A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

DR. ALLAN D. MILLS

MAY 2004

No. 2004-2

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

ALLAN D. MILLS

Abstract

This paper describes some of the cocircuits of a splitting matroid $M_{x, y}$ in terms of the cocircuits of the original matroid M.

1. Introduction

The matroid notation and terminology used here will follow Oxley [2]. In particular, the ground set and the collections of independent sets, bases, and circuits of a matroid M will be denoted by $E(M), \mathcal{I}(M), \mathcal{B}(M)$, and $\mathcal{C}(M)$, respectively. The fundamental circuit of an element e with respect to the basis B (see [2, p. 18]) will be denoted by $C(e, B)$.

Fleischner [1] introduced the idea of splitting a vertex of degree at least three in a connected graph and used the operation to characterize Eulerian graphs. For example, the graph $G_{x, y}$ in Figure 1 is obtained from G by splitting away the edges x and y from the vertex v. Raghunathan, Shikare, and Waphare [3] extended the splitting operation from graphs to binary matroids. One of their results [3, Theorem 2.2] can be used to define the splitting operation in a binary matroid in terms of circuits.
Definition 1.1. Let M be a binary matroid and suppose $x, y \in E(M)$. The splitting matroid $M_{x, y}$ is the matroid having collection of circuits $\mathcal{C}\left(M_{x, y}\right)=$ $\mathcal{C}_{0} \cup \mathcal{C}_{1}$ where
$\mathcal{C}_{0}=\{C \in \mathcal{C}(M) \mid x, y \in C$ or $x, y \notin C\} ;$ and
$\mathcal{C}_{1}=\left\{C_{1} \cup C_{2} \mid C_{1}, C_{2} \in \mathcal{C}(M), C_{1} \cap C_{2}=\emptyset, x \in C_{1}, y \in C_{2}\right.$; and there is no $C \in \mathcal{C}_{0}$ such that $\left.C \subseteq C_{1} \cup C_{2}\right\}$.

The next result, due to Shikare and Asadi [4], characterizes the bases of a splitting matroid $M_{x, y}$ in terms of the bases of the original matroid M.

Lemma 1.2. Let M be a binary matroid and suppose $x, y \in E(M)$. Then $\mathcal{B}\left(M_{x, y}\right)=\{B \cup\{\alpha\} \mid B \in \mathcal{B}(M), \alpha \in E-B$ and the unique circuit contained in $B \cup \alpha$ contains either x or $y\}$.

The results in the next section describe some of the cocircuits of $M_{x, y}$ in terms of the cocircuits of M. Recall that the cocircuits of a matroid M

[^0]

Figure 1. The graph $G_{x, y}$ is obtained by splitting vertex v of G.
are the minimal sets having non-empty intersection with every basis of M. In addition, the basic fact that if C is a circuit and C^{*} is a cocircuit of a matroid M, then $\left|C \cap C^{*}\right| \neq 1$ will be helpful in the proofs.

2. Cocircuits of a Splitting Matroid

It follows from Definition 1.1 that if every circuit of M contains both x and y, or neither, then $\mathcal{C}\left(M_{x, y}\right)=\mathcal{C}_{0}=\mathcal{C}(M)$ and $M_{x, y}=M$. The fact that $M_{x, y} \neq M$ only if there is a circuit of M containing exactly one of x and y is the basis of the next two results.

Proposition 2.1. If $\{x, y\}$ is a cocircuit of M or if $\{x\}$ and $\{y\}$ are cocircuits of M, then $M=M_{x, y}$.

Proof. In both cases there is no circuit of M containing exactly one of x and y. Hence $M=M_{x, y}$.

Proposition 2.2. If exactly one of $\{x, y\}$ is a cocircuit of M, then x and y are cocircuits of $M_{x, y}$.

Proof. Suppose x is a cocircuit of M and y is not. Then y is in a circuit of M that does not contain x. The circuits of $M_{x, y}$ either contain both x and y or contain neither x nor y. Since x is in no circuits of M, it follows from the definition of $\mathcal{C}\left(M_{x, y}\right)$ that x is in no circuits of $M_{x, y}$. Thus y is in no circuits of $M_{x, y}$ and we conclude that y is a cocircuit of $M_{x, y}$.

The previous two results concerned cases in which the set $\{x, y\}$ contained a cocircuit of M. The main result of this paper, Theorem 2.4, concerns the case in which $\{x, y\}$ is proper subset of a cocircuit of M. Before stating the main result, we first prove the following technical lemma.

Lemma 2.3. Suppose C^{*} is a cocircuit of M and $\{x, y\} \subset C^{*}$. Then there exist bases B_{1} and B_{2} of M such that $B_{1} \cap\left(C^{*}-\{x, y\}\right)=\emptyset$ and $B_{2} \cap\left(C^{*}-\{x, y\}\right)=\emptyset$ where $\{x, y\} \cap B_{1}=\{x\}$ and $\{x, y\} \cap B_{2}=\{y\}$.

Proof. Suppose C^{*} is a cocircuit of M and $\{x, y\} \subset C^{*}$. It follows from the minimality of C^{*} that there is a basis B of M so that $B \cap\left(C^{*}-\right.$ $\{x, y\})=\emptyset$. Now suppose every basis of M having empty intersection with $C^{*}-\{x, y\}$ contains x. Then $C^{*}-y$ contains a cocircuit of M; a contradiction. Similarly, if each basis of M having empty intersection with $C^{*}-\{x, y\}$ contains y, then $C^{*}-x$ contains a cocircuit of M; a contradiction. We conclude that the lemma holds.

Theorem 2.4. Let $M_{x, y}$ be a splitting matroid obtained from M so that $M \neq M_{x, y}$. Suppose $\{x, y\}$ is a proper subset of a cocircuit C^{*} of M. Then $\{x, y\}$ and $C^{*}-\{x, y\}$ are cocircuits of $M_{x, y}$.

Proof of Theorem 2.4. Suppose $\{x, y\}$ is a proper subset of a cocircuit C^{*} of M. We first show that $\{x, y\}$ is a cocircuit of $M_{x, y}$. Since $\mathcal{B}\left(M_{x, y}\right)=\{B \cup$ $\alpha \mid B \in \mathcal{B}(M)$ and $C(\alpha, B)$ contains exactly one of x and $y\}$, it is clear that $\{x, y\}$ has non-empty intersection with each basis of $M_{x, y}$. Lemma 2.3 implies that there is a basis B of M so that $x \in B, y \notin B$ and $B \cap\left(C^{*}-\right.$ $\{x, y\})=\emptyset$. Let $z \in C^{*}-\{x, y\}$. If $x \notin C(z, B)$, then $\left|C(z, B) \cap C^{*}\right|=1$; a contradiction. Then $x \in C(z, B)$, and since $y \notin C(z, B)$, it follows that $B \cup z$ is a basis of $M_{x, y}$. Moreover, as $y \notin B \cup z$, the set $\{y\}$ is not a cocircuit of $M_{x, y}$. Similarly, $\{x\}$ is not a cocircuit of $M_{x, y}$. Since $\{x, y\}$ is a minimal set having non-empty intersection with each basis of $M_{x, y}$, the set $\{x, y\}$ is a cocircuit of $M_{x, y}$.

We now show that the set $C^{*}-\{x, y\}$ has non-empty intersection with each basis of $M_{x, y}$. Let $B \cup \alpha$ be an arbitrary basis of $M_{x, y}$. If $B \cap$ $\left(C^{*}-\{x, y\}\right) \neq \emptyset$, then clearly $(B \cup \alpha) \cap\left(C^{*}-\{x, y\}\right) \neq \emptyset$. So we may assume B is a basis of M so that $B \cap\left(C^{*}-\{x, y\}\right)=\emptyset$. We complete this part of the proof by analyzing two cases. First, suppose $x, y \in B$. Now $B \in \mathcal{I}\left(M_{x, y}\right)$ and $|B|<r\left(M_{x, y}\right) r(M)+1$. So B is a proper subset of a basis $B_{1} \cup \alpha_{1}$ of $M_{x, y}$. Since $B_{1} \cup \alpha_{1}=B \cup \alpha$ for some α in $B_{1}-B$, we may assume B is a proper subset of the basis $B \cup \alpha$ of $M_{x, y}$. Suppose $\alpha \in E(M)-\left(B \cup C^{*}\right)$. Then as $B \cup \alpha$ is a basis of $M_{x, y}$, the fundamental circuit $C(\alpha, B)$ in M must contain exactly one of x and y. This implies $\left|C(\alpha, B) \cap C^{*}\right|=1$; a contradiction. We conclude that $\alpha \in C^{*}-\{x, y\}$. Hence $(B \cup \alpha) \cap\left(C^{*}-\{x, y\}\right) \neq \emptyset$

Now suppose $x \in B$ and $y \notin B$. Since $B \in \mathcal{I}\left(M_{x, y}\right)$ and $|B|<r\left(M_{x, y}\right)=$ $r(M)+1$, there exists α in $E(M)-B$ so that $B \cup \alpha \in \mathcal{B}\left(M_{x, y}\right)$. If $C(y, B)$ does not contain x, then $\left|C(y, B) \cap C^{*}\right|=1$; a contradiction. Thus $C(y, B)$ contains both x and y. It follows that $B \cup y \notin \mathcal{B}\left(M_{x, y}\right)$. Similarly, if $\alpha \in$ $E(M)-\left(B \cup C^{*}\right)$, and $x \in C(\alpha, B)$, then $\left|C(\alpha, B) \cap C^{*}\right|=1$; a contradiction.

So $C(\alpha, B)$ contains neither x nor y and it follows that $B \cup \alpha \notin \mathcal{B}\left(M_{x, y}\right)$. We conclude that $\alpha \in C^{*}-\{x, y\}$. Hence $(B \cup \alpha) \cap\left(C^{*}-\{x, y\}\right) \neq \emptyset$. Therefore each basis of $M_{x, y}$ must have non-empty intersection with $C^{*}-\{x, y\}$.

We now show that $C^{*}-\{x, y\}$ is a minimal set having non-empty intersection with all bases of $M_{x, y}$. Let B be a basis of M so that $x \in B$, $y \notin B$, and $B \cap\left(C^{*}-\{x, y\}\right)=\emptyset$. Let $z \in C^{*}-\{x, y\}$. If $C(z, B)$ does not contain x, then $\left|C(z, B) \cap C^{*}\right|=1$; a contradiction. Thus $x \in C(z, B)$. Moreover, $y \notin C(z, B)$ and it follows that $B \cup z \in \mathcal{B}\left(M_{x, y}\right)$. Since for all $z \in C^{*}-\{x, y\}$, the set $B \cup z$ is a basis of $M_{x, y}$, the set $C^{*}-\{x, y\}$ is minimal having non-empty intersection with each basis of $M_{x, y}$. We conclude that $C^{*}-\{x, y\}$ is a cocircuit of $M_{x, y}$.

Figure 2. The matroids $M(G)$ and $M\left(G_{x, y}\right)$.

Theorem 2.4 establishes that if C^{*} is a cocircuit of M containing $\{x, y\}$, then $C^{*}-\{x, y\}$ is a cocircuit of $M_{x, y}$. We define a Type I set of a matroid M to be a set $C^{*}-\{x, y\}$ where C^{*} is a cocircuit of M that properly contains $\{x, y\}$. The next table lists the collections of cocircuits of the matroids M and $M_{x, y}$ shown in Figure 2.

Cocircuits of M	Type I sets	Cocircuits of $M_{x, y}$
$\{d, f\}$	$\{b\}$	$\{d, f\}$
$\{a, b, c\}$	$\{a, c\}$	$\{b\}$
$\{b, x, y\}$		$\{a, c\}$
$\{a, x, y, c\}$		$\{x, y\}$
$\{c, y, e, f\}$		$\{a, y, e, d\}$
$\{c, y, e, d\}$		$\{a, x, e, d\}$
$\{a, x, e, d\}$		$\{a, y, e, f\}$
$\{a, x, e, f\}$		$\{c, x, e, f\}$
$\{b, x, e, d, c\}$		$\{c, y, e, d\}$
$\{b, x, e, f, c\}$		$\{c, y, e, f\}$
$\{a, b, y, e, f\}$	$\{c, x, e, f\}$	
$\{a, b, y, e, d\}$		

Notice that the cocircuits of $M_{x, y}$ are $\{x, y\}$, the Type I sets of M, the sets $D^{*}-X$ for each cocircuit D^{*} of M containing a Type I set X, and the cocircuits of M that do not contain a Type I set. The following conjecture proposes that this relationship holds in general.

Conjecture 2.5. Suppose the splitting matroid $M_{x, y}$ is obtained from M and $\{x, y\}$ is a proper subset of a cocircuit of M. Then
$\mathcal{C}^{*}\left(M_{x, y}\right)=\left\{\begin{array}{l}\{x, y\} \\ C^{*}-\{x, y\} \text { for each cocircuit } C^{*} \text { of } M \text { properly containing }\{x, y\} \\ D^{*}-X \text { for each cocircuit } D^{*} \text { of } M \text { containing a Type I set } X \\ C^{*} \text { of } M \text { such that } C^{*} \text { does not contain a Type I set }\end{array}\right.$
ACKNOWLEDGEMENT
This work was partially supported by a T.T.U. Faculty Research Grant.

References

[1] Fleischner, H., Eulerian Graphs. In Selected Topics in Graph Theory 2 (eds. L.W. Beineke, R.J. Wilson), pp17-53. Academic Press, London, 1983.
[2] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
[3] Raghunathan, T. T., Shikare, M. M., and Waphare, B. N., Splitting in a binary matroid, Discrete Mathematics 184 (1998), 267-271.
[4] Shikare, M. M., and Asadi, Ghodratollah, Determination of the bases of a splitting matroid, European Journal of Combinatorics 24 (2003), 45-52.

Mathematics Department, Tennessee Tech. University, Cookeville, TN
E-mail address: amills@tntech.edu

[^0]: 1991 Mathematics Subject Classification. 05B35.

