2'. Impute &; from the conditional distribution £(¢ | &(z;) = z;_1) independently
for i = 1,...,n, and generate a set-valued path Y, with initial state ¥y = S and
recursively by Y; = ¢&,_;11(Y;—1) fori=1,...,n.

Step 3'. If Y, coalesces, that is, if Y;, = {z(}, then stop.

In comparing Algorithms 1.4 and 1.5, it is not difficult to see that {X, = S} and
{Y,, = {z0}} are the same event on some probability space (2, F,P), having the same
effect in their rejection sampling scheme. Notice that Algorithm 1.5 has some advantage
by forming a computationally less demanding rejection mechanism in Steps 2'-3'. In
fact, Algorithm 1.4 was devised to demonstrate the correctness of Algorithm 1.5 via
strong stationary duality (cf. Section 9.1 in [5]).



1.3 Monotone cases

Now we suppose further that S is equipped with a partial ordering <, and that it has
a minimum element 0 and a maximum element 1 such that 0 < z < 1 forallz € S. Then
a transition rule ¢ for P is said to be monotone if £(z) < &(y) almost surely whenever
z < y. Using the imputed monotone transition rule ¢;’s in Algorithm 1.5, we can
construct a sample path Y, recursively by Y, = §n Z+1(YZ 1) with initial state Yy =1
so that the state Y; becomes the least upper bound of Y; for i = 1,...,n. By settmg
xo = 0 in Step 1 of Algorithms 1.4 and 1.5, Y;, = {0} is observed exactly when Y, = 0
occurs. Thus, the procedure of detecting Y;, = 0 can simplify Steps 2-3 of Algorlthm 1.5.

Let k(- | :1:' ,z,y) be a probability mass function on S defined for each z',z,y € S
such that ' > 2. Then we call k collectively an upward kernel for P if it satisfies for
' >z,

(15) Sk a2, 2)Ple,2) = Pla'y) for oy €,
z
and
(1.6) k(y' |2, 2,y) =0 ify 2y
Given a monotone transition rule ¢ for P, we can devise an upward kernel
(1.7) k(-2',2,y) =P(¢(a') € - [ £(z) = ),

and implement the alternative procedure for Algorithm 1.5.

Algorithm 1.6. The following two-step algorithm produces a value X,, = x,, in Step 1,
and return it as an observation from = if ¥, = 0 is attained in Step 2; otherwise, it
restart the routine from Step 1.

Step 1. Sample a path X,, = (zg,...,%,) from the chain P with initial state zo = 0.

Step 2. Generate a path ¥, = (yn,...,70) by recursively sampling V; = y,_; from
the probability distribution k(- | Yn—i+1, Tn—it1,ZTn—s) for ¢ = 1,...,n with initial
state y, = 1.

The existence of upward kernel for P was studied by Kamae, Krengel and O’Brien [10],
and is equivalently characterized by the stochastic monotonicity of P without assum-
ing a monotone transition rule for P. In Section 5.1 we introduce a set-valued dual
for stochastically monotone chain with particular choice of dual state space. In Sec-
tion 5.2 we discuss the validity of Algorithm 1.6 via strong stationary duality when P
is stochastically monotone.

2 Set-valued duality

2.1 Constructive methods for dual chains

Let P be a Markov transition matrix on S, and let S be a subcollection of subsets
of S. Suppose that there is a transition rule ¢ for P, and that ¢ (z*) almost surely

4



belongs to S for every z* € S. Then we obtain a set-valued dual P of P [with the
duality function (1.2)] by

(2.1) P(z*,y") =P (¢ (") =y"), "y €.

It clearly follows that for every (z*,z) € S x S,
E P(z*, 2 ) (2*,2) =P (z € £ 1(z*)) =P(¢(z) € 2*) = EI‘(J;*,z)P(x,z).
z*€8 2€8

A transition rule ¢ can be constructed with independent random variables £(z) each
distributed as P(z,-), and (2.1) can always form a set-valued dual for P if S is the
collection S of all subsets of S.

The next method for a set-valued dual has been known as a “greedy construction”
by Diaconis and Fill (cf. Section 3 of [4]). For a fixed z* € S, by setting

(2.2) P(z,z*) := ZF(m*,z)P(w,z).

z€S

as a function of z, the duality relation P(z,7%) = Y ,. s P(z*, 2*)T (2*, z) can be viewed
as a mixture of the indicator function I'(z*, -)’s having the coefficient P(z*, z*)’s. Recall-
ing that S is finite, we can form a finite and strictly decreasing sequence 2] D --- D 2
of the inverse images

(2.3) zi ={r € 8:P(z,z") >r}, r€lai_1,a;) fori=1,...,k,

accompanying with strictly increasing values ap = 0 < a1 < +++ < ax = 1, in which we
seek the subset z;’s as greedily as possible. Provided that z; € S for every i = 1,...,k,
we can identify the positive coefficient P(z*, 2) = (a; — aij—1), and therefore determine
the set-valued dual

. P — Qi if y* =2} for some i =1,...,k;
(2.4 L S

0 otherwise.

Then the following corollary is a straightforward consequence of the greedy construction.
Corollary 2.1. Let U be a uniform random variable on [0,1). Then
(2.5) P(z*,y") =P(y* ={z €S : P(z,2%) > U}).
is a set-valued dual of P.

Proof. Comparing (2.3) and (2.5), it is clear that (2.4) and (2.5) are the same. [J

Ezample 2.2. Let P be a Markov transition matrixon S := {1,...,n} with P(¢,j) = 1/n
fori,j € S, and let S be the collection of all subsets in S. And let ¢ be a uniform random
variable on the set of permutations over §; thus, £ can be viewed as a transition rule
for P. By (2.1) we obtain a set-valued dual

n -1 .
: (o= fly*| = l*|;
2.6 Pzt y*) = o )i ’
(2.6) (@%v") {O otherwise,



where |z*| denotes the size of the subset z*. In applying the method of greedy con-
struction, we have Py(X; € z*) = |z*| /n for each z* € S, and therefore, obtain 2} = S
and z5 = 0 with ap =0, a1 = |z*| /n, and a2 = 1 in (2.3). By (2.4) we get

1—|z*|/n ify* =0
(2.7) P(z*,y*) = { |&*] /n if y* = S;

0 otherwise.

Hence, different methods may yield different set-valued duals. O

2.2 Some characteristics of constructive methods

Suppose that a set-valued dual P is obtained by (2.1) with transition rule ¢ for P.
Then we can generate a sequence of independent transition rules &i,.. ., &, identically
distributed as ¢, and form a sample path X, of the dual chain up to n steps by X; =
fi_l(Xi_l) for i = 1,...,n with initial state X, = . By using the same sequence of
transition rules, we can simultaneously formulate a set-valued path Y, recursively by
Yi =¢&,-i+1(Yi—1) for i = 1,...,n with initial state Yy = §. Then we can observe that
{X,, = 8} and {z} D Y;,} are the same event, and that {X,, = 0} and {z} NY;, = §} are
the same event. We will apply these observations in Section 4.1 to determine whether
the chain X, reaches either one of the absorbing states () and S. We say that the
transition rule ¢ is coalescing if the path Y, coalesces to a singleton with some integer 7.
The size |Y;| of Y; is non-increasing but not necessarily decreasing. For instance, the
trnasition rule ¢ in Example 2.2 is not coalescing since |Y;| = n for all i.

For the method of greedy construction we will find the following lemma useful in

Section 4.1.

Lemma 2.3. Let X be a chain on S. Suppose that a set-valued dual for X is obtained
by (2.3)-(2.4). Then the dual chain X with initial state Xo = x§j can reach both

(2.8) yn i ={y € S: Py(X,, € 25) >0} and z, :={z€S: P,(X, € zp) =1}
i n steps.

Proof. We will show by induction that

(2.9) P"(z},yX) >0 and P™(zf,2) > 0.

If n =0, yy = 25 = = in (2.8), and therefore, (2.9) is obvious. Now we assume
(2.8) and (2.9) with (n — 1) substituting for n by induction hypothesis. By combining
yr_qy and 2 _; in (2.8) [with (n — 1) substituting for n] with the expression P, (X, €
z5) = > yes P(y,y') Py (Xn—1 € x7), we can observe that y; and z; can be equivalently
expressed as

vo={y€S: Ply,y; 1) >0} and 2, = {z €8 : P(z,2, 1) =1},



respectively. Therefore, we obtain P(y*_,,4%) > 0 and P(z}_,,z%) > 0 by the greedy
construction. Together with the induction hypothesis we can find

> P (a5, yn 1) P(yh-1,95) > 0 and
> PPN (a2 1) Pon_1,2) > 0,

n—11*“n

as desired. [

3 Intertwining and Liggett duality

3.1 Intertwining duality

In this subsection we assume the setting of Definition 1.2, and denote by Q the
Markov transition matrix for the bivariate Markov chain (X*, X'). Then we can recap-
ture Theorem 2.17 and Remark 2.23 of [4].

Proposition 3.1. Let A be a link from §* to S, and let P* and P be Markov transition
matrices on the respective state spaces S* and S. Then X* is a A-linked dual of X if
and only if (a) the initial pair (X§, Xo) satisfies

(3.1) P(Xo =z | X5 =2z%) = A(z™, x),
and (b) the bivariate Markov chain (X*, X) satisfies
(3.2) ZQ((.T*,Q?), (z*,y)) = P(z,y) for every possible value z*;

(3:3) Y A, 2) Qe 2), (¥, 9)) = P*(z*,y") Aly",y)-

Proof. If X* is a A-linked dual for X, then (3.1) obviously holds, and (3.2) and (3.3)
are obtained via P(X; =y | X§ = 2*,Xo = z) and P(X} = y*, X1 =y | X§ = z*), re-
spectively. Conversely, suppose that (3.1)-(3.3) hold. By (3.2), we obtain

(34) ]P)(Xn—H = Tp+1y--- aXn+k = Tp+k | X;; = :II* X() = T0y--- 7Xn = {L’n)

n

= P(zp,Tnt1) - P(Tntk—1,Tntk),

indicating the Markovian property of X and Definition 1.2(b). By (3.1) and (3.3), we
obtain

(3.5) P(X{=27,..., X =z, Xp =z, | X§ = x7)
= P*(z5,27) - - - P* (251, o) A, ),
indicating the Markovian property of X* and Definition 1.2(c). O

In the sense of Proposition 3.1, we call Q A-linked if it satisfies (3.2)—(3.3). By com-
bining (3.4) and (3.5) with (1.4), we can simplify the calculation of P(X; =y | X§ = z¥)



in the following way:

(3.6) > A, 7)P(z,y) = Y P(Xy =y, Xo=z| X; =)
xr x
=Y P(X1 =y, X7 =y | X5 =a*) = P*(z",y")A(y",y)-
y* y*

From the viewpoint of (3.6) we can formulate another notion of duality.

Definition 3.2. Let A be a link from §* to §. Then P* is said to be an intertwining
A-dual of P if the intertwining relation AP = P* A holds.

Clearly a A-linked Q implies the existence of an intertwining A-dual. Conversely,
suppose that P* is an intertwining A-dual of P. Then we can obtain the A-linked Q by

P(z,y)P* (z*,y")A(y*, v)
Q((z",z), (y",y)) :== A(z*,y)

0 otherwise,

if A(z*,y) > 0;

where

Az*,y) = ZA(ZE*,Z) P(z,y) = Z P*(z*,2*) A(z",y).

2€8 2*eS*
And the state space of Q is given by Sg := {(z*,z) € §* x S : A(z*,z) > 0}.

3.2 A duality theorem

An intriguing aspect of Liggett duality is its role in reversing entrance and exit
laws, which has been demonstrated for continuous time Markov processes by Cox and
Rosler [2]. In Lemma 3.3 we describe how Liggett duality converts invariant measures to
harmonic functions in the discrete time setting. As a convention we write a measure v
in a form of row vector, and a function A in a form of column vector. Then we call v
invariant for P if v = v P, and h harmonic for P if h is nonnegative and h = P h. The
following lemma is due to Vervaat [17].

Lemma 3.3. Suppose that P is a Liggett T-dual of P, and that v is an invariant
measure for P. Then h := T'v' is harmonic for P.

Proof. The function h is clearly nonnegative. By Definition 1.1 we obtain Ph =
P =PI =T (wP)' =T =h. O

Given an invariant measure v for P, we introduce a new Markov transition matrix
P,(z,y) := v(y) P(y,z) /v(z) on the appropriately reduced state space {z € S : v(z) > 0},
and call it the time-reversed of P. Correspondingly, given a harmonic function h for
P, we introduce another Markov transition matrix Py (z*,y*) := P(z*,y*) h(y*) / h(z*)
on the state space {z* € S : h(z*) > 0}, and call it the Doob h transform of P. Then
the notion of Liggett duality can be related to that of intertwining duality by means of

these Markov transition matrices.



Theorem 3.4. (Cf. Theorem 5.5 of [4]) Let v be a strictly positive invariant measure

for P, and let T' be a duality function from S to S. Then if P, is a Liggett T'-dual for
the time-reversed P,,, then

(a) h:=TvT is harmonic for f’,,;

(b) A(z*,z) :=T(z*, z) v(z) /h(z*) is a link from S* := {z* € S : h(z*) > 0} to S;

(c) (P,)n is an intertwining A-dual for P.

Proof. Since v is strictly positive, we can observe that v is also an invariant measure
for P,,. By Lemma 3.3 the function & is harmonic for P,,. Furthermore, the construction
of h indicates that ), g A(z*, 2) = 1, and therefore, that A is a link.

In verifying (c), we will assume h(z*) > 0 for all z* for the sake of simplicity;
otherwise, one rest its attention in the following calculations to {z* € S : h(z*) > 0}.
We denote by D, the diagonal matrix with diagonal entry D, (z, ) = v(z), and by Dy,
the diagonal matrix with Dy, (z*,z*) := h(z*). Then we can write (P,), = D, ' P, Dy,
and A = D;l I'D,, and obtain

AP=D,'TD,P=D,'T'(®,)’D,=D,'P,I'D, = (P,); A,

as desired. O

4 Set-valued strong stationary duality

4.1 Set-valued duals for ergodic Markov chains

We now assume that a Markov chain P is ergodic (i.e., irreducible and aperiodic in a
finite state space setting). Then we have a unique stationary distribution (i.e., invariant
and strictly positive probability measure) for P, denoted by 7. We call a Markov chain
absorbing if all of its recurrent states are absorbing. In the setting of finite state space,
a Markov chain is absorbing if every non-absorbing state is transient, and reaches one
of the absorbing states. However, we note that this notion of absorbing chain may not
be the same as others introduced in the literature (see e.g., [9]).

It is natural to relate an ergodic chain X to an absorbing set-valued dual X. Since
Ps(z € X,) = 1 and Py(z € X,,) = 0 for every z € S by (1.3), both S and () are
absorbing in X. Let z* € S be neither ¢} nor S. By the ergodicity, X,, converges to m
in distribution as n — oo, and there is some integer n large enough to satisfy

(4.1) 0< Py(Xp€a*)=Pp(z€Xy) <1 forallzes.
Thus, z* is not absorbing. In summary, X has the exactly two absorbing states S and (.

Proposition 4.1. Let P be ergodic, and let & be a transition rule for P. Then the
set-valued dual (2.1) is absorbing if and only if £ is coalescing.



Proof. Recall the sample path Y, in Section 2.2. We can observe that P (X'n =
S) = P(zf D Y,), and that P$3(Xn =0) = P(zfNY, = 0). Let z* be a non-
absorbing state, and let z,z’ € S be such that z € z* and 2’ ¢ z*. If ¢ is coa-
lescing, by the ergodicity we have Pp- (X, =8) =Pa*DY,) >P{Y,={z}) >0
and Py« (X, =0) = P(z*NY, =0) > P(Y, ={z'}) > 0 for some integer n. Thus,
X is absorbing. Conversely if X is absorbing, then by choosing =} = {z} we have
P(Y,, = {z}) = Pz}(Xn = §) > 0 for some n, which implies that £ is coalescing. [

Suppose that P is greedily constructed. If z* is a non-absorbing state, then by
Lemma 2.3 we have y* = S and z; = 0 in (2.8) for some n satisfying (4.1), and
therefore, x* is transient. Thus, we have proved the following corollary.

Corollary 4.2. Let P be a set-valued dual of P obtained via (2.3)—(2.4). Then if P is
ergodic, P is absorbing.

In Example 2.2 every non-absorbing state in the set-valued dual (2.7) moves to
either ) and S in one step. But the set-valued dual (2.6) is not absorbing since every
non-absorbing state z* of size |z*| = k stays in the closed class of the subsets of the
same size k.

We can find a natural interpretation for Lemma 3.3 when X is ergodic and X is an
absorbing set-valued dual for X. Let T be the time to absorption in the state S for X.
Then let

(4.2) H(z") := Py« (T < 0)

be the probability that the chain X starting from X, = ac is ever absorbed into S.
By using the first step analysis, we have H(z*) = Y cucs P(z*,&*)H(&*); thus, H is
harmonic for P. Since the chain X will be eventually absorbed into either the state
or S, we can observe that for any = € S,

(4.3) H(z*) = lim Py (z € X,,) = lim P,(X, € %) ZI‘ (z*, 2)m

n—oo n—oo

So that H is the harmonic function obtained by Lemma 3.3.

4.2 Sample path construction

A ergodic chain P has a necessarily unique invariant measure 7, and P, in Theo-
rem 3.4 is simply the time-reversed P in Section 1.2. In the setting of set-valued duality
Theorem 3.4 can be tailored in a form of the following corollary.

Corollary 4.3. Suppose that P is a set-valued dual on S for the time-reversed P. Then
(a) (4.3) is harmonic for P, (b)

(4.4) A(z*, z) :=



is a link from S* := S\ {0} to S, and (c)

(y")

o

(4.5) P*(z*,y") = P(z*,y"), "y €8,

is an intertwining A-dual for P. Moreover, if P is absorbing, so is P* with absorbing
state S.

Proof. In addition to Theorem 3.4, we need to verify the assertion on absorbing. The
state S is clearly an absorbing state in P*. From (4.5) we obtain the n-step transition

H(y")

hUl(

(4.6) P (3%, y") =

"(z*,y%).
Thus, the chain P* reaches the absorbing state S starting from a non-absorbing state z*
if P does so, which verifies the claim. O

Let g(-|z*, z,%) be a probability mass function on S for each T € S and each (z,y) €
S x §. Then we call g collectively a dual generating kernel for P if it satisfies

(4.7 qiy* | z%,2,y) =0 fz gy andy €z, orifz € y* and y & =¥,

and defines a Markov transition probability

(4.8) ]g(x*,y*) = Zq(y* | 2*,z,2) P(z, 2)

z

without depending on the choice of x € §. Together it implies that

Zlé(m*,z*)f‘(z*,:c) = Zf’(x,z) Z q(y* | =%, z,2)T (2%, 2) = Zﬁ’(a:,z)I‘(m*,z),

2%

and therefore, that P is a set-valued dual for P. If we have a transition rule ¢ for P
such that £71(z*) € S for every z* € S, then we can construct a dual generating kernel
by

(4.9) ay* |z*2,y) =P (y" =€ (z") |€(z) = y),

which clearly satisfies (4.7)-(4.8) with P = P(y* = ¢ (xz*)).

As discussed in Section 3.1, the existence of an intertwining A-dual implies that of
a A-linked dual. Moreover, a dual generating kernel arises naturally for a set-valued
A-linked dual.

Proposition 4.4. Let q(- | z*,z,y) be a dual generating kernel satisfying (4.7)—(4.8),

and let Sg = {(z*,z) € S xS : x € *} be a state space. Then

(4.10) Q(z*,z), (y",v)) == qly* | z*,y,z) P(z,y), (2%, ), (y",y) € Sq,

is A-linked with link (4.4).

11



Proof. Since (4.8) is a set-valued dual of P, we can construct the intertwining A-
dual (4.5) via Corollary 4.3. By Proposition 3.1, it suffices to show that (3.2)—(3.3)
hold. By (4.7), for every (z*,z) € Sg we have )_,. ¢(z* | *,z,y) = 1, and therefore,

Y. Q((z*,z), (2*,y)) = P(z,y), where the sum is over z* € S such that y € z*.
By (4.8)-(4.7) we obtain

AW Q2. 079) = 75 Sl |a',3.2) Pl

z

= Ty ) Plat,y7) = P A0,

which completes the proof. [

By Propositions 3.1 and 4.4, we can sample the path (X7, X,) from the A-linked
bivariate chain (4.10). Let po(z*,z) = mo(z*)A(z*,z) be an initial distribution with

probability mass function my(z*) on S.

Algorithm 4.5. Sample (zf, o) from the initial distribution pg, and the following two-
step procedure generates a sample path (X, X ) up to time n.

Step 1. Sample a path X, = (z9,...,z,) from the chain P starting from Xy = z.

Step 2. Generate a set-valued path X}, = (zj,...,z;) by recursively sampling X =

from the probability ¢(- | z]_,,zi, z;—1) fori=1,...,n.

When Algorithm 4.5 starts from a fixed state (X, Xo) = ({0}, z0) and uses the
dual generating kernel (4.9), it coincides exactly with Algorithm 1.4. Moreover, if the
transition rule £ in (4.9) is coalescing, by Proposition 4.1 and Corollary 4.3 the chain
P* is absorbed to the state S. By Proposition 4.4 X is a A-linked dual of X, up
to time n with A(S,-) = n(-). Hence, by Definition 1.3, we have verified that X is a
sample path of a strong stationary dual for X,.

5 Stochastically monotone case

5.1 Siegmund duality

The idea of duality can be traced back to Lévy [12] who observed the duality
relation between a random walk X on [0,00) with absorption at 0 and another X
with reflection at 0. Here we simplify it to that of random walks on the state space
S=38:={0,1,2,...}. Siegmund [15] introduced the duality relation

(5.1) Py(X, <y)=Pyz<X,), zy€S,

which is a Liggett duality with duality function I'(z,y) = 1 if z < y; otherwise, I'(z,y) = 0.
Siegmund [15] showed that X has a dual chain X satisfying (5.1) if and only if (a) X
is stochastically monotone, and (b) the state 0 is absorbing for X.

Now suppose that S is partially ordered with partial ordering <. Then a real-valued
function f on S is said to be decreasing if f(xz) > f(y) whenever x < y. Similarly a sub-
set * of S is said to be decreasing if z € £* whenever z < z for some x € z*, and is often
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called a “down-set” or an “order ideal” in the literature (see e.g., Stanley [16]). The
empty set ) and S itself are trivially decreasing. A decreasing function f can be equiv-
alently characterized by decreasing subset {z € S : f(z) > r} with every real value r.
A Markov chain P on § is said to be stochastically monotone if the function P(z,z*)
in (2.2) is decreasing in z for every decreasing subset z* of S. The concept of stochastic
monotonicity was introduced by Daley [3] in the linearly ordered setting, and extended
by Kamae, Krengel and O’Brien [10] for partially ordered spaces.

Proposition 5.1. Let S be a partially ordered finite state space with minimum element
0, and let S be the collection of all the nonempty decreasing subsets of S. Then P has
a set-valued dual P if and only if (a) P is stochastically monotone and (b) the state 0
is absorbing in P.

Proof. Suppose that P satisfies (a)-(b). Then we can claim that a set-valued dual P
can be greedily constructed via (2.3)—(2.4). Let z* € S be fixed. The subset z;’s in (2.3)
are all decreasing by (a). Observing that 0 € z*, and that P(0,z*) = 1 by (b), we can
verify that z}’s belongs to S. Thus, (2.4) becomes a set-valued dual.

Conversely, suppose that X has a set-valued dual X. (a) Let z* € S, and let z < y.
By observing that {z* € S:z € 2*} D {z* € S:y € 2*}, we obtain Py(X; € z*) =
Py« (z € X1) > Py (y € X1) = P,(X1 € z*), which implies the stochastic monotonicity
of X. (b) Since {0} € S, we have Py(X, = 0) = Py(X1 € {0}) = Py (0 € X1) = 1.
This completes the proof. O

By adding the empty set () to the dual state space S, we obtain the following corollary
to Proposition 5.1.

Corollary 5.2. Let S be a partially ordered state space, and let S be the collection of
all decreasing subsets of S. Then X has a set-valued dual X on the dual state space S
if and only if X is stochastically monotone.

Proof. The assumption that § € S eliminates the necessity of the absorbing state 0.
Otherwise, the proof becomes essentially that of Proposition 5.1. O

We call X in Proposition 5.1 or in Corollary 5.2 a set-valued Siegmund dual. If
S :={0,1,...,d} is a space with its usual linear ordering, then S becomes the collec-
tion of subsets of the form (z) := {# € § : z < z}. Provided that (a)-(b) in Propo-
sition 5.1 hold, a set-valued Siegmund dual is uniquely determined by P((z),(y)) =
Py(X: < z) — Pyp1(Xy < z), where we set Py 1(X; < z) = 0 for convenience. A sam-
ple path construction in this setting has been also discussed by Clifford and Sudbury [1],
though they used much more elaborate construction for absorbing and reflecting con-
tinuous time Markov processes. A question naturally arises on whether we can adapt
the dual state space S = {(z) : z € S} even if S is partially ordered. As remarked in
page 87 of Liggett [13], such an extension of Siegmund dual requires “a much more
special property” than stochastic monotonicity.

We call P realizably monotone if there exists a monotone transition rule ¢ for P. Fill
and Machida [6] showed that the notion of realizable monotonicity is strictly stronger
than that of stochastic monotonicity. Provided a monotone transition rule &, £71(z*)
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is decreasing almost surely for every decreasing subset z*, and therefore, a set-valued
Siegmund dual in Corollary 5.2 can be obtained via (2.1).

Ezample 5.3. Let

5o /\
\/

be a partially ordered state space in a Hasse dlagram (the standard graphical represen-
tation of partial ordering) where a < b,c and b, ¢ < d, and let

S :={0,{a},{a,b},{a,c},{a,b,c},S}

be the collection of all the decreasing subsets. Consider the Markov transition matrix

a b c d
a 1/2 1/4 1/4 0
b 1/2 0 0 1/2
c 0 1/2 1/2 0
d 0 1/4 1/4 1/2

Then it is stochastically monotone. By applying (2.3)—(2.4), we obtain a set-valued
Siegmund dual

0 {a} {a,b} {a,c¢} {a,b,c} S

0 1 0 0 0 0 0
{a} /2 0 1/2 0 0 0
P, := {a,b} 1/4  1/4 0 0 1/4 1/4
{a,c} 1/4  1/4 0 0 1/4  1/4
{a,b,c} 0 0 0 1/2 0 1/2
S 0 0 0 0 0 1]

Observe that P is realizably monotone, and that it has the monotone transition rule &:

Mﬂ®=@ﬂ)=dﬂ)=@ﬂﬂ=dﬁ=U&

P(&(a) = ¢, £(b) = d,&(c) = ¢,&(d) =d) = 1/4;

Mﬂ®=ai(%—aﬂ)—béw%=w=1ﬂ;

P(¢(a) = a,&(b) = a,&(c) = ¢,{(d) = ) = 1/4.
By applying (2.1), we have another set-valued Siegmund dual

0 {a} {a,b} {a,c} {a,b,c} S

0 7 1 0 0 0 0 0
{a} /2 0 1/2 0 0 0
Py:= {a,b} /4 0 1/4 1/4 0 1/4
{a,c} 1/4 0 1/4 1/4 0 1/4
{a,b,c} 0 0 0 1/2 0 1/2
S L[ o0 0 0 0 0 I

Thus, a set-valued Siegmund dual is not unique. [
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5.2 Sample path construction

Suppose that the time-reversed P is stochastically monotone, and that S has the
minimum 0 and the maximum 1 as in the setting of Section 1.3. Let S be the collection of
all decreasing subsets of S, and let U be a uniform random variable on [0, 1). Combining
Corollaries 2.1 and 5.2 together, we can find that

(5.2) ]s(x*,y*) =P (y* ={z¢€8:P(z,2*) > U}) , ozt yr eSS,

is a set-valued Siegmund dual for P. Furthermore, we can define a probability mass
function ¢(y* | z*,z,y) on S for z* € S and for z,y € S by

P(y* ={z€8:P(z,2*) >U}|0< U < P(z,z*) ifz € y* and y € z*;
(5.3) (P y*z{zES:P(z,x*)>U} P(z,z*)<U<1 ifz € y* and y & o*;

0 otherwise.
Then (5.3) becomes a dual generating kernel satisfying (4.7)—(4.8), and generates the

dual (5.2) via (4.8). Given the dual generating kernel (5.3), we can run Algorithm 4.5
with the fixed initial state (z§,zo) = ({0}, 0).

Algorithm 5.4. Execute Step 1 of Algorithm 1.6 to generate a path X,, = (zg,...,Z,).

Starting from X3 = {0}, generate a set-valued path X}, = (z§, ..., ) recursively by
(5.4) X;={2€8:P(z,z; ) >U;}, i=1,...,n,

where U; is uniformly distributed on the interval [0, P(z;,z} ).

Algorithm 5.4 is an implementation of Algorithm 4.5, and P is absorbing by Corol-
lary 4.2. Thus, as discussed in Section 4.2, we can find that the path X is a set-valued
strong stationary dual for X,,. Hence, in exactly the same manner as in Algorithm 1.4,
we can generate X, = z, as a sample from 7 if we detect X} = S in Algorithm 5.4.
Moreover, it is possible to further modify Algorithm 5.4 so that we can exploit Step 2
of Algorithm 1.6.

Algorithm 5.5. Execute Algorithm 1.6 to generate paths X, = (xg,...,%,) and Y, =
(Yns--->Y0)- Starting from X7 = {0}, generate a set-valued path X = (z§,...,2})
recursively by (5.4) with random variable U; uniformly distributed on the interval

[Oap(yia$7_1)) ify, 1 €z q;
[P(yialel)ap(miax;ll)) if Yi—1 ¢ 372&1-

In Proposition 5.6 we claim that Algorithms 5.4 and 5.5 generate the same sample
path.

Proposition 5.6. In Algorithm 5.5, (a) U; is uniformly distributed on the interval
[0, P(z,z}_,)) given X} | =z | and X; = x; fori=1,...,n, and (b) X is a strong
stationary dual for for X,,.
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Proof. We prove it by induction. Assume (a) for 7 = 1,...,k — 1 so that the sample
path X}, = (x,...,2;_;) can be alternatively generated by Algortihm 5.4. Then

X;

1 is a strong stationary dual for X;_;. In particular we obtain

P(Xg_1 €| Xj_y = z_1) = AMz}_1,°)-

Given X;_, = z;_4, X} = 7}, and Y, = Yk, We can compute

_ 2w D@h1yw) 3o, k(w [ yp, 2k, 2) M@}y, 2) Plz,2p) Py, z_,)
Ez A('/E]):;_laz) P(Z,J,‘k) P(.’Ek,.%'zil)

This immediately implies that Uy, is uniform on [0, P (x4, x}_,)), and therefore, that X}
is a strong stationary dual for X ;. O

When X is generated by Algorithm 5.5, it has to be coupled with Y, in such a

way that V,,_; € X} holds simultaneously for ¢ = 0,...,n. In particular, {f/n = f)} and
{X; = S} becomes the same event. This verifies the correctness of Algorithm 1.6.
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