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THE AFFINITY OF A PERMUTATION OF
A FINITE VECTOR SPACE

W. EDWIN CLARK, XIANG-DONG HOU*, AND ALEC MIHAILOVS

Abstract. For a permutation f of an n-dimensional vector space V over a

finite field of order q we let k-affinity(f) denote the number of k-flats X of V
such that f(X) is also a k-flat. By k-spectrum(n, q) we mean the set of integers

k-affinity(f) where f runs through all permutations of V . The problem of

the complete determination of k-spectrum(n, q) seems very difficult except for
small or special values of the parameters. However, we are able to establish

that 0 ∈ k-spectrum(n, q) in the following cases: (i) q ≥ 3 and 1 ≤ k ≤ n− 1;

(ii) q = 2, 3 ≤ k ≤ n − 1; (iii) q = 2, k = 2, n ≥ 3 odd. The maximum
of k-affinity(f) is, of course, obtained when f is any semi-affine mapping.

We conjecture that the next to largest value of k-affinity(f) is when f is a
transposition and we are able to prove this when q = 2, k = 2, n ≥ 3 and
when q ≥ 3, k = 1, n ≥ 2.

1. Introduction

It is a classical result, see, e.g., Snapper and Troyer [9], that if V is an n-
dimensional vector space over a field F such that n ≥ 2 and |F | ≥ 3 then a
bijection f : V → V which takes 1-flats to 1-flats is a semi-affine mapping, that
is, there is an automorphism σ of F , an additive automorphism g : V → V and a
vector b ∈ V such that g(αx) = σ(α)g(x) for all x ∈ V , α ∈ F and

f(x) = g(x) + b for all x ∈ V .
We remark that if the automorphism σ is the identity then g is just a non-singular
linear mapping and f is said to be affine. This will be the case when F has no
non-trivial automorphisms.

The above result is not true when |F | = 2. In this case, a 1-flat in V is just a two
element subset, hence every permutation of V takes all 1-flats to 1-flats. However,
the above result has an easy analog for the case |F | = 2: A permutation of V which
takes every 2-flat to a 2-flat must be affine (cf. [5]).

Let Fq be the finite field with q elements and let Fn
q be the n-dimensional vector

space over Fq. In this paper, we are concerned with permutations of Fn
q . Let

Per(Fn
q ) denote the group of all permutations of Fn

q . Recall that a k-flat (or k-
dimensional affine subspace) X in Fn

q is a coset U + x of a k-dimensional subspace
U of Fn

q .

Definition 1.1. For f ∈ Per(Fn
q ) and 0 ≤ k ≤ n we define k-affinity(f) to be the

number of k-flats X in Fn
q such that f(X) is a k-flat. We define k-coaffinity(f) to

be the number of k-flats X in Fn
q such that f(X) is not a k-flat.

Key words and phrases. affine, almost perfect nonlinear, finite field, flat, general affine group,

permutation, semi-affine group, vector space.
* Partially supported by NSA grant MDA 904-02-1-0080.
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It is well known that the number of k-dimensional subspaces of Fn
q is given by

the q-binomial coefficient[
n

k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q1 − 1)

and the number of k-flats in Fn
q is given by

qn−k

[
n

k

]
q

.

It follows that

k-affinity(f) + k-coaffinity(f) = qn−k

[
n

k

]
q

for all permutations f of Fn
q and all 0 ≤ k ≤ n.

The cases k = 0 and k = n are trivial and we shall ignore them.

Definition 1.2. For integers 0 ≤ k ≤ n and prime power q, we define k-spectrum(n, q)
to be the set of values k-affinity(f) for all f ∈ Per(Fn

q ).

The present paper is a continuation of the second author’s work [5]. In [5],
the notion of 2-affinity of permutations of Fn

2 was implicitly introduced and per-
mutations of Fn

2 with 2-affinity 0 were studied. We point out that a permutation
f ∈ Per(Fn

2 ) with 2-affinity(f) = 0 is an almost perfect nonlinear (APN) permuta-
tion. APN permutations arose in cryptography as a means to resist the differential
cryptanalysis [2, 8]. APN permutations of Fn

2 are known to exist for odd n ≥ 3
([2, 7]) and not to exist for n = 4 ([5]). Their existence for even n ≥ 6 is an open
question. For recent work on APN permutations and related topics, we refer the
reader to [1, 2, 3, 4, 5]. However, we must remind the reader that this paper is not
a response to any problem from cryptography. Rather, it is a pure mathematical
exploration.

Our primary interest is the set k-spectrum(n, q). In particular, we would like to
know if 0 ∈ k-spectrum(n, q) and what the second largest number in k-spectrum(n, q)
is. (The largest number in k-spectrum(n, q) is, of course, qn−k

[
n
k

]
q
.) In Section 2,

we show that with few exceptions, 0 ∈ k-spectrum(n, q). The result of Section
2 relies on an inequality involving q-binomial coefficients whose proof is given in
Section 3. Hou [5] showed that 2-spectrum(4,2) is

{5 – 20, 22, 24 – 26, 28, 30, 32, 36, 38, 44, 48, 52, 56, 76, 84, 140}

where a – b denotes all integers from a to b. More examples of k-spectra are given
in Section 4. In Section 5, we determine (n− 1)-spectrum(n, 2) completely. These
examples and results led to the conjecture that the next to largest k-affinity is
that of a transposition. We compute the k-affinity T (n, k, q) of a transposition in
Per(Fn

q ) in Section 6. We call this conjecture The Threshold Conjecture since it
says that if k-affinity(f) > T (n, k, q) then f takes every k-flat to a k-flat. We prove
that the conjecture holds for q = 2, k = 2, n ≥ 3 in Section 7 and for q > 2, k = 1,
n ≥ 2 in Section 8.

2. When k-affinity(f) = 0

It should be noted that there appears to be no clear relationship between k-
affinity(f) and `-affinity(f). For example, there are permutations f1, f2, f3, f4 in
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Per(F3
3) such that

1-affinity(f1) = 1 and 2-affinity(f1) = 0

1-affinity(f2) = 0 and 2-affinity(f2) = 1

1-affinity(f3) = 0 and 2-affinity(f3) = 0

1-affinity(f4) = 1 and 2-affinity(f4) = 1

In the following theorem, we see that with few exceptions there is a permutation
f ∈ Per(Fn

q ) such that simultaneously k-affinity(f) = 0 for all 1 ≤ k ≤ n− 1.

Theorem 2.1.
(i) If q = 2 and n ≥ 3 is odd, there exists f ∈ Per(Fn

2 ) such that 2-affinity(f) =
0.

(ii) If q = 2 and n ≥ 4 , there exists f ∈ Per(Fn
2 ) such that k-affinity(f) = 0

for all 3 ≤ k ≤ n− 1.
(iii) If q ≥ 4 and n ≥ 2, there exists f ∈ Per(Fn

q ) such that k-affinity(f) = 0 for
all 1 ≤ k ≤ n− 1.

(iv) If q = 3 and n ≥ 3, there exists f ∈ Per(Fn
3 ) such that k-affinity(f) = 0 for

all 2 ≤ k ≤ n− 1.
(v) If q = 3 and n ≥ 2, there exists f ∈ Per(Fn

3 ) such that 1-affinity(f) = 0.

The proof of Theorem 2.1 is spread out in parts in the rest of this section. Part
(i) of Theorem 2.1 is well known. (See [3, 4] for several families of permutations
of F2m+1

2 with 2-affinity 0.) It also follows from the following example in which we
compute the 2-affinity of the permutation f of Fn

2 (∼= F2n) defined by f(x) = x2n−2.
We remark that this permutation has been discussed by Nyberg [7] in terms of
differential uniformity and that our computation is slightly different from that of
[7].

Example 2.2. Identify Fn
2 with F2n . Define f ∈ Per(F2n) by f(x) = x2n−2 for

x ∈ F2n . Note that

f(x) =

{
0 if x = 0,
1
x if x 6= 0.

We claim that

2-affinity(f) =

{
0 if n is odd,
2n−1

3 if n is even.

Suppose X ⊂ F2n is some 2-flat such that f(X) is also a 2-flat. Then we can
write X = {x, y, z, w} where x + y + z + w = 0. Suppose first that x, y, z, and w
are all nonzero. Then we have f(X) = { 1

x ,
1
y ,

1
z ,

1
w} and 1

x + 1
y + 1

z + 1
w = 0. It

follows that w = x+ y + z and

0 =
1
x

+
1
y

+
1
z

+
1

x+ y + z
=

(x+ y)(x+ z)(y + z)
xyz(x+ y + z)

.

It follows that x = y or x = z or y = z which contradicts the assumption that
X is a 2-flat. Thus without loss of generality we may assume that w = 0. Then
X = {0, x, y, x+ y}, f(X) = {0, 1

x ,
1
y ,

1
x+y} and

1
x

+
1
y

+
1

x+ y
= 0.
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This is equivalent to

(2.1)
(y
x

)2

+
(y
x

)
+ 1 = 0.

Hence y
x is a root of the irreducible polynomial g(t) = t2 + t+ 1 ∈ F2[t]. Therefore

F2( y
x ) is a subfield of F2n with [F2( y

x ) : F2] = 2. It follows that n is even. So if n is
odd, no such x and y exist and 2-affinity(f) = 0.

On the other hand, if n is even, g(t) has two roots β and 1 + β in F2n and
K = {0, 1, β, 1 + β} is the unique subfield of order 4 in F2n . It follows from (2.1)
that y

x = β or 1 + β. In both cases,

X = {0, x, y, x+ y}
= {0, x, xβ, x(1 + β)}
= xK

= {0} ∪ xK∗

where K∗ is the multiplicative group of K and xK∗ is a coset of the subgroup K∗ in
F∗2n . There are (2n− 1)/3 cosets of K∗ in F∗2n and therefore the same number of 2-
flats of the form xK. Since f(xK) = 1

xK, it follows that 2-affinity(f) = (2n−1)/3,
as claimed.

Note that when n = 4, 24−1
3 = 5 is the minimum 2-affinity of permutations of

F4
2 ([5]).

The proof of parts (ii) – (iv) of Theorem 2.1 relies on the following theorem
whose proof will be given in Section 3.

Theorem 2.3. Let q, m, n be integers such that n > m and q, m satisfy one of
the following conditions:

(a) q = 2, m = 3,
(b) q = 3, m = 2,
(c) q ≥ 4, m = 1.

Then

(2.2)
n−1∑
k=m

q2(n−k)

[
n

k

]2
q

qk! (qn − qk)! < qn!.

Proof of Theorem 2.1 (ii) – (iv). Let Φk denote the set of all f ∈ Per(Fn
q ) such

that k-affinity(f) ≥ 1. Let X be any fixed k-flat in Fn
q and define

SX = {f ∈ Per(Fn
q ) : f(X) = X}.

Note that since |X| = qk we have |SX | = qk! (qn − qk)!.
The group of invertible affine transformations of Fn

q , i.e., the general affine group
AGL(n,Fq), acts transitively on the set of all k-flats of Fn

q . Hence for every k-flat
W , there exists αW ∈ AGL(n,Fq) such that αW (W ) = X. Let f ∈ Φk and
assume that f(W ) = Z where W and Z are k-flats. Then αZ ◦ f ◦ α−1

W ∈ SX , i.e.,
f ∈ α−1

Z ◦ SX ◦ αW . Since there are qn−k
[
n
k

]
q
k-flats in Fn

q it follows that

|Φk| ≤

(
qn−k

[
n

k

]
q

)2

|SX | = q2(n−k)

[
n

k

]2
q

qk! (qn − qk)!.
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Hence if q and m satisfy one of the conditions in Theorem 2.3 and n > m, we have
n−1∑
k=m

|Φk| ≤
n−1∑
k=m

q2(n−k)

[
n

k

]2
q

qk! (qn − qk)! < qn!.

Thus there exists f ∈ Per(Fn
q ) such that f /∈

⋃n−1
k=m Φk. �

Note that inequality (2.2) does not cover the case q = 3 and m = 1, that is, part
(v) of Theorem 2.1. This case is dealt with as a corollary to the following lemma.

Lemma 2.4. Let F be any field. If the permutations f : Fn → Fn and g : Fm →
Fm each have 1-affinity 0 then the permutation f × g : Fn × Fm → Fn × Fm has
1-affinity 0.

Proof. Assume to the contrary that there exists a 1-flat X in Fn × Fm such that
(f × g)(X) is also a flat. Let π1 : Fn × Fm → Fn and π2 : Fn × Fm → Fm be
the projections. Then either π1(X) is a 1-flat in Fn or π2(X) is a 1-flat in Fm.
Without loss of generality, assume that the former is the case. Thus f

(
π1(X)

)
=

π1

(
(f × g)(X)

)
is a 1-flat in Fn, which is impossible since 1-affinity(f) = 0. �

Corollary 2.5. If n ≥ 2, there exists f ∈ Per(Fn
3 ) such that 1-affinity(f) = 0.

Proof. By Lemma 2.4, it suffices to show that F2
3 and F3

3 have permutations of 1-
affinity 0. Such permutations are easily found through a computer search. For F2

3,
label the elements (0, 0), (0, 1), . . . , (2, 2) with 0, 1, . . . , 8. A desirable permutation
f is given by (

f(0), · · · , f(8)
)

= (0, 1, 8, 2, 3, 4, 5, 6, 7).

For F3
3, we label the elements (0, 0, 0), (0, 0, 1), . . . , (2, 2, 2) with 0, 1, . . . , 26. A

desirable permutation f in this case is given by(
f(0), · · · , f(26)

)
=(0, 1, 24, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 25, 15, 16, 17, 26, 18, 19, 23, 20, 21, 22).

�

3. Inequalities between Binomial and q-Binomial Coefficients

In this section we assume that i, k,m, n, q are integers.

Lemma 3.1. For q > 2, n > k ≥ 1 and q = 2, n > k ≥ 2,

(3.1)

[
n

k

]2
q(

qn

qk

) <
1

qqk−2k
·

[
n− 1
k

]2
q(

qn−1

qk

) .
Proof. Inequality (3.1) is equivalent to

(3.2)
(qn − 1)2

qn(qn − 1) . . . (qn − (qk − 1))
<

(qn − qk)2

qn(qn − q) . . . (qn − (qk − 1)q)
,

which can be further rewritten as
1∏qk−2

i=2 (qn − i)
· qn − 1
qn − (qk − 1)

<
1∏

1≤i≤qk−2

i 6=qk−1

(qn − qi)
· qn − qk

qn − (qk − 1)q
.
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Clearly,
qk−2∏
i=2

(qn − i) ≥
∏

1≤i≤qk−2

i 6=qk−1

(qn − qi).

Thus it suffices to show that

(3.3)
qn − 1

qn − (qk − 1)
<

qn − qk

qn − (qk − 1)q
.

Inequality (3.3) follows from

(qn − qk)(qn − (qk − 1))− (qn − 1)(qn − (qk − 1)q)

= (qk − 1)(qn(q − 2) + qk − q)
> 0.

�

Lemma 3.2. For q ≥ 4, k ≥ 1, or q = 3, k ≥ 2, or q = 2, k ≥ 3,

(3.4)

[
k + 1
k

]2
q(

qk+1

qk

) <
1

qqk−k
.

Proof. The left hand side of (3.4) equals

qk+1 − 1
qk+1

· 2 · 3
(q − 1)2(qk+1 − qk + 1)(qk+1 − qk + 2)

· qk ·
qk−4∏
i=1

qk − i

qk+1 − i− 1
.

In this product,
qk+1 − 1
qk+1

< 1

and for every 1 ≤ i ≤ qk − 4,

(3.5)
qk − i

qk+1 − i− 1
≤ 1
q

(To see (3.5), note that since q ≥ 2, we have qk+1 − i− 1 ≥ qk+1 − qi.) Therefore,
it suffices to show that

6
(q − 1)2(qk+1 − qk + 1)(qk+1 − qk + 2)

≤ 1
q4
.

Let

f(q, k) = (q − 1)2
(
qk−2(q − 1) +

1
q2

)(
qk−2(q − 1) +

2
q2

)
.

It suffices to show that
f(q, k) ≥ 6.

The function f(q, k) is increasing with respect to k for fixed q > 1. For k ≥ 2
and q ≥ 2 or k = 1 and q ≥ 4, we have

d

dq

[
qk−2(q − 1) +

1
q2

]
= (k − 1)qk−2 − (k − 2)qk−3 − 2q−3 > 0
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and
d

dq

[
qk−2(q − 1) +

2
q2

]
= (k − 1)qk−2 − (k − 2)qk−3 − 4q−3 ≥ 0.

Hence f(q, k) is increasing with respect to q for q and k in the above range. Thus,
for q ≥ 4 and k ≥ 1,

f(q, k) ≥ f(4, 1) =
819
128

> 6;

for q = 3 and k ≥ 2,

f(q, k) ≥ f(3, 2) =
1520
81

> 6;

for q = 2 and k ≥ 4,

f(q, k) ≥ f(2, 4) =
153
8

> 6.

For q = 2 and k = 3, (3.4) is verified directly:[
4
3

]2
2(

24

23

) =
5

286
<

1
32

=
1

223−3
.

�

Corollary 3.3. For q ≥ 4, n > k ≥ 1, or q = 3, n > k ≥ 2, or q = 2, n > k ≥ 3,

(3.6)

[
n

k

]2
q(

qn

qk

) <
1

q(n−k)(qk−2k)+k
.

Proof. Applying Lemma 3.1 to the left hand side of (3.6) n − k − 1 times and
applying Lemma 3.2 after that, we get[

n

k

]2
q(

qn

qk

) <
1

q(n−k−1)(qk−2k)
·

[
k + 1
k

]2
q(

qk+1

qk

)
<

1
q(n−k−1)(qk−2k)

· 1
qqk−k

=
1

q(n−k)(qk−2k)+k
.

�

Lemma 3.4. For q ≥ 4, k ≥ 1, or q = 3, k ≥ 2, or q = 2, k ≥ 3,

(3.7) qk − 2k − 2 ≥ 0.

Proof. Let g(q, k) denote the left hand side of (3.7). For fixed k ≥ 1, g(q, k) is
increasing with respect to q. Also note that

∂g

∂k
= qk ln q − 2 >

qk − 4
2

,
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which is non-negative in the described range for q and k. So, g(q, k) is increasing
with respect to k in such range. Thus, for q ≥ 4 and k ≥ 1

g(q, k) ≥ g(4, 1) = 0;

for q = 3 and k ≥ 2,
g(q, k) ≥ g(3, 2) = 3 > 0;

for q = 2 and k ≥ 3,
g(q, k) ≥ g(2, 3) = 0.

�

Proof of Theorem 2.3. Let q and m satisfy one of the conditions (a) – (c) in The-
orem 2.3 and let n > m. By Corollary 3.3 and Lemma 3.4, for m ≤ k < n, we
have

q2(n−k)

[
n

k

]2
q(

qn

qk

) <
1

q(n−k)(qk−2k−2)+k
≤ 1
qk
.

Therefore,

n−1∑
k=m

q2(n−k)

[
n

k

]2
q(

qn

qk

) <
n−1∑
k=m

1
qk

<
∞∑

k=1

1
qk

=
1

q − 1
≤ 1,

which proves the theorem. �

4. Examples of k-Spectra for Small Values of k, n, q

Recall that for given k, n, q,

k-spectrum(n, q) = {k-affinity(f) : f ∈ Per(Fn
q )}.

Here we give some examples. In all cases a – b denotes all integers from a to b.
Only a few of the spectra (as indicate below) are proved to be complete. The other
examples are spectra obtained by random searches. In such cases it is possible but
not certain that some values are missing, hence the results are called partial spectra.

The full spectrum for k = 1, n = 2, q = 3:
{0 – 4, 6, 12}
The full spectrum for k = 1, n = 2, q = 4:
{0 – 6, 8, 12, 20}
A partial spectrum for k = 1, n = 2, q = 5:

{0 – 12, 14, 15, 20, 30}
A partial spectrum for k = 1, n = 2, q = 7:

{0 – 2, 5 – 7, 10 – 12, 14 – 18, 20 – 30, 32, 35, 42, 56}
A partial spectrum for k = 1, n = 3, q = 3:

{0 – 64, 66, 70, 71, 73, 75, 81, 93, 117}
The full spectrum for k = 2, n = 3, q = 2:

{0, 2, 6, 14}
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A partial spectrum for k = 2, n = 3, q = 3:

{0 – 9, 11 – 13, 15, 21, 39}
The full spectrum for k = 2, n = 4, q = 2:

{5 – 20, 22, 24 – 26, 28, 30, 32, 36, 38, 44, 48, 52, 56, 76, 84, 140}
A partial spectrum for k = 2, n = 5, q = 2:

{0, 9 – 416, 418, 420, 422, 424, 426 – 428, 430 – 432, 434, 436 – 440, 442, 444 –
452, 454, 456 – 462, 464, 466, 468 – 472, 474, 476, 480, 482, 484, 486, 488, 490, 492,
496, 500, 504, 506, 508, 512, 514 – 515, 517 – 518, 520, 526 – 528, 530, 532, 536,
540, 548, 550, 552, 554, 556, 560, 564, 568, 576, 600, 604 – 605, 608, 618, 620, 640,
648, 664, 704, 706, 728, 732, 736, 792, 820, 960, 1240}
A partial spectrum for k = 2, n = 6, q = 2 :

{21, 28 – 5132, 5134, 5136 – 5140, 5142 – 5148, 5150 – 5384, 5386, 5388, 5390,
5392, 5394, 5396 – 5418, 5420, 5422 – 5446, 5448 – 5464, 5466 – 5468, 5470, 5472
– 5480, 5482, 5484 – 5486, 5488, 5490, 5492, 5496, 5498, 5500, 5502, 5504, 5506,
5508, 5510, 5512, 5514, 5516, 5520, 5522, 5524, 5526, 5528, 5530, 5532, 5534, 5536,
5538, 5540, 5544, 5548, 5550 – 5552, 5554 – 5556, 5558, 5560 – 5562, 5564, 5566 –
5568, 5570 – 5572, 5574, 5576, 5578, 5580 – 5581, 5584, 5586, 5588 – 5606, 5608 –
5610, 5612 – 5634, 5636 – 5712, 5716 – 5736, 5738, 5740 – 5760, 5765 – 5774, 5776
– 5784, 5786, 5788 – 5790, 5792, 5794, 5796, 5820, 5822, 5824, 5830, 5832, 5834,
5836, 5840, 5844, 5849, 5855 – 5857, 5860 – 5861, 5868, 5874, 5876, 5878, 5880,
5882, 5884, 5886, 5888, 5890, 5892, 5896, 5898, 5900, 5904, 5908, 5912, 5936, 5940,
5944, 5948, 5952, 5960, 5974, 5976, 5978, 5984, 5986, 5988, 5990, 5994, 6000, 6012,
6020, 6030, 6032, 6034, 6045 – 6058, 6070 – 6084, 6086, 6088, 6090, 6092, 6096,
6099 – 6111, 6120 – 6136, 6138, 6140, 6142, 6144, 6146, 6148, 6152, 6160, 6178 –
6180, 6182 – 6184, 6186, 6188 – 6190, 6192, 6194, 6202, 6208, 6228, 6230, 6232,
6234, 6236, 6238, 6240, 6242, 6244, 6248, 6256, 6260, 6264, 6286, 6288, 6290, 6296,
6298, 6316, 6336, 6340, 6352, 6360, 6384, 6444, 6448, 6452, 6460, 6475 – 6480, 6482,
6484, 6488, 6496, 6501 – 6503, 6505 – 6508, 6528 – 6534, 6536, 6538, 6540, 6544,
6557 – 6560, 6586, 6588, 6590, 6592, 6594, 6596, 6640, 6642, 6644, 6648, 6650, 6656,
6756, 6764, 6768, 6832, 6955, 6957 – 6958, 6982 – 6984, 6986, 6988, 6992, 7036,
7038, 7040, 7042, 7044, 7048, 7056, 7152, 7156, 7160, 7384, 7461, 7490, 7492, 7552,
7994, 8052, 8056, 8176, 8556, 9176, 10416}
Observations:

(1) From Theorem 2.1, 0 ∈ k-spectrum(n, q) for 1 ≤ k ≤ n − 1 unless k = 1,
q = 2 or k = 2, q = 2 and n is even.

(2) Near the beginning in each example spectrum there is a long sequence of
consecutive values. For q = 2 and k = 2, there seems to be a gap preceding
the first non-zero affinity. For q > 2 the limited experimental data shows
no such gaps. This suggests that for q = 2, if there is one 2-flat that is
carried to a 2-flat then there are a certain number of other 2-flats that must
also be carried to 2-flats.

(3) Preceding the largest value in k-spectrum(n,q) there appears to a gap of
size 2qk

[
n−1

k

]
q
. Note that this gap may be considered a threshold in the

sense that if k-affinity(f) > qn−k
[
n
k

]
q
− 2qk

[
n−1

k

]
q
, then f takes all k-flats

to k-flats.
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5. (n− 1)-spectrum(n, 2)

In this section, we will determine (n− 1)-spectrum(n, 2), which is the set of all
(n − 1)-affinities of permutations of Fn

2 . The standard dot product of a, b ∈ Fn
2 is

denoted by 〈a, b〉. Every (n− 1)-flat in Fn
2 is uniquely of the form

H(a, ε) := {x ∈ Fn
2 : 〈a, x〉 = ε}

for some a ∈ Fn
2 \ {0} and ε ∈ F2. Let f ∈ Per(Fn

2 ). If for some a ∈ Fn
2 \ {0}

and some ε ∈ F2, f
(
H(a, ε)

)
is an (n − 1)-flat, say f

(
H(a, ε)

)
= H(b, δ) for some

b ∈ Fn
2 \ {0} and δ ∈ F2, we must have f

(
H(a, 1 + ε)

)
= H(b, 1 + δ). Therefore, for

each such a and b, there exists φ ∈ Per(F2) such that

(5.1) f
(
H(a, t)

)
= H

(
b, φ(t)

)
for all t ∈ F2.

Lemma 5.1. Let f ∈ Per(Fn
2 ) and let

Vf = {0} ∪
{
a ∈ Fn

2 \ {0} : f
(
H(a, 0)

)
is an (n− 1)-flat

}
.

Then Vf is a subspace of Fn
2

Proof. For a1, a2 ∈ Vf , we prove that a1 + a2 ∈ Vf . We may assume that a1 6= 0,
a2 6= 0, and a1 6= a2. By (5.1), there exist bi ∈ Fn

2 \ {0} and φi ∈ Per(F2), i = 1, 2,
such that

f
(
H(ai, t)

)
= H

(
bi, φi(t)

)
for all t ∈ F2.

Clearly, b1 6= b2. Since F2 has only two permutations, t 7→ t or t 7→ t + 1, we see
that φ1 +φ2 is a constant, say ε. For any x ∈ H(a1 +a2, 0), let t = 〈a1, x〉 = 〈a2, x〉.
Then x ∈ H(ai, t), hence f(x) ∈ H

(
bi, φi(t)

)
. It follows that

〈b1 + b2, f(x)〉 = φ1(t) + φ2(t) = ε,

i.e., f(x) ∈ H(b1+b2, ε). Thus we have proved that f
(
H(a1+a2, 0)

)
= H(b1+b2, ε),

which implies that a1 + a2 ∈ Vf . �

Theorem 5.2. Let n > 2. Then

(n− 1)-spectrum(n, 2) = {2i − 2 : 1 ≤ i ≤ n+ 1}.

Proof. For each f ∈ Per(Fn
2 ), by Lemma 5.1, we have

(n− 1)-affinity(f) = 2|Vf \ {0}| = 2dim Vf +1 − 2 ∈ {2i − 2 : 1 ≤ i ≤ n+ 1}.

It remains to show that for each 1 ≤ i ≤ n+ 1, there exists f ∈ Per(Fn
2 ) with

(n− 1)-affinity(f) = 2i − 2.

We prove this claim by induction on n. For n = 3, the claim was established by
computer as mentioned in Section 4. Assume n > 3. If i = 1, the claim follows from
Theorem 2.1. Thus we will assume 2 ≤ i ≤ n+1. By the induction hypothesis, there
exists g ∈ Per(Fn−1

2 ) such that (n − 2)-affinity(g) = 2i−1 − 2. Define f ∈ Per(Fn
2 )

by f(c, x) = (c, g(x)), c ∈ F2, x ∈ Fn−1
2 . Clearly, {i} × Fn−1

2 , i = 0, 1, are mapped
into flats by f . Let X ⊂ Fn

2 be any (n − 1)-flat other than {i} × Fn−1
2 , i = 0, 1,

such that f(X) is a flat. Write

X ∩
(
{i} × Fn−1

2

)
= {i} × Ui, i = 0, 1.,

where Ui ⊂ Fn−1
2 is an (n− 2)-flat and U0 = U1 or Fn−1

2 \ U1. Then

(5.2) X =
(
{0} × U0

)
∪
(
{1} × U1

)
.
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Since
{i} × g((Ui) = f

(
X ∩

(
{i} × Fn−1

2

))
= f(X) ∩

(
{i} × Fn−1

2

)
is an (n−2)-flat, g(Ui) is an (n−2)-flat. On the other hand, given any (n−2)-flats
U0, U1 ⊂ Fn−1

2 such that U0 = U1 or Fn−1
2 \U1 and g(Ui), i = 0, 1, are (n− 2)-flats,

both X (in (5.2)) and f(X) are (n− 1)-flats in Fn
2 . Therefore,

(n− 1)-affinity(f) = 2 + 2 ·
(
(n− 2)-affinity(g)

)
= 2 + 2(2i−1 − 2)

= 2i − 2.

The proof is now complete. �

6. Threshold Conjecture for k-Affinity

In many cases it appears that the next to largest k-affinity is the k-affinity of
a transposition. We calculate this value in the following lemma. In this case it is
more convenient to compute the k-coaffinity.

Lemma 6.1. Let f ∈ Per(Fn
q ) be any transposition. Then

k-coaffinity(f) = 2qk

[
n− 1
k

]
q

and

k-affinity(f) =
(

(qn−k − 2)(qn − 1)
qk − 1

+ 2
)[

n− 1
k − 1

]
q

.

Proof. Assume that f interchanges x and y, where x, y ∈ Fn
q are distinct. If U is a

k-flat, then f(U) is not a k-flat if and only if U contains exactly one of x and y.
The number of k-flats in Fn

q containing a fixed point is
[
n
k

]
q
; the number of k-flats

in Fn
q containing two fixed points is

[
n−1
k−1

]
q
. Hence

k-coaffinity(f) = 2

([
n

k

]
q

−
[
n− 1
k − 1

]
q

)
= 2qk

[
n− 1
k

]
q

.

It follows that

k-affinity(f) = qn−k

[
n

k

]
q

− 2qk

[
n− 1
k

]
q

=
(

(qn−k − 2)(qn − 1)
qk − 1

+ 2
)[

n− 1
k − 1

]
q

.

�

It is natural to call the next largest k-affinity a threshold for affinity and we
make the following conjecture:

Conjecture 6.2 (Threshold Conjecture). Let 1 ≤ k ≤ n− 1 and f ∈ Per(Fn
q ). If

k-coaffinity(f) < 2qk

[
n− 1
k

]
q

,



12 W. EDWIN CLARK, XIANG-DONG HOU, AND ALEC MIHAILOVS

then k-coaffinity(f) = 0, i.e., f ∈ AGL(n,Fq). Equivalently, if

k-affinity(f) >
(

(qn−k − 2)(qn − 1)
qk − 1

+ 2
)[

n− 1
k − 1

]
q

,

then k-affinity(f) = qn−k
[
n
k

]
q
. That is, the next to largest k-affinity is that of a

transposition.

This conjecture is supported by the examples in Section 4 and the result in
Section 5. More importantly it is supported by the proof for q = 2, k = 2, n > 2 in
Section 7, and the proof for q > 2, k = 1, n > 1 in Section 8.

7. Proof of the Threshold Conjecture for k = 2, q = 2

Recall that a 2-flat in Fn
2 is simply a 4-element subset {x1, x2, x3, x4} such that

x1 +x2 +x3 +x4 = 0. For f ∈ Per(Fn
2 ) and a 2-flat X ⊂ Fn

2 , f(X) is a 2-flat if and
only if f is affine on X.

For the proof in this section, the reader’s familiarity with the Fourier transforma-
tion of boolean functions will be helpful. We first introduce the necessary notation.
The set of all functions from Fn

2 to F2 is denoted by Pn. Every function in Pn is
uniquely represented by a polynomial in F2[X1, . . . , Xn] whose degree in each Xi is
at most 1. Namely,

Pn = F2[X1, . . . , Xn]/〈X2
1 −X1, . . . , X

2
n −Xn〉.

For each g ∈ Pn, put |g| = |g−1(1)|. The Fourier transform of g ∈ Pn is the function
ĝ : Fn

2 → C defined by

ĝ(a) =
∑
x∈Fn

2

(−1)g(x)+〈a,x〉, a ∈ Fn
2 ,

where 〈a, x〉 is the standard dot product in Fn
2 . Clearly,

(7.1) ĝ(a) = 2n − 2|g + 〈a, ·〉|.

Note that for n ≥ 2, |g + 〈a, ·〉| ≡ |g| (mod 2), hence

ĝ(a) ≡ 2|g| (mod 4).

It is well known (also straightforward to prove) that

(7.2)
∑
a∈Fn

2

(
ĝ(a)

)2 = 22n

and

(7.3)
∑
a∈Fn

2

(
ĝ(a)

)4 = 2n
∑
a∈Fn

2

[∑
x∈Fn

2

(−1)g(x+a)+g(x)
]2
.

(Equation (7.2) is the Parseval identity; equation (7.3) is a relation between the
Fourier transform and the convolution of the function. Cf. [6].) If A ≤

(
ĝ(a)

)2 ≤ B
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for all a ∈ Fn
2 , from (7.2), we have

2n
(B −A

2

)2

≥
∑
a∈Fn

2

[(
ĝ(a)

)2 − A+B

2

]2
=
∑
a∈Fn

2

(
ĝ(a)

)4 − (A+B)
∑
a∈Fn

2

(
ĝ(a)

)2 + 2n
(A+B

2

)2

=
∑
a∈Fn

2

(
ĝ(a)

)4 − 22n(A+B) + 2n
(A+B

2

)2

.

Thus ∑
a∈Fn

2

(
ĝ(a)

)4 ≤ 22n(A+B)− 2nAB.

Combining the above with (7.3), we have

(7.4)
∑
a∈Fn

2

[∑
x∈Fn

2

(−1)g(x+a)+g(x)
]2
≤ 2n(A+B)−AB.

The equality in (7.4) holds if and only if
(
ĝ(a)

)2 = A or B for all a ∈ Fn
2 .

Lemma 7.1. Let g ∈ Pn with deg g ≥ 2. Then

(7.5)
∑
a∈Fn

2

[∑
x∈Fn

2

(−1)g(x+a)+g(x)
]2
≤ 22n + (2n − 1)(2n − 4)2.

The equality holds if and only if |g + h| = 1 for some h ∈ Pn with deg h ≤ 1.

Proof. Since deg g ≥ 2, ĝ(a) 6= ±2n for all a ∈ Fn
2 .

Case 1. |g| is even. By (7.1), 0 ≤ |ĝ(a)| ≤ 2n − 4 for all a ∈ Fn
2 . Hence

0 ≤
(
ĝ(a)

)2 ≤ (2n − 4)2 for all a ∈ Fn
2 .

By (7.4),∑
a∈Fn

2

[∑
x∈Fn

2

(−1)g(x+a)+g(x)
]2
≤ 2n(2n − 4)2 < 22n + (2n − 1)(2n − 4)2.

Case 2. |g| is odd, By (7.1), 2 ≤ |ĝ(a)| ≤ 2n − 2 for all a ∈ Fn
2 . Hence

22 ≤
(
ĝ(a)

)2 ≤ (2n − 2)2 for all a ∈ Fn
2 .

By (7.4), ∑
a∈Fn

2

[∑
x∈Fn

2

(−1)g(x+a)+g(x)
]2

≤ 2n
[
22 + (2n − 2)2

]
− 22(2n − 2)2

= 22n + (2n − 1)(2n − 4)2.

The equality holds if and only if
(
ĝ(a)

)2 = 22 or (2n − 2)2 for all a ∈ Fn
2 .

First assume that the equality in (7.5) holds. Since
∑

a∈Fn
2

(
ĝ(a)

)2 = 22n, for at

least one a ∈ Fn
2 ,
(
ĝ(a)

)2 = (2n − 2)2. By (7.1),(
2n − 2|g + 〈a, ·〉|

)2 = (2n − 2)2.
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Thus |g + 〈a, ·〉| = 1 or 2n − 1. Let

h =

{
〈a, ·〉 if |g + 〈a, ·〉| = 1,
〈a, ·〉+ 1 if |g + 〈a, ·〉| = 2n − 1.

Then |g + h| = 1, as claimed.
Now assume that |g + h| = 1 for some h ∈ Pn with deg h ≤ 1. Then for every

a ∈ Fn
2 ,

|g + 〈a, ·〉| = 2n−1 ± 1, or 1, or 2n − 1.

It follows from (7.1) that ĝ(a) = ±2 or ±(2n − 2). Hence
(
ĝ(a)

)2 = 22 or (2n − 2)2

for all a ∈ Fn
2 . Therefore the equality holds in (7.5). �

Theorem 7.2. Let n ≥ 3 and f ∈ Per(Fn
2 ) \AGL(n,F2). Then

2-coaffinity(f) ≥ 8
3
(2n−1 − 1)(2n−2 − 1).

The equality holds if and only if f ∈ AGL(n,F2)◦τ ◦AGL(n,F2) where τ ∈ Per(Fn
2 )

is any transposition.

Corollary 7.3. The Threshold Conjecture (Conjecture 6.2) holds for q = 2, k = 2,
n > 2.

Proof of Theorem 7.2. Case 1. f(x+ d) + f(x) = constant for some d ∈ Fn
2 \ {0}.

Without loss of generality, assume d = (1, 0, . . . , 0). Write f = (f1, . . . , fn) where
fi : Fn

2 → F2. Then
fi = ciX1 + gi(X2, . . . , Xn)

for all 1 ≤ i ≤ n, where ci ∈ F2 and gi ∈ Pn−1. Note that (c1, . . . , cn) 6= 0 since
otherwise, f is independent ofX1 and cannot be a permutation of Fn

2 . By composing
a suitable element of GL(n,F2) to the left of f , we may assume (c1, . . . , cn) =
(1, 0, . . . , 0). Thus

f =
(
X1 + g1(X2, . . . , Xn), g2(X2, . . . , Xn), . . . , gn(X2, . . . , Xn)

)
.

It follows that g = (g2, . . . , gn) is a permutation of Fn−1
2 .

Case 1.1. g /∈ AGL(n− 1,F2). Using induction, we may assume

2-coaffinity(g) ≥ 8
3
(2n−2 − 1)(2n−3 − 1).

Note that if g is not affine on a 2-flat {y1, y2, y3, y4} in Fn−1
2 , f is not affine on the

2-flat {(xi, yi) : i ≤ i ≤ 4} where x1 + · · ·+ x4 = 0. Hence

2-coaffinity(f) ≥ 8 ·
(
2-coaffinity(g)

)
>

8
3
(2n−1 − 1)(2n−2 − 1).

Case 1.2. g ∈ AGL(n − 1,F2). Then deg g1 ≥ 2. We may assume g = id. In
this case, the 2-flats on which f is not affine are precisely

{(xi, yi) : 1 ≤ i ≤ 4}

where {y1, . . . , y4} is a 2-flat in Fn−1
2 such that

∑4
i=1 g1(yi) = 1 and x1, . . . , x4 ∈ F2

with
∑4

i=1 xi = 0. Define

G : (Fn−1
2 )3 −→ F2

(y, a, b) 7−→ g1(y) + g1(y + a) + g1(y + b) + g1(y + a+ b)
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Then
2-coaffinity(f) =

8
4!
|G| = 1

3
|G|.

We have

|G| =
1
2

[
23(n−1) −

∑
y,a,b∈Fn−1

2

(−1)G(y,a,b)
]

=
1
2

[
23(n−1) −

∑
a∈Fn−1

2

∑
y,b∈Fn−1

2

(−1)g1(y)+g1(y+a)+g1(y+b)+g1(y+a+b)
]

=
1
2

[
23(n−1) −

∑
a∈Fn−1

2

( ∑
y∈Fn−1

2

(−1)g1(y)+g1(y+a)
)2]

≥ 1
2

[
23(n−1) −

[
22(n−1) + (2n−1 − 1)(2n−1 − 4)2

]]
(by Lemma 7.1)

= 23(2n−1 − 1)(2n−2 − 1).

Therefore,

2-coaffinity(f) =
1
3
|G| ≥ 8

3
(2n−1 − 1)(2n−2 − 1).

If the equality holds in the above, then the equality in (7.5) holds with g1 in
place of g. By Lemma 7.1, there exists h ∈ Pn−1 such that |g1 + h| = 1. Using a
linear transformation, we may replace g1 with g1+h. Thus we may assume |g1| = 1.
Then clearly,

f =
(
X1 + g1(X2, . . . , Xn), X2, . . . , Xn

)
is a transposition.

Case 2. f(x+ d) + f(x) 6= constant for all d ∈ Fn
2 \ {0}. For each d ∈ Fn

2 \ {0},
let

∆(d) =
{
{x, x+ d} : x ∈ Fn

2

}
⊂
(

Fn
2

2

)
,

where
(Fn

2
2

)
denotes the set of all 2-element subsets of Fn

2 . Denote {f(X) : X ∈
∆(d)} by f(∆(d)) (an abuse of notation for the convenience). By the assumption,
f
(
∆(d)

)
6⊂ ∆(c) for every c ∈ Fn

2 \ {0}. Since the subsets in ∆(d) and ∆(c) form
partitions of Fn

2 , we have

(7.6)
∣∣f(∆(d)

)
∩∆(c)

∣∣ ≤ 2n−1 − 2.

We claim that we can partition Fn
2 \ {0} into A and B such that∣∣∣f(∆(d)
)
∩
(⋃

a∈A

∆(a)
)∣∣∣ ≥ 2,

∣∣∣f(∆(d)
)
∩
(⋃

b∈B

∆(b)
)∣∣∣ ≥ 2.

Note that ∆(a), a ∈ Fn
2 \ {0} form a partition of

(Fn
2
2

)
. If

∣∣f(∆(d)
)
∩∆(a)

∣∣ ≤ 1 for
all a ∈ Fn

2 \ {0}, choose a1, a2 ∈ Fn
2 \ {0} distinct such that

∣∣f(∆(d)
)
∩∆(ai)

∣∣ = 1,
i = 1, 2. Then A = {a1, a2}, B = Fn

2 \ {0, a1, a2} have the desired property. If∣∣f(∆(d)
)
∩∆(a)

∣∣ ≥ 2 for some a ∈ Fn
2 \ {0}, let A = {a} and B = Fn

2 \ {0, a}. By
(7.6), we have∣∣∣f(∆(d)

)
∩
(⋃

b∈B

∆(b)
)∣∣∣ = 2n−1 −

∣∣f(∆(d)
)
∩∆(a)

∣∣ ≥ 2.
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Hence A and B also have the desired property.
Therefore, among the 2-flats which are a union of two elements in ∆(d), there

are at least
2 · (2n−1 − 2)

on which f is not affine. Since this statement is true for all d ∈ Fn
2 \ {0}, it follows

that

2-coaffinity(f) ≥ 2 · (2n−1 − 2) · (2n − 1)
3

>
8
3
(2n−1 − 1)(2n−2 − 1).

�

For the remainder of this section, we compute the number of permutations f ∈
Per(Fn

2 ) with 2-coaffinity(f) = 22
[
n−1

2

]
2

= 8
3 (2n−1 − 1)(2n−2 − 1).

Lemma 7.4. Let n ≥ 3 and choose a ∈ Fn
2 \ {0}. Let τ ∈ Per(Fn

2 ) be the transpo-
sition which permutes 0 and a and let f ∈ AGL(n,F2).

(i) If n ≥ 4, then τ ◦ f ◦ τ ∈ AGL(n,F2) if and only if f({0, a}) = {0, a}.
(ii) If n = 3, then τ ◦ f ◦ τ ∈ AGL(n,F2) if and only if f(a) + f(0) = a.

Proof. (i) (⇐) In fact, τ ◦ f ◦ τ = f .
(⇒) Assume to the contrary that f({0, a}) 6= {0, a}. Without loss of generality,

assume f−1(0) /∈ {0, a}. Since n ≥ 4, there is a 2-flat A in Fn
2 which contains f−1(0)

but does contain 0, a and f−1(a). Write A = {f−1(0), b2, b3, b4} where bi /∈ {0, a},
f(bi) /∈ {0, a} and f(b2) + f(b3) + f(b4) = 0. We then have

(τ ◦ f ◦ τ)(A) = τ
(
f(A)

)
= τ

(
{0, f(b2), f(b3), f(b4)}

)
= {a, f(b2), f(b3), f(b4)},

which is not a 2-flat. This is a contradiction.
(ii) (⇐) Without loss of generality, assume a = (1, 0, 0). Then

τ(x1, x2, x3) = (x1 + g(x2, x3), x2, x3)

where

(7.7) g(x2, x3) =

{
1 if (x2, x3) = 0,
0 if (x2, x3) 6= 0.

Since f(a) + f(0) = a, we have

f(x) = xA+ b,

where b ∈ F3
2, A ∈ GL(3,F2) and aA = a, i.e.,

A =
[
1 0
c B

]
, B ∈ GL(2,F2), c ∈ F2

2.

Let b = (b′, b′′) where b′ ∈ F2 and b′′ ∈ F2
2. Then

(τ ◦ f ◦ τ)(x1, x2, x3)

= (τ ◦ f)(x1 + g(x2, x2), x2, x3)

= τ
(
(x1 + g(x2, x2), x2, x3)A+ b

)
= τ
(
x1 + g(x2, x3) + (x2, x3)c+ b′, (x2, x3)B + b′′

)
=
(
x1 + g(x2, x3) + (x2, x3)c+ b′ + g

(
(x2, x3)B + b′′

)
, (x2, x3)B + b′′

)
.
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By (7.7), g
(
(x2, x3)B + b′′

)
= g
(
(x2, x3) + b′′B−1

)
. Thus

g(x2, x3) + g
(
(x2, x3)B + b′′

)
= g(x2, x3) + g

(
(x2, x3) + b′′B−1

)
has degree ≤ 1 since deg g ≤ 2. Therefore τ ◦ f ◦ τ ∈ AGL(3,F2).

(⇒) Assume to the contrary that f(a) + f(0) 6= a. Then f
(
{0, a}

)
6= {0, a}.

Without loss of generality, we may assume f−1(0) /∈ {0, a}. By the proof of (⇒) of
(i), it suffices to show that there is a 2-flat A in F3

2 which contains f−1(0) but not
0, a and f−1(a). By the assumption, the set {0, a, f−1(0), f−1(a)} is not 2-flat of
F3

2, hence it either has only three distinct elements or is a frame of F3
2. (A set of k+1

elements in an affine space is called frame if their affine span is a k-flat.) To see the
existence of a desirable 2-flat A, first note that

{
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

}
is a frame of F3

2 and
{
(x1, x2, x3) : x1+x2+x3 = 0

}
is a 2-flat which contains exactly

one of the elements in the frame. Using a suitable affine transformation, we see
that for any frame {ε0, . . . , ε3} of F3

2, there is a 2-flat A such that A∩{ε0, . . . , ε3} =
{ε0}. �

Corollary 7.5. In the notation of Lemma 7.4, we have

(7.8)
∣∣(τ ◦AGL(n,F2) ◦ τ

)
∩AGL(n,F2)

∣∣ = {2n|GL(n− 1,F2)| if n ≥ 4,
25|GL(2,F2)| if n = 3.

Proof. Let f ∈ AGL(n,F2) be given by

f(x) = xA+ b,

where A ∈ GL(n,F2) and b ∈ Fn
2 . By Lemma 7.4, when n ≥ 4, f ∈ τ ◦AGL(n,F2)◦τ

if and only if aA = a and b = 0 or a; when n = 3, f ∈ τ ◦ AGL(n,F2) ◦ τ if and
only if aA = a. Equation (7.8) follows immediately. �

Corollary 7.6. Assume n ≥ 3. The number of permutations f ∈ Per(Fn
2 ) with

2-coaffinity(f) = 22
[
n−1

2

]
2

is given by{
2

1
2 (n2+3n−2)(2n − 1)2

∏n−1
j=1 (2j − 1) if n ≥ 4,

26 · 3 · 72 if n = 3.

Proof. Let τ ∈ Per(Fn
2 ) be any transposition. By Theorem 7.2, the number of

f ∈ Per(Fn
2 ) with 2-coaffinity(f) = 22

[
n−1

2

]
2

is

|AGL(n,F2) ◦ τ ◦AGL(n,F2)| =
|AGL(n,F2)|2∣∣(τ ◦AGL(n,F2) ◦ τ

)
∩AGL(n,F2)

∣∣ .
The result follows immediately from the above corollary. �

8. Proof of the Threshold Conjecture for k = 1, q > 2

The Threshold Conjecture for k = 1, q > 2 is proved in two steps: first n = 2
then n ≥ 3. For n = 2, the cases q = 3 and q ≥ 4 require different treatments. The
group of all invertible semi-affine transformations of Fn

q is denoted by AΓL(n,Fq).
For any two distinct points x, y ∈ Fn

q , xy denotes the line through x and y in Fn
q .

Theorem 8.1. Let q ≥ 4 and f ∈ Per(F2
q) \AΓL(2,Fq). Then

1-coaffinity(f) ≥ 2q
[
1
1

]
q

= 2q.



18 W. EDWIN CLARK, XIANG-DONG HOU, AND ALEC MIHAILOVS

Proof. Among the q+ 1 parallel classes of lines in F2
q, we first assume that at most

one parallel class has the property that all lines in the class are mapped to lines by
f . In each of the remaining q parallel classes, there are at least 2 lines which are
not mapped to lines by f . (Since the lines in a parallel class form a partition of
F2

q, it cannot be the case that exactly one line in a parallel class is not mapped to
a line.) Therefore 1-coaffinity(f) ≥ 2q.

Now assume that there are two parallel classes of lines in F2
q such that all lines

in the two parallel classes are mapped to lines by f . By composing suitable linear
transformations to both sides of f , we may assume that f maps all horizontal lines
to horizontal lines and all vertical lines to vertical lines. (A horizontal line in F2

q is
a line with direction vector (1, 0); a vertical line in F2

q is a line with direction vector
(0, 1).)

Assume that for every z ∈ F2
q, there is a line through z which is not mapped to

a line by f . Then there are at least two lines through z which are not mapped to
lines. Since each line contains q points, we have

1-coaffinity(f) ≥ 2q2

q
= 2q.

Therefore, we may assume that there exists z ∈ F2
q such that all lines through

z are mapped to lines by f . Using suitable affine transformations, we may further
assume that

(i) f maps all horizontal (vertical) lines to horizontal (vertical) lines,
(ii) f(0, 0) = (0, 0), f(1, 0) = (1, 0), f(0, 1) = (0, 1),
(iii) all lines through (0, 0) are mapped to lines.
Let

f(x, 0) = (φ(x), 0) ∀x ∈ Fq,
f(0, y) = (0, ψ(y)) ∀y ∈ Fq,

where φ and ψ are permutations of Fq with φ(0) = ψ(0) = 0 and φ(1) = ψ(1) = 1.
For any (x, y) ∈ F2

q, it is the intersection of the vertical line through (x, 0) and the
horizontal line through (0, y). Hence f(x, y) is the intersection of the vertical line
through (φ(x), 0) and the horizontal line through (0, ψ(y)), i.e.,

f(x, y) =
(
φ(x), ψ(y)

)
.

Since f(1, 1) = (1, 1), by (iii), the line {(x, x) : x ∈ Fq} is mapped to itself. Hence
φ = ψ. Let k ∈ Fq. By (iii), f

(
{(x, kx) : x ∈ Fq}

)
= {(φ(x), φ(kx)) : x ∈ Fq} is a

line. Hence
φ(kx)
φ(x)

= g(k) ∀x ∈ Fq \ {0},

where g(k) ∈ Fq is a function of k. Setting x = 1, we have g(k) = φ(k). Thus

(8.1) φ(kx) = φ(k)φ(x) for all x, k ∈ Fq.

Assume that for every a ∈ Fq \ {0}, all lines through (a, 0) which are neither
horizontal nor vertical are not mapped to lines. Then we have

1-coaffinity(f) ≥ (q − 1)(q + 1− 2) > 2q,

since q ≥ 4.
Therefore, we may assume that there exist a ∈ Fq \ {0} and a line L through

(a, 0) such that L is neither horizontal nor vertical and f(L) is a line. Let (0, b) ∈ L,
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where b ∈ Fq\{0}. Then f(L) is the line through (φ(a), 0) and (0, φ(b)). (See Figure
1.) For each x ∈ Fq, the intersection of L and the vertical line through (x, 0) is(

x, − b
a
(x− a)

)
;

the intersection of f(L) and the vertical line through (φ(x), 0) is(
φ(x), −φ(b)

φ(a)
(
φ(x)− φ(a)

))
.

By (i), we have

φ
(
− b
a
(x− a)

)
= −φ(b)

φ(a)
(
φ(x)− φ(a)

)
.

Using (8.1), we obtain

(8.2) φ(a− x) = φ(a)− φ(x).

For any b, x ∈ Fq, by (8.1) and (8.2),

(8.3) φ(ba− bx) = φ(b)φ(a− x) = φ(b)
(
φ(a)− φ(x)

)
= φ(ba)− φ(bx).

Combining (8.1) and (8.3), φ is an automorphism of Fq. Hence f ∈ AΓL(2,Fq),
which is a contradiction. �
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Figure 1. Proof of Theorem 8.1

Theorem 8.2. Let f ∈ Per(F2
3) \AGL(2,F3). Then

1-coaffinity(f) ≥ 6.

The equality holds if and only if f ∈ AGL(2,F3)◦τ ◦AGL(2,F3), where τ ∈ Per(Fn
3 )

is any transposition.

Proof. Case 1. There do not exist two nonparallel lines in F2
3 which are mapped

into lines by f . Then

1-coaffinity(f) ≥ 3
(32 − 1

3− 1
− 1
)

= 9 > 6.

Case 2. There are two nonparallel lines L1 and L2 in F2
3 which are mapped

into lines. Note that f is affine on each of these two lines. (This a special property
of F3.) Therefore, through suitable affine transformations, we may assume that
L1 = F3 × {0}, L2 = {0} × F3 and that f |L1 = id, f |L2 = id.

Case 2.1. f moves exactly two elements in F2
3 \ (L1 ∪ L2) = {1,−1} × {1,−1}.

f is a transposition and 1-coaffinity(f) = 6.
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Case 2.2. f moves exactly three elements in {1,−1} × {1,−1}, say, f =
(a1, a2, a3) where {1,−1} × {1,−1} = {a1, a2, a3, a4}. For each a ∈ {1,−1} ×
{1,−1}, let La be the unique line through a such that |La ∩ (L1 ∪ L2)| = 2. Then
f(Lai

) (1 ≤ i ≤ 3) is not a line since ai is not fixed by f but the other two points
on Lai

are. Note that the third point on the line a4ai (1 ≤ i ≤ 3) is on L1 ∪ L2.
Thus f(a4ai) (1 ≤ i ≤ 3) is not a line. We also claim that for 1 ≤ i < j ≤ 3,
f(aiaj) is not a line. Otherwise, without loss of generality, assume that f(a1a2) is
a line. a1a2 must intersect L1 ∪ L2, say, at a0. Note that a0, a2 ∈ f(a1a2). Hence
f(a1a2) = a0a2 = a0a1. Thus a2, a3 ∈ f(a1a2) = a0a1, which is impossible.

Therefore,

1-coaffinity(f) ≥ 3 +
(

4
2

)
= 9 > 6.

Case 2.3. f = (a1, a2, a3, a4), where {1,−1}×{1,−1} = {a1, a2, a3, a4}. By the
argument in Cases 2.2, f(Lai) (1 ≤ i ≤ 4) and f(a1a2), f(a2a3), f(a3a4), f(a4a1)
are not lines. Hence

1-coaffinity(f) ≥ 8 > 6.
Case 2.4. f = (a1, a2)(a3, a4), where {1,−1} × {1,−1} = {a1, a2, a3, a4}. As-

sume a1 = (1, 1). If a2 = (1,−1), let g ∈ GL(2,F3) be given by

g(x, y) = (x,−y).
Then it is easy to see that g ◦ f is the transposition which moves (0, 1) and (0,−1).

If a2 = (−1, 1), let h ∈ GL(2,F3) be given by

h(x, y) = (−x, y).
Then h ◦ f is the transposition which moves (1, 0) and (−1, 0).

If a2 = (−1,−1), then f(Lai) (1 ≤ i ≤ 4) and f(a1a3), f(a1a4), f(a2a3), f(a2a4)
are not lines. Hence

1-coaffinity(f) ≥ 8 > 6.
�

We now turn to the proof of the Threshold Conjecture with k = 1, q > 2 and
n ≥ 3.

Lemma 8.3. Let m ≥ n ≥ 2 and let f : Fn
q → Fm

q be a one-to-one mapping which
is not semi-affine. Let 1-coaffinity(f) denote the number of lines L in Fn

q such that
f(L) is not a line in Fm

q . Then

1-coaffinity(f) ≥ qn − 1
q − 1

.

Proof. Use induction on n. First assume n = 2.
Case 1. There do not exist two nonparallel lines in F2

q which are not mapped
into line by f . Then

1-coaffinity(f) ≥ q(q + 1− 1) > q + 1.

Case 2. There are two nonparallel lines L1 and L2 in F2
q such that f(L1), f(L2)

are lines in Fm
q . Since f(L1) and f(L2) are intersecting lines in Fm

q , their affine
span in Fm

q is a 2-flat which, without loss of generality, is assumed to be F2
q × {0}.

If for every line L3 in F2
q such that Li ∩ Lj (1 ≤ i < j ≤ 3) are 3 distinct points

f(L3) is not a line, then

1-coaffinity(f) ≥ (q − 1)2 ≥ q + 1.
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So, we assume that there exists a line L3 in F2
q such that Li ∩ Lj (1 ≤ i < j ≤ 3)

are 3 distinct points and f(L3) is a line in Fm
q . Since f(L1) ∪ f(L2) ⊂ F2

q × {0}, it
follows that f(L3) ⊂ F2

q × {0}.
If f(F2

q) ⊂ F2
q × {0}, by Theorems 8.1 and 8.2,

1-coaffinity(f) ≥ 2q > q + 1.

So we assume that f(F2
q) 6⊂ F2

q × {0}.
Let a ∈ F2

q \(L1∪L2∪L3) such that f(a) /∈ F2
q×{0}. If L is a line through a such

that |L∩(L1∪L2∪L3)| ≥ 2, then f(L) is not a line since two points on L (belonging
to L∩(L1∪L2∪L3)) are mapped to F2

q×{0} by f but a is not mapped to F2
q×{0}.

There are only 3 lines L′i (i = 1, 2, 3) in F2
q such that |L′i ∩ (L1 ∪L2 ∪L3)| < 2: the

lines through Lj ∩ Lk and parallel to Li where {i, j, k} = {1, 2, 3}.
If there are two points a1, a2 ∈ F2

q \ (L1 ∪ L2 ∪ L3) such that f(ai) /∈ F2
q × {0},

i = 1, 2, then for any line L in F2
q through a1 or a2 with L 6= L′i, i = 1, 2, 3, f(L) is

not a line. Hence

1-coaffinity(f) ≥ 2(q + 1)− 1− 3 ≥ q + 1.

If there is exactly one point a ∈ F2
q \ (L1 ∪ L2 ∪ L3) such that f(a) /∈ F2

q × {0},
then every line in F2

q through a is not a line in Fm
q . Thus,

1-coaffinity(f) ≥ q + 1.

Now assume n ≥ 3.
Case 1. For any two nonparallel hyperplanes H1 and H2 in Fn

q , f is not semi-
affine on at least one of H1 and H2. Then f is not semi-affine on at least

q
(qn − 1
q − 1

− 1
)

=
q2(qn−1 − 1)

q − 1

hyperplanes in Fn
q . By the induction hypothesis, at least qn−1−1

q−1 lines on each of

these hyperplanes are not mapped into lines. Since each line in Fn
q lies in qn−1−1

q−1

hyperplanes, we have

(8.4) 1-coaffinity(f) ≥
q2(qn−1−1)

q−1 · qn−1−1
q−1

qn−1−1
q−1

=
q2(qn−1 − 1)

q − 1
>
qn − 1
q − 1

.

Case 2. There are two nonparallel hyperplanes H1 and H2 in Fn
q such that

f is semi-affine on both H1 and H2. Since f(H1) and f(H2) are (n − 1)-flats in
Fm

q whose intersection is an (n− 2)-flat, their affine span in Fm
q is an n-flat which,

without loss of generality, is assumed to be Fn
q ×{0}. Through a suitable semi-affine

transformation, we may assume that

(8.5) f(x) = (x, 0) for all x ∈ H1.

Since f(x) = (x, 0) for all x ∈ H1 ∩H2 and since dim(H1 ∩H2) ≥ 1, f |H2 must be
affine. Then it is clear that through an additional affine transformation, we may
assume that in addition to (8.5),

(8.6) f(x) = (x, 0) for all x ∈ H2.

Thus we have

(8.7) f(x) = (x, 0) for all x ∈ H1 ∪H2.
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Case 2.1. For every hyperplane H3 in Fn
q such that Hi ∩Hj (1 ≤ i < j ≤ 3) are

3 distinct (n− 2)-flats, f is not semi-affine on H3. By the induction hypothesis, at
least qn−1−1

q−1 lines onH3 are not mapped into lines. The number of such hyperplanes

H3 is q( qn−1
q−1 − 2)− (q − 1). By the same argument for (8.4), we have

(8.8) 1-coaffinity(f) ≥ q(
qn − 1
q − 1

− 2)− (q − 1) >
qn − 1
q − 1

.

Case 2.2. There exists a hyperplane H3 in Fn
q such that Hi∩Hj (1 ≤ i < j ≤ 3)

are 3 distinct (n− 2)-flats and f is semi-affine on H3. By (8.7),

f(x) = (x, 0) for all x ∈ (H3 ∩H1) ∪ (H3 ∩H2).

Since H3 ∩H1 and H3 ∩H2 affinely span H3, we have

f(x) = (x, 0) for all x ∈ H3.

Thus

f(x) = (x, 0) for all x ∈ H1 ∪H2 ∪H3.

Since f is not semi-affine, f(a) 6= (a, 0) for some a ∈ Fq \ (H1 ∪H2 ∪H3). If L
is a line through a such that |L ∩ (H1 ∪H2 ∪H3)| ≥ 2 and f(a) /∈ L × {0}, then
f(L) is not a line. (Let b1, b2 ∈ L∩ (H1 ∪H2 ∪H3). Then f(bi) = (bi, 0) ∈ L×{0},
but f(a) /∈ L × {0}.) We claim that number of lines L in Fn

q through a with
|L ∩ (H1 ∪H2 ∪H3)| ≤ 1 is

(8.9) 7 · qn−3 +
qn−3 − 1
q − 1

.

In fact, we may assume

H1 = {0} × Fq × Fq × Fn−3
q ,

H2 = Fq × {0} × Fq × Fn−3
q ,

H3 = Fq × Fq × {0} × Fn−3
q .

Let a = (a(1), a(2), a(3), . . . ) where a(1), a(2), a(3) ∈ Fq \ {0} and let L be a line
through a with direction vector v = (v(1), v(2), v(3), . . . ). Then |L∩(H1∪H2∪H3)| ≤
1 if and only if one of the following is true:

(i) at least two of v(1), v(2), v(3) are 0;
(ii) v(k) = 0 and (v(i), v(j)) = t(a(i), a(j)) for some t ∈ Fq \{0} where {i, j, k} =

{1, 2, 3};
(iii) (v(1), v(2), v(3)) = t(a(1), a(2), a(3)) for some t ∈ Fq \ {0}.

Formula (8.9) follows from these conditions.
Therefore, the number of lines L in Fn

q through a such that |L∩(H1∪H2∪H3)| ≥ 2
and f(a) /∈ L× {0} is at least

(8.10)
qn − 1
q − 1

− 7qn−3 − qn−3 − 1
q − 1

− 1 = qn−3(q2 + q − 6)− 1.
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First assume that there are at least 4 points a1, . . . , a4 ∈ Fn
q \ (H1 ∪ H2 ∪ H3)

such that f(ai) 6= (ai, 0). From the above,

1-coaffinity(f) ≥ 4
[
qn−3(q2 + q − 6)− 1

]
−
(

4
2

)
= 4qn−3(q2 + q − 6)− 10

>
qn − 1
q − 1

.

Next, assume that there are exactly s points a1, . . . , as ∈ Fn
q \ (H1 ∪H2 ∪H3),

where s = 2 or 3, such that f(ai) 6= (ai, 0), 1 ≤ i ≤ s. Then for every line L passing
through exactly one of a1, . . . , as, f(L) is not a line. Hence

1-coaffinity(f) ≥ s · q
n − 1
q − 1

− 2
(
s

2

)
>
qn − 1
q − 1

.

Finally, assume that there is exactly one point a ∈ Fn
q \ (H1 ∪ H2 ∪ H3) such

that f(a) 6= (a, 0). Then the lines in Fn
q which are not mapped into lines by f are

precisely the ones passing through a. Thus,

1-coaffinity(f) =
qn − 1
q − 1

.

�

Theorem 8.4. Let n ≥ 3 and f ∈ Per(Fn
q ) \AΓL(n,Fq). Then

1-coaffinity(f) ≥ 2q
[
n− 1

1

]
q

=
2q(qn−1 − 1)

q − 1
.

The equality holds if and only if f ∈ AΓL(n,Fq)◦τ ◦AΓL(n,Fq), where τ ∈ Per(Fn
q )

is any transposition.

Proof. The arguments in this proof are very similar to those in the proof of Lemma 8.3.
Case 1. For any two nonparallel hyperplanes H1 and H2 in Fn

q , f is not semi-
affine on at least one of H1 and H2. By Lemma 8.3 and (8.4),

1-coaffinity(f) ≥ q2(qn−1 − 1)
q − 1

>
2q(qn−1 − 1)

q − 1
.

Case 2. There are two nonparallel hyperplanes H1 and H2 in Fn
q such that f is

semi-affine on both H1 and H2. By the proof of Lemma 8.3, we may assume that
f |H1 = id, f |H2 = id.

Case 2.1. For every hyperplane H3 in Fn
q such that Hi ∩ Hj (1 ≤ i < j ≤ 3)

are 3 distinct (n− 2)-flats, f is not semi-affine on H3. By (8.8), we have

1-coaffinity(f) ≥ q
(qn − 1
q − 1

− 2
)
− (q − 1) >

2q(qn−1 − 1)
q − 1

.

Case 2.2. There exists a hyperplane H3 in Fn
q such that Hi∩Hj (1 ≤ i < j ≤ 3)

are 3 distinct (n − 2)-flats and f is semi-affine on H3. By the same argument in
Case 2.2 of the proof of Lemma 8.3, we have

f(x) = x for all x ∈ H1 ∪H2 ∪H3.
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First assume that there are at least 5 elements a1, . . . , a5 ∈ Fn
q \ (H1 ∪H2 ∪H3)

such that f(ai) 6= ai, 1 ≤ i ≤ 5. By (8.10), we have

(8.11) 1-coaffinity(f) ≥ 5
[
qn−3(q2 + q − 6)− 1

]
−
(

5
2

)
= 5qn−3(q2 + q − 6)− 15.

When q ≥ 4, we have

5qn−3(q2 + q − 6)− 15 >
2q(qn−1 − 1)

q − 1
.

When q = 3, any line L in Fn
3 with |L ∩ (H1 ∪H2 ∪H3)| ≥ 2 cannot pass through

more than one of a1, . . . , a5 since |L| = 3. Thus (8.11) can be improved to

1-coaffinity(f) ≥ 5
[
qn−3(q2 + q − 6)− 1

]
>

2q(qn−1 − 1)
q − 1

.

Next, assume that there are exactly s elements a1, . . . , as ∈ Fn
q \ (H1 ∪H2 ∪H3),

where s = 3 or 4, such that f(ai) 6= ai, 1 ≤ i ≤ s. Then for every line L passing
through exactly one of a1, . . . , as, f(L) is not a line. Hence

1-coaffinity(f) ≥ s
qn − 1
q − 1

− 2
(
s

2

)
=

s

q − 1
[
qn − (s− 1)q + s− 2

]
>

2q(qn−1 − 1)
q − 1

.

Finally, assume that there are exactly 2 elements a1, a2 ∈ Fn
q \ (H1 ∪H2 ∪H3)

such that f(ai) 6= ai, i = 1, 2. Then f is a transposition. �

Combining Theorems 8.1, 8.2 and 8.4, we have the following corollary.

Corollary 8.5. The Threshold Conjecture holds for q ≥ 3, k = 1 and n > 1.

Remark. Theorems 8.2 and 8.4 state that for q = 3, k = 1, n ≥ 2 or q > 3, k = 1,
n ≥ 3, 1-coaffinity(f) = 2q

[
n−1

1

]
q

only when f ∈ AΓL(n,Fq) ◦ τ ◦ AΓL(n,Fq) for
some transposition τ ∈ Per(Fn

q ). It is an open question whether the same holds for
q > 3, k = 1 and n = 2.
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