
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

WRITING DLL IN ASSEMBLER
FOR EXTERNAL CALLING IN

MAPLE

DR. ALEC MIHAILOVS

JULY 2004

No. 2004-5

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Writing DLL in Assembler for External Calling in
Maple

by Alec Mihailovs, Ph.D.
Department of Mathematics
Tennessee Tech University

alec@mihailovs.com

 Copyright © 2004 Alec Mihailovs

NOTE: The article shows how to write assembler code using x86 and FPU registers. An
example of calculating large factorials mod m is discussed in detail.

Introduction

This article started from a posting [1] in comp.soft-sys.maple newsgroup where I wrote:

In general, such calculations as huge factorials mod p should be programmed directly in
assembly. It is fairly easy and doesn't require much assembly knowledge - just a few
instructions. It can be compiled as a library (dll) and accessed from Maple through
external calling.

Since quite a few people expressed an interest, I wrote the assembly code for that
particular problem. I hope that it will be useful as a jump-start for writing your own DLL
for the innermost loops repeating a billion times or more. For loops repeating "only" a
few million times, the DLL could be written in C and other high level languages, but for
billions of operations high level languages are too slow.

To produce a DLL, one needs an assembler. I used MASM32 v.8 [2] which can be
downloaded from http://www.masm32.com . Many people consider MASM (Microsoft
Assembler) language as "standard". I used it here for creating a DLL in Windows. It
produces object files in COFF (Common Object File Format), so they can be used for
building a library in Linux as well.

> restart;

Section I: Writing a DLL in Assembly Language

To produce a dll, put 3 files, Facmod.asm, Facmod.def, and Makeit.bat in one
directory, and run Makeit.bat (by clicking on it in Windows Explorer, or opening
Facmod.asm in qeditor (which is a part of the MASM32 distribution) and running
Makeit.bat from the Project menu. Here are the files:

Facmod.asm

.586 ; for 586 processor or better
.model flat, stdcall ; 32-bit memory and standard
 ; call
.code ; the beginning of the code
 ; section
LibMain proc h:DWORD, r:DWORD, u:DWORD ; the dll entry point
 mov eax, 1 ; if eax is 0, the dll won't
 ; start
 ret ; return
LibMain Endp ; end of the dll entry

Facmodp proc n:DWORD, p:DWORD ; a function with dword
 ; parameters n and m
 push ebx ; save the ebx value
 mov ecx, n ; put n in the counter
 ; register ecx
 mov ebx, p ; put p in ebx
 mov eax, 1 ; put 1 in eax
 L: ; a loop label
 mul ecx ; multiply eax by ecx
 div ebx ; divide the product by p
 mov eax, edx ; move the remainder from edx
 ; to eax
 dec ecx ; decrease the counter by 1
 jnz L ; repeat the loop if the
 ; counter is not 0
 pop ebx ; restore the ebx value
 ret ; return eax
Facmodp endp ; end of the function
End LibMain ; end of the dll

Facmod.def
LIBRARY Facmod
EXPORTS Facmodp

Makeit.bat
@echo off

if exist Facmod.obj del Facmod.obj
if exist Facmod.dll del Facmod.dll

\masm32\bin\ml /c /coff Facmod.asm

\masm32\bin\Link /SUBSYSTEM:WINDOWS /DLL /DEF:Facmod.def Facmod.obj

pause

That will produce 4 files, Facmod.dll, Facmod.lib, Facmod.exp, and Facmod.obj.

Files Facmodp.def and Makeit.bat are self-explanatory. I'll add detailed comments here
on Facmod.asm.

Facmod.asm commented

.586
.model flat, stdcall
This is the standard beginning of the asm files for MASM32. They tell the assembler that
the program will be used in computers with 586 processor or better, with 32-bit memory
addressing, and use stdcall calling convention.

.code
The beginning of the code section.

LibMain proc h:DWORD, r:DWORD, u:DWORD
 mov eax, 1
 ret
LibMain Endp
Creating the dll entry point. If eax is 0, the dll won't start, so we put 1 there.

Facmod proc n:DWORD, p:DWORD
The beginning of our function. It has two dword = 4 byte = 32 bit parameters, n and p.

 push ebx
In Windows and Linux, registers eax, ecx, and edx can be arbitrarily modified by
programs, but other registers including ebx should be preserved, so we are pushing the
ebx value on the stack at the beginning of the program and will restore it back before the
end of the program.

 mov ecx, n
Put n in the counter register ecx.

 mov ebx, p
Put p in the ebx register.

 mov eax, 1
Put 1 in the eax register.

 L:
A loop label.

 mul ecx
Multiply eax*ecx and put result in edx:eax, i.e. the beginning of it in edx and the last 32
bits in eax.

 div ebx
Divide edx:eax (the result of multiplication) by ebx = p and put the quotient in eax and
the remainder in edx.

 mov eax, edx
Move the remainder from edx to eax.

 dec ecx
Decrease the counter (ecx) by 1. We start from n there. It becomes n - 1 after the first
loop, n - 2 after the second etc.

 jnz L
If counter is not 0, return to label L, otherwise continue below.

 pop ebx
Restore the ebx value from the stack.

 ret
Return.

Facmodp endp
The end of our function.

End LibMain
The end of the DLL.

The integer return value of the function is located in the eax register (that is a standard
thing in Windows).

For the sake of simplicity, I didn't do any optimization of the calculating procedure, or
adding at the beginning that if n > p - 1, then the result is 0, or checking whether p is 0.
I'll do that in Section 3.

Section II: External Calling of Facmodp in Maple

In Maple,
> Facmodp:=define_external(
 'Facmodp',
 'n'::integer[4],
 'p'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
with changing the LIB to the location of Facmodp.dll creates a function calculating n!
mod p. For example,
> Facmodp(10^9,10^9+7);

698611116

that took just a few seconds on my computer instead of the many hours that a procedure
written in Maple without external calling would.

Note that in the definition of external call we used the integer[4] data descriptor for n and

p. It takes 4 bytes, the same as DWORD in the assembly code. The sign in the integer[4]
uses 1 bit, so we can use positive values less than
> 2^31;

2147483648

for n and p. However, keeping in mind that negative integers have the highest bit 1 (the
minus sign) in their 32-bit representation, we can use negative integers for representing
unsigned integers up to
> 2^32-1;

4294967295

Conversion formulas
The conversion formulas are very simple. Denoting s as the negative signed integer and u
the unsigned integer having the same 32-bit representation in the memory (and registers),

 = s − u 232 ,
 = u + s 232 .

For example, let
> u:=prevprime(2^32);

:= u 4294967291

> s:=u-2^32;
:= s -5

> Facmodp(1000,-5);
444887038

Maple calculates 1000! pretty fast, so we can check the answer by a direct calculation,
> 1000! mod u;

444887038

The returned values also should be converted if they are negative. For example,
> Facmodp(1001,-5);

-1344673231

> 1001! mod u;
2950294065

> %%+2^32;
2950294065

Also, for prime p, Wilson's theorem allows us to do less calculations for n > p/2.

Wilson's Theorem
If p is a prime number, then

 = !() − p 1 mod()−1 p .

Corollary
If a positive integer n is less than a prime number p, then

 = !n mod
()−1

() − p n

!() − − p n 1 p .

Proof. Using equality p - k = -k mod p and substituting p - 1 with -1, p - 2 with -2, and so
on, ..., n + 1 with n + 1 - p, in (p - 1)!, we can rewrite the Wilson's formula as

 = !n ()−1
() − − p n 1

!() − − p n 1 mod()−1 p .

Dividing both parts by (-1)^(p - n - 1) * (p - n - 1)!, we get the corollary.

Note also that Facmodp cannot be used for n or p equal to 0. Entering p = 0 would crash
Maple's kernel (so Maple would have to be restarted after that). Using n = 0 would take a
long time and give the answer 0. Combining all that, I wrote the following procedure that
should be used instead of the direct use of Facmodp.

> facmodp := proc (n::nonnegint, p::posint)
local r;
 if p <= n then return 0
 elif n = 0 then return 1
 elif p>4294967295 then error "2nd argument %1 should be
less than 4294967296", p
 elif 1/2*p < n and isprime(p) then
 if n = p-1 then return p-1
 elif p < 2147483648 then r := Facmodp(p-n-1,p)
 else r := Facmodp(p-n-1,p-4294967296)
 end if;
 return `mod`((-1)^(p-n)/`if`(r <
0,4294967296+r,r),p)
 else r := Facmodp(`if`(n < 2147483648,n,n-
4294967296),`if`(p < 2147483648,p,p-4294967296))
 end if;
 `if`(r < 0,4294967296+r,r)
end proc:

Here are some examples,

> facmodp(0,1);

1

> tt:=time():
> facmodp(10^9,10^9+7);

698611116

> time()-tt;
0.070

> facmodp(2^31,nextprime(2^31));
1787166461

> facmodp(17,2^32-5);
4006859126

Even better, both Facmodp and facmodp can be included in a module, with exporting
only facmodp to prevent the possibility of crashing Maple's kernel by entering p = 0. That
is a typical example of using external calls in Maple. Instead of direct call, it is much
better in many cases to add a Maple "wrapper" for it. In this example, facmodp is
extending the range of using Facmodp, making calculations much faster in cases with n
close to a prime p, and preventing Maple crashing.

Section III: Some Improvements
Returning 0 for n > p could be done at the beginning of the assembly code for the
Facmodp function. To be able to jump to the end, one can add a label E before the
popping of ebx at the end. Returning 0 if n > p can be done by adding the following lines
before putting 1 in eax,
 mov eax, 0 ; put 0 in eax for returning 0
 ; if n>=p
 cmp ecx, ebx ; compare n and p
 jae E ; if n>=p, exit returning 0
Also, we can add the code returning 1 if n = 0 before the loop, when 1 is in eax,
 test ecx, ecx ; it is faster than jecxz E
 jz E ; if n=0, exit returning 1
If we are going to use it for cases with not necessarily prime p, the factorial is 0 for many
cases, and in these cases we can return 0 right after it first appears in eax, because the rest
of the calculations won't change that.
 mov eax, edx ; move the remainder from edx
 ; to eax
 test eax, eax ; if the remainder is 0,
 jz E ; then exit returning 0
As usual, when we have a working function, Facmodp, it is better not to change it, but
add a renamed copy of it in the dll (before the End LibMain line) and make changes
there. Here is the improved function Facmodm.

Facmodm
Facmodm proc n:DWORD, m:DWORD ; a function with dword
 ; parameters n and m
 push ebx ; save the ebx value
 mov ecx, n ; put n in the counter
 ; register ecx
 mov ebx, m ; put p in the base register
 ; ebx
 mov eax, 0 ; put 0 in eax for returning 0
 ; if n>=p
 cmp ecx, ebx ; compare n and p

 jae E ; if n>=p, exit returning 0
 mov eax, 1 ; put 1 in eax
 test ecx, ecx ; it is faster than jecxz E
 jz E ; if n=0, exit returning 1
 L: ; a loop label
 mul ecx ; multiply eax by ecx
 div ebx ; divide the product by p
 mov eax, edx ; move the remainder from edx
 ; to eax
 test eax, eax ; if the remainder is 0,
 jz E ; then exit returning 0
 dec ecx ; decrease the counter by 1
 jnz L ; repeat the loop if the
 ; counter is not 0
 E: ; an exit label
 pop ebx ; restore the ebx value
 ret ; return eax
Facmodm endp ; end of the function

To make a dll, we can use the same Makeit.bat file, but Facmod.def should be modified
by adding the new export,

Facmod.def
LIBRARY Facmod
EXPORTS Facmodp
EXPORTS Facmodm

In Maple, we can define the external call to Facmodm similarly to Facmodp,
> Facmodm:=define_external(
 'Facmodm',
 'n'::integer[4],
 'm'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
Test its speed,
> time(Facmodp(10^8,10^8+7));

5.878

> time(Facmodm(10^8,10^8+7));
6.390

So, Facmodm is about 10% slower, because of the additional operations inside the loop.
However, it compensates by faster calculations for composite p,
> time(Facmodm(10^8,10^8+9));

0.049

Facmodm can be extended to larger values of n and p similarly to facmodp. I included the
corresponding function facmodm in the module below.

Now, when we have fast function facmodp for prime p and fast function facmodm for
composite p, we can write a module, including them as well as the function facmod

working in both cases, which chooses facmodp if p is prime and facmodm otherwise.
Since we suppose that facmodp will be used only for prime p, we can delete checking
whether p is prime from its definition. . Here is the module.

Facmod module
> Facmod:=module()
local Facmodp, Facmodm;
export facmod, facmodp, facmodm;
description "The functions in this module calculate n! mod
p. If p is prime, facmodp(n,p) should be used. If p is
composite, facmodm(n,p) should be used. If p can be prime
or composite, facmod(n,p) should be used. The functions
work for n and p less than 2^32.";
Facmodp:=define_external(
 'Facmodp',
 'n'::integer[4],
 'p'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
facmodp := proc (n::nonnegint, p::posint)
local r;
 if p <= n then return 0
 elif n = 0 then return 1
 elif p>4294967295 then error "2nd argument %1 should be
less than 4294967296", p
 elif 1/2*p < n then
 if n = p-1 then return p-1
 elif p < 2147483648 then r := Facmodp(p-n-1,p)
 else r := Facmodp(p-n-1,p-4294967296)
 end if;
 return `mod`((-1)^(p-n)/`if`(r <
0,4294967296+r,r),p)
 else r:=Facmodp(`if`(n<2147483648,n,n-
4294967296),`if`(p<2147483648,p,p-4294967296))
 end if;
 `if`(r < 0,4294967296+r,r)
end proc;
Facmodm:=define_external(
 'Facmodm',
 'n'::integer[4],
 'm'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
facmodm := proc (n::nonnegint, p::posint)
local r;

 if p <= n then return 0
 elif p>4294967295 then error "2nd argument %1 should be
less than 4294967296", p
 else
 r:=Facmodm(`if`(n<2147483648,n,n-
4294967296),`if`(p<2147483648,p,p-4294967296));
 end if;
 `if`(r < 0,4294967296+r,r)
end proc;
facmod := proc (n::nonnegint, p::posint)
 if isprime(p) then facmodp(n,p)
 else facmodm(n,p)
 end if
end proc
end module:

Section IV: Using Floating Point Registers
There are 2 ways of extending our calculations of n! mod p for p > 2^32-1. First - using
the gmp library for operations with multiple precision integers, and second - using the
floating point stack. In this section we'll cover the second case. It doesn't extend values of
p too much, but still it can be useful for some calculations. The following assembler
function is analogous to Facmodp, just operates in floating point registers and returns a
floating point number instead of an integer.

Fmodp
Fmodp proc n:QWORD, p:QWORD ; a function with qword
 ; parameters n and p
 fninit ; initialize the floating
 ; point stack
 fild qword ptr [n] ; put n in the FPU
 fild qword ptr [p] ; st=p, st(1)=n
 fld1 ; st=1, st(1)=p, st(2)=n
 L: ; a loop label
 fmul st, st(2) ; st=st*st(2)
 fprem ; st=st mod p
 fld1 ; st=1, st(3)=counter
 fsub st(3), st ; st=1, st(3)=counter-1
 fcomp st(3) ; compare 1 and st(3) and pop
 ; the stack
 fnstsw ax ; store the status word in ax
 shr ah, 1 ; it is faster than sahf
 jc L ; repeat the loop if the
 ; counter is > 1
 fstp st(2) ; put the return value at the
 ; bottom
 fstp st ; clear the floating point
 ; stack
 ret ; return st
Fmodp endp ; end of the function

To see how it is working, we can add it to the Facmod.asp before the End LibMain, add

the line EXPORT Fmodp to the Facmod.def and run Makeit.bat. If Maple was using
external calls to functions from Facmod.dll, it should be shut down and then started
again. The restart command is not enough for replacing the dll.

The external call in this case looks slightly different than for Facmodp. First, notice that
we used QWORD = 64 bit parameters. The corresponding Maple data descriptor is the
integer[8]. Second, if we want to get the returned value from the FPU, it should be
declared in the external call as a floating point number, float[8] to get higher precision.
> Fmodp:=define_external(
 'Fmodp',
 'n'::integer[8],
 'p'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
It does calculations more slowly than Facmodp though. For example,
> tt:=time():
> Fmodp(10^8,10^8+7);

0.69861116 108

> time()-tt;
14.171

However, it doesn't crash Maple for p = 0.
> Fmodp(3,0);

()Float undefined

It would give a wrong answer if n is non-positive though. That's why it is a good idea
again to use it not directly, but through a Maple procedure excluding such bad input
cases.

Also, it can be optimized. Agner Fog wrote a great optimization manual [3] for different
Pentium processors. The optimizations steps are different for different processors, so I'll
do just one optimization here - replacing the slow fprem opcode with a calculation of N
mod p using formula

 = modN p − N ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟round

N
p p .

Using truncation instead of rounding would always give a non-negative remainder.
However, Pentium processors don't have an operation for truncation - only for rounding.

Fmodp1
Fmodp1 proc n:QWORD, p:QWORD ; a function with qword
 ; parameters n and p
 fninit ; initialize the floating
 ; point stack
 fild qword ptr [n] ; put n in the FPU
 fild qword ptr [p] ; st=p, st(1)=n

 fld1 ; st=1, st(1)=p, st(2)=n
 fdiv st, st(1) ; st=1/p, st(1)=p, st(2)=n
 fld1 ; st=1, st(1)=1/p, st(2)=p,
 ; st(3)=n
 L: ; a loop label
 fmul st, st(3) ; st=st*st(3)
 fld st ; save the product, st(2)=1/p,
 ; st(3)=p
 fmul st, st(2) ; st=product/p
 frndint ; st=round(product/p)
 fmul st, st(3) ; st=round(product/p)*p
 fsubp st(1), st ; st=product-
 ; round([product/p])*p
 fld1 ; st=1, st(4)=counter
 fsub st(4), st ; st=1, st(4)=counter-1
 fcomp st(4) ; compare 1 and st(4) and pop
 ; the stack
 fnstsw ax ; store the status word in ax
 shr ah, 1 ; it is faster than sahf
 jc L ; repeat the loop if the
 ; counter is > 1
 fstp st(3) ; put the return value at the
 ; bottom
 fcompp ; clear the floating point
 ; stack
 ret ; return st
Fmodp1 endp ; end of the function

Again, before using it, we have to add the export of Fmodp1 in Facmod.def, rebuild the
dll, shut down Maple, and start it again. Here is the external call for it in Maple,
> Fmodp1:=define_external(
 'Fmodp1',
 'n'::integer[8],
 'p'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):

Compare the speed for the same example,
> time(Fmodp1(10^8,10^8+7));

11.756

Faster than Fmodp and about twice as slowly as Facmodp.

Because we used the rounding instead of truncation, the answer can be negative. For
example,
> Fmodp1(1001,10^8+7);

-0.15297205 108

> 1001! mod (10^8+7);
84702802

> %-(10^8+7);
-15297205

Few examples that I did, gave the correct answers for p up to about
> 2^49;

562949953421312

The larger numbers can give a wrong answer. For example,
> a:=nextprime(7*10^14);

:= a 700000000000051

> Fmodp1(50000,a);
0.624640410570770000 1014

> 50000! mod a;
62464041057077

Correct!

> a:=nextprime(75*10^13);

:= a 750000000000037

> Fmodp1(50000,a);
0.122439131674460000 1015

> 50000! mod a;
113105262280640

Wrong!

It would be interesting to find a precise bound M such that all Fmodp1(n, p) give the
correct answers for positive integers n and p less than M.

As we did in Section III for Facmodp, we can improve Fmodp1 by giving the answer 1
for non-positive n and the fast answer 0 for n > p - 1. The following assembler code for
Fmodm does that. It also adds checking if the answer is 0 inside the loop, the same as in
Facmodm.

Fmodm
Fmodm proc n:QWORD, p:QWORD ; a function with qword
 ; parameters n and p
 fninit ; initialize the floating
 ; point stack
 fld1 ; put 1 in the FPU for
 ; returning 1 if n<=1
 fild qword ptr [n] ; st=n, st(1)=1
 fcomp st(1) ; compare n and 1 and pop the
 ; stack
 fnstsw ax ; store the status word in ax
 and ah, 41h ; it is faster than sahf
 jnz E ; if n<=1, exit returning 1
 fstp st ; clear the stack

 fldz ; put 0 in the FPU for
 ; returning 0 if n>=p
 fild qword ptr [n] ; st=n, st(1)=0
 fild qword ptr [p] ; st=p, st(1)=n, st(2)=0
 fcompp ; compare p and n and pop them
 ; off the stack
 fnstsw ax ; store the status word in ax
 and ah, 41h ; it is faster than sahf
 jnz E ; if p<=n, exit returning 0
 fstp st ; clear the stack
 fild qword ptr [n] ; put n in the FPU
 fild qword ptr [p] ; st=p, st(1)=n
 fld1 ; st=1, st(1)=p, st(2)=n
 fdiv st, st(1) ; st=1/p, st(1)=p, st(2)=n
 fld1 ; st=1, st(1)=1/p, st(2)=p,
 ; st(3)=n
 L: ; a loop label
 fmul st, st(3) ; st=st*st(3)
 fld st ; save the product, st(2)=1/p,
 ; st(3)=p
 fmul st, st(2) ; st=product/p
 frndint ; st=round(product/p)
 fmul st, st(3) ; st=round(product/p)*p
 fsubp st(1), st ; st=product-
 ; round([product/p])*p
 ftst ; check if st=0
 fnstsw ax ; store the status word in ax
 and ah, 40h ; it is faster than sahf
 jnz S ; if st=0, exit returning 0
 fld1 ; st=1, st(4)=counter
 fsub st(4), st ; st=1, st(4)=counter-1
 fcomp st(4) ; compare 1 and st(4) and pop
 ; the stack
 fnstsw ax ; store the status word in ax
 shr ah, 1 ; it is faster than sahf
 jc L ; repeat the loop if the
 ; counter is > 1
 S: ; exit with clearing the stack
 fstp st(3) ; put the return value at the
 ; bottom
 fcompp ; clear the floating point
 ; stack
 E: ; the exit label
 ret ; return st
Fmodm endp ; end of the function

To make a dll, we can use the same Makeit.bat file, but Facmod.def should be modified
by adding new exports,

Facmod.def
LIBRARY Facmod
EXPORTS Facmodp
EXPORTS Facmodm
EXPORTS Fmodp
EXPORTS Fmodp1
EXPORTS Fmodm

In Maple, we can define the external call to Fmodm similarly to the external call to
Fmodp,
> Fmodm:=define_external(
 'Fmodm',
 'n'::integer[8],
 'm'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
Test its speed on the same example,
> time(Fmodm(10^8,10^8+7));

14.221

Certainly, Fmodm is faster for composite p,
> time(Fmodm(10^8,10^8+9));

0.090

Finally, we can write a module FactorialMod similar to the module Facmod and
including its functions modified by using external calls to Fmodp1 and Fmodm for n
and/or p greater than 2^32-1.

FactorialMod module
> FactorialMod:=module()
local Facmodp, Facmodm, Fmodp1, Fmodm;
export facmod, facmodp, facmodm;
description "The functions in this module calculate n! mod
p. If p is prime, facmodp(n,p) should be used. If p is
composite, facmodm(n,p) should be used. If p can be prime
or composite, facmod(n,p) should be used. If n and/or p are
greater than 2^49, result may be wrong.";
Digits:=max(15,Digits);
Facmodp:=define_external(
 'Facmodp',
 'n'::integer[4],
 'p'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
Facmodm:=define_external(
 'Facmodm',
 'n'::integer[4],
 'm'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
Fmodp1:=define_external(
 'Fmodp1',

 'n'::integer[8],
 'p'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
Fmodm:=define_external(
 'Fmodm',
 'n'::integer[8],
 'm'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
facmodp := proc (n::nonnegint, p::posint)
local r;
 if p <= n then return 0
 elif n = 0 then return 1
 elif p > 4294967295 then
 if p > 562949953421312 then WARNING("result may be
wrong") end if;
 if 1/2*p < n then
 if n = p-1 then return p-1
 else return `mod`((-1)^(p-n)/round(Fmodp1(p-n-
1,p)),p)
 end if;
 else return `mod`(round(Fmodp1(n,p)),p)
 end if
 elif 1/2*p < n then
 if n = p-1 then return p-1
 elif p < 2147483648 then r := Facmodp(p-n-1,p)
 else r := Facmodp(p-n-1,p-4294967296)
 end if;
 return `mod`((-1)^(p-n)/`if`(r <
0,4294967296+r,r),p)
 else r:=Facmodp(`if`(n<2147483648,n,n-
4294967296),`if`(p<2147483648,p,p-4294967296))
 end if;
 `if`(r < 0,4294967296+r,r)
end proc;
facmodm := proc (n::nonnegint, p::posint)
local r;
 if p <= n then return 0
 elif p > 4294967295 then
 if p > 562949953421312 then WARNING("result may be
wrong") end if;
 return `mod`(round(Fmodm(n,p)),p)
 else
 r:=Facmodm(`if`(n<2147483648,n,n-

4294967296),`if`(p<2147483648,p,p-4294967296));
 end if;
 `if`(r < 0,4294967296+r,r)
end proc;
facmod := proc (n::nonnegint, p::posint)
 if isprime(p) then facmodp(n,p)
 else facmodm(n,p)
 end if
end proc
end module:

Conclusion
As we saw here, the interaction between Maple and assembly language can be very
fruitful. A DLL written in assembler provides speed unavailable in Maple or DLL written
in high level languages. Maple, from another point of view, adds its symbolic capabilities
making the calculations much faster by using division modulo p and isprime function in
this example. The future improvements could be made by replacing the line "if p <= n
then return 0" in the facmod procedure by including more sophisticated conditions
guaranteed that n! = 0 mod p for composite p. For a specific processor, the assembler
code could be further optimized. Other improvements could be achieved by using the
gmp library supplied with Maple 9. It would be interesting to find a precise bound M
such that all Fmodp1(n, p) give the correct answers for positive integers n and p less than
M.

This article started from my posting [1]. The MASM32 author's website [2] contains
useful assembler references. Dr. Agner Fog wrote a great optimization manual [3] and
periodically updates it. The Intel developer's manual [4] contains a description of the
assembler instructions.

I would like to thank my beautiful and wonderful wife, Bette for her support.

References
1. Alec Mihailovs, Huge factorials, comp.soft-sys.math.maple, 12/4/2003,
http://groups.google.com/groups?threadm=oHNzb.7942%24Zu5.1208563%40news3.new
s.adelphia.net
2. S.L.Hutchesson, MASM32, http://www.movsd.com/
3. Agner Fog, How to optimize for the Pentium family of microprocessors,
http://www.agner.org/assem/#optimize
4. IA-32 Intel® Architecture Software Developers' Manual, v.2: Instruction Set
Reference, http://developer.intel.com/design/Pentium4/manuals/

Disclaimer: While every effort has been made to validate the solutions in this worksheet, Dr. Alec Mihailovs is not
responsible for any errors contained and is not liable for any damages resulting from the use of this material.

Copyright © 2004 Alec Mihailovs

