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ALLAN D. MILLS

Abstract. This paper describes some of the cocircuits of a splitting
matroid Mx,y in terms of the cocircuits of the original matroid M .

1. Introduction

The matroid notation and terminology used here will follow Oxley [2].
In particular, the ground set and the collections of independent sets, bases,
and circuits of a matroid M will be denoted by E(M ), I(M ), B(M ), and
C(M ), respectively. The fundamental circuit of an element e with respect
to the basis B (see [2, p. 18]) will be denoted by C(e, B).

Fleischner [1] introduced the idea of splitting a vertex of degree at least
three in a connected graph and used the operation to characterize Eulerian
graphs. For example, the graph Gx,y in Figure 1 is obtained from G by
splitting away the edges x and y from the vertex v. Raghunathan, Shikare,
and Waphare [3] extended the splitting operation from graphs to binary
matroids. One of their results [3, Theorem 2.2] can be used to define the
splitting operation in a binary matroid in terms of circuits.

Definition 1.1. Let M be a binary matroid and suppose x, y ∈ E(M ). The
splitting matroid Mx,y is the matroid having collection of circuits C(Mx,y) =
C0 ∪ C1 where
C0 = {C ∈ C(M ) | x, y ∈ C or x, y 6∈ C}; and
C1 = {C1 ∪ C2 | C1, C2 ∈ C(M ), C1 ∩ C2 = ∅, x ∈ C1, y ∈ C2; and there is
no C ∈ C0 such that C ⊆ C1 ∪ C2}.

The next result, due to Shikare and Asadi [4], characterizes the bases of
a splitting matroid Mx,y in terms of the bases of the original matroid M .

Lemma 1.2. Let M be a binary matroid and suppose x, y ∈ E(M ). Then
B(Mx,y) = {B ∪ {α} | B ∈ B(M ), α ∈ E − B and the unique circuit
contained in B ∪ α contains either x or y}.

The results in the next section describe some of the cocircuits of Mx,y

in terms of the cocircuits of M . Recall that the cocircuits of a matroid M
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Figure 1. The graph Gx,y is obtained by splitting vertex
v of G.

are the minimal sets having non-empty intersection with every basis of M .
In addition, the basic fact that if C is a circuit and C∗ is a cocircuit of a
matroid M , then |C ∩ C∗| 6= 1 will be helpful in the proofs.

2. Cocircuits of a Splitting Matroid

It follows from Definition 1.1 that if every circuit of M contains both x
and y, or neither, then C(Mx,y) = C0 = C(M ) and Mx,y = M . The fact
that Mx,y 6= M only if there is a circuit of M containing exactly one of x
and y is the basis of the next two results.

Proposition 2.1. If {x, y} is a cocircuit of M or if {x} and {y} are co-
circuits of M , then M = Mx,y.

Proof. In both cases there is no circuit of M containing exactly one of x
and y. Hence M = Mx,y. �

Proposition 2.2. If exactly one of {x, y} is a cocircuit of M , then x and
y are cocircuits of Mx,y.

Proof. Suppose x is a cocircuit of M and y is not. Then y is in a circuit of
M that does not contain x. The circuits of Mx,y either contain both x and
y or contain neither x nor y. Since x is in no circuits of M , it follows from
the definition of C(Mx,y) that x is in no circuits of Mx,y. Thus y is in no
circuits of Mx,y and we conclude that y is a cocircuit of Mx,y. �

The previous two results concerned cases in which the set {x, y} con-
tained a cocircuit of M . The main result of this paper, Theorem 2.4, con-
cerns the case in which {x, y} is proper subset of a cocircuit of M . Before
stating the main result, we first prove the following technical lemma.
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Lemma 2.3. Suppose C∗ is a cocircuit of M and {x, y} ⊂ C∗. Then
there exist bases B1 and B2 of M such that B1 ∩ (C∗ − {x, y}) = ∅ and
B2 ∩ (C∗ − {x, y}) = ∅ where {x, y} ∩ B1 = {x} and {x, y} ∩ B2 = {y}.

Proof. Suppose C∗ is a cocircuit of M and {x, y} ⊂ C∗. It follows from
the minimality of C∗ that there is a basis B of M so that B ∩ (C∗ −
{x, y}) = ∅. Now suppose every basis of M having empty intersection
with C∗ − {x, y} contains x. Then C∗ − y contains a cocircuit of M ;
a contradiction. Similarly, if each basis of M having empty intersection
with C∗ − {x, y} contains y, then C∗ − x contains a cocircuit of M ; a
contradiction. We conclude that the lemma holds. �

Theorem 2.4. Let Mx,y be a splitting matroid obtained from M so that
M 6= Mx,y. Suppose {x, y} is a proper subset of a cocircuit C∗ of M . Then
{x, y} and C∗ − {x, y} are cocircuits of Mx,y.

Proof of Theorem 2.4. Suppose {x, y} is a proper subset of a cocircuit C∗ of
M . We first show that {x, y} is a cocircuit of Mx,y. Since B(Mx,y) = {B ∪
α | B ∈ B(M ) and C(α, B) contains exactly one of x and y}, it is clear
that {x, y} has non-empty intersection with each basis of Mx,y. Lemma 2.3
implies that there is a basis B of M so that x ∈ B, y 6∈ B and B ∩ (C∗ −
{x, y}) = ∅. Let z ∈ C∗ − {x, y}. If x 6∈ C(z, B), then |C(z, B) ∩ C∗| = 1;
a contradiction. Then x ∈ C(z, B), and since y 6∈ C(z, B), it follows that
B ∪ z is a basis of Mx,y. Moreover, as y 6∈ B ∪ z, the set {y} is not a
cocircuit of Mx,y. Similarly, {x} is not a cocircuit of Mx,y. Since {x, y} is
a minimal set having non-empty intersection with each basis of Mx,y, the
set {x, y} is a cocircuit of Mx,y.

We now show that the set C∗ − {x, y} has non-empty intersection with
each basis of Mx,y. Let B ∪ α be an arbitrary basis of Mx,y. If B ∩
(C∗ − {x, y}) 6= ∅, then clearly (B ∪ α) ∩ (C∗ − {x, y}) 6= ∅. So we may
assume B is a basis of M so that B ∩ (C∗ − {x, y}) = ∅. We complete this
part of the proof by analyzing two cases. First, suppose x, y ∈ B. Now
B ∈ I(Mx,y) and |B| < r(Mx,y)r(M ) + 1. So B is a proper subset of a
basis B1 ∪ α1 of Mx,y. Since B1 ∪ α1 = B ∪ α for some α in B1 − B, we
may assume B is a proper subset of the basis B ∪ α of Mx,y. Suppose
α ∈ E(M ) − (B ∪C∗). Then as B ∪ α is a basis of Mx,y, the fundamental
circuit C(α, B) in M must contain exactly one of x and y. This implies
|C(α, B) ∩ C∗| = 1; a contradiction. We conclude that α ∈ C∗ − {x, y}.
Hence (B ∪ α) ∩ (C∗ − {x, y}) 6= ∅

Now suppose x ∈ B and y 6∈ B. Since B ∈ I(Mx,y) and |B| < r(Mx,y) =
r(M ) + 1, there exists α in E(M )−B so that B ∪α ∈ B(Mx,y). If C(y, B)
does not contain x, then |C(y, B)∩C∗| = 1; a contradiction. Thus C(y, B)
contains both x and y. It follows that B ∪ y 6∈ B(Mx,y). Similarly, if α ∈
E(M )−(B∪C∗), and x ∈ C(α, B), then |C(α, B)∩C∗| = 1; a contradiction.
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So C(α, B) contains neither x nor y and it follows that B∪α 6∈ B(Mx,y). We
conclude that α ∈ C∗−{x, y}. Hence (B∪α)∩(C∗−{x, y}) 6= ∅. Therefore
each basis of Mx,y must have non-empty intersection with C∗ − {x, y}.

We now show that C∗ − {x, y} is a minimal set having non-empty in-
tersection with all bases of Mx,y. Let B be a basis of M so that x ∈ B,
y 6∈ B, and B ∩ (C∗ − {x, y}) = ∅. Let z ∈ C∗ − {x, y}. If C(z, B) does
not contain x, then |C(z, B)∩C∗| = 1; a contradiction. Thus x ∈ C(z, B).
Moreover, y 6∈ C(z, B) and it follows that B ∪ z ∈ B(Mx,y). Since for all
z ∈ C∗−{x, y}, the set B ∪ z is a basis of Mx,y, the set C∗ −{x, y} is min-
imal having non-empty intersection with each basis of Mx,y. We conclude
that C∗ − {x, y} is a cocircuit of Mx,y. �

a a

b b

c c

d d

e e

f f

x x

y y

G Gx,yM M(G(G(G) )

Figure 2. The matroids M (G) and M (Gx,y).

Theorem 2.4 establishes that if C∗ is a cocircuit of M containing {x, y},
then C∗−{x, y} is a cocircuit of Mx,y. We define a Type I set of a matroid
M to be a set C∗−{x, y} where C∗ is a cocircuit of M that properly contains
{x, y}. The next table lists the collections of cocircuits of the matroids M
and Mx,y shown in Figure 2.
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Cocircuits of M Type I sets Cocircuits of Mx,y

{d, f} {b} {d, f}
{a, b, c} {a, c} {b}
{b, x, y} {a, c}
{a, x, y, c} {x, y}
{c, y, e, f} {a, y, e, d}
{c, y, e, d} {a, x, e, d}
{a, x, e, d} {a, y, e, f}
{a, x, e, f} {a, x, e, f}
{b, x, e, d, c} {c, x, e, d}
{b, x, e, f, c} {c, y, e, d}
{a, b, y, e, f} {c, y, e, f}
{a, b, y, e, d} {c, x, e, f}

Notice that the cocircuits of Mx,y are {x, y}, the Type I sets of M , the
sets D∗ −X for each cocircuit D∗ of M containing a Type I set X, and the
cocircuits of M that do not contain a Type I set. The following conjecture
proposes that this relationship holds in general.

Conjecture 2.5. Suppose the splitting matroid Mx,y is obtained from M
and {x, y} is a proper subset of a cocircuit of M . Then

C∗(Mx,y) =





{x, y}
C∗ − {x, y} for each cocircuit C∗ of M properly containing {x, y}
D∗ − X for each cocircuit D∗ of M containing a Type I set X

C∗ of M such that C∗ does not contain a Type I set
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