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Abstract

This short note will discuss Theorems 1, 3 and 4 of Strassen’s paper [6] from
the viewpoint of completely modern treatment of conditional distributions.

1 Preliminary

1.1 Hahn-Banach and separation theorem.

A real-valued function h on a real linear space E is called a Minkowski functional if
it satisfies for x, y ∈ E and a ≥ 0,

h(x+ y) ≤ h(x) + h(y) and h(ax) = ah(x).

Suppose that f0 is a linear functional on a subspace E0 of E such that f0 ≤ h on
E0. Then f0 can be extended to a linear functional f on E satisfying f ≤ h on E
(Hahn-Banach theorem; see 5.2 of [3]).

Now let E be a locally convex linear topological space, and let A and B be non-
empty convex subset of E. Then there exists a non-trivial continuous linear functional f
on E such that sup f(A) ≤ inf f(B) if and only if int(A) ∩ B = ∅, where sup f(A) :=
supx∈A f(x) and inf f(B) := infx∈B f(x), and by int(A) we denote the interior of A
(Separation theorem; see Theorem 14.2 of [5]). Furthermore, there exists a continuous
linear functional f on E such that sup f(A) < inf f(B) if and only if the closure (B −A)
does not contain 0 (Strong separation theorem; see 14.3 of [5]).

1.2 Weak* topology and continuous Minkowski functionals.

Let X be a Banach space and let X∗ be its dual (i.e., the linear space of “norm”-
continuous real linear functions on X). Here we consider the weak* topology on X∗,
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that is, the smallest topology such that the linear functional x∗(x) on X∗ is continuous
for every x ∈ X (see, e.g., page 194 of [2]). Then a linear functional f on X∗ is weak*
continuous if and only if we have f(x∗) = x∗(x) for some x ∈ X (17.6 of [5]). Also
note that the weak* topology is always Hausdorff and locally convex (see the paragraph
above 17.6 of [5]).

Theorem 1.1. Let K be a non-empty, convex and weak* compact subset of X∗, and let

(1) h(x) := sup
x∗∈K

x∗(x) for all x ∈ X.

Then (a) h is a continuous Minkowski functional on X, and (b) K = {x∗ ∈ X∗ : x∗ ≤
h}.

Proof. In (a) it is easy to see that h is a Minkowski functional. To verify the continuity
of h, observe that a Minkowski functional h is norm-continuous if and only if

h := sup
x ≤1

|h(x)| <∞.

(The proof of the above statement is analogous to that of Theorem 6.1.2 of [2].) Let Ui =
{x∗ ∈ X∗ : x∗ < i} be an open set in X∗ for each i = 1, 2, . . .. Since K is compact,
there is an integer N such that K ⊂ ∪Ni=1Ui. Hence we have h ≤ supx∗∈K x∗ ≤ K;
thus, h is continuous.

Clearly we have K ⊆ {x∗ ∈ X∗ : x∗ ≤ h} in (b). Suppose z∗ ∈ K such that z∗ ∈ h.
Then by the strong separation theorem there exists a continuous linear functional f
on X∗ satisfying supx∗∈K f(x∗) < f(z∗). Moreover, there is some x ∈ X satisfying
f(x∗) = x∗(x) for all x∗ ∈ X∗; thus, implying h(x) < z∗(x). However, this is a
contradiction.

2 Strassen’s theorem for kernel functions

In what follows we assume that X is a separable Banach space, and that (Ω,B, µ) is
a µ-complete measure space with σ-algebra B and probability measure µ. Let {hω}ω∈Ω
be a collection of continuous Minkowski functionals on X. Then we call hω a kernel if

the map ω → hω(x) is B-measurable for each x ∈ X;(1)

hω dµ(ω) <∞.(2)

The kernel hω is said to be linear if hω is linear for each ω ∈ Ω. Note that hω < ∞
for each ω ∈ Ω, and that hω is B-measurable by the separability of X. It is easily
observed that

(3) h(x) := hω(x) dµ(ω)

is a continuous Minkowski functional if hω is a kernel. Furthermore, if hω is linear, so
is h. Then we can state Theorem 1 of Strassen [6].
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Theorem 2.1. Let x∗ ∈ X∗, and let hω be a kernel. Then the following statements are
equivalent:

(i) x∗ ≤ h with the Minkowski functional (3);
(ii) there is a linear kernel x∗ω such that

x∗ω ≤ hω for all ω ∈ Ω;(4)

x∗(x) = x∗ω(x) dµ(ω) for all x ∈ X.(5)

In Theorem 2.1 (ii) is clearly sufficient for (i). We first present the proof of its
necessity when Ω is discrete, following the remark at page 426 of Strassen [6]. Let
K be the subset of X∗ in which each x∗ is expressed in the form of (5) with some
linear kernel x∗ω satisfying (4). Then it is not difficult to show that K is non-empty,
convex, and weak* compact subset of X∗; the weak* compactness follows from the fact
that x∗ ≤ h for all x∗ ∈ K. Furthermore, we claim that (1) with the above K
coincides with (3). Let x ∈ X be fixed. For each ω ∈ Ω, we can apply the separation
theorem with A = {(x, hω(x))} and B = {(z, r) : hω(x) ≤ r} on X × R to obtain
−x∗ω(x)+ahω(x) ≤ −x∗ω(z)+ar for (z, r) ∈ B, where x∗ω ∈ X∗ (but x∗ω ≡ 0) and a ∈ R.
Since we can find some (z, r) ∈ B satisfying x∗ω(z) − x∗ω(x) > 0 and r − hω(x) > 0, we
can assume a = 1 without loss of generality. By observing that −x∗ω(x) + hω(x) ≤ 0 at
(0, 0) ∈ B, we have x∗ω ≤ hω with x∗ω(x) = hω(x); thus, implying supx∗∈K x∗(x) = h(x).
Therefore, (ii) is necessary for (i) in view of Theorem 1.1.

The difficulty arises in this proof when a continuous case is considered: The appli-
cation of the separation theorem does not guarantee the B-measurability of the map
ω → x∗ω(x). Taking this into account we now introduce Strassen’s proof.

Proof of Theorem 2.1. Assuming (i), we prove the existence of linear kernel x∗ω desired
in (ii).

I. Construction of a B-measurable function qω(x). Let L be the linear space of X-valued
simple measurable functions on Ω, and let L0 be the subspace of constant functions in
L. Define for any element ξ(ω) = n

i=1 xiIAi(ω) of L,

H(ξ) :=
n

i=1 Ai

hω(xi) dµ(ω),

and define for any constant function ξ(ω) = xIΩ(ω),

Q0(ξ) := x
∗(x).

Then we can easily check that H is a Minkowski functional on L, and that Q0 is linear
on L0 satisfying Q0 ≤ H on L0. Thus, we can apply the Hahn-Banach theorem to
extend a linear functional Q on L satisfying (a) Q(ξ) = Q0(ξ) for all ξ ∈ L0 and (b)
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Q ≤ H on L. Let x ∈ X be fixed. We can define a signed measure Qx on (Ω,B) by
setting Qx(A) := Q(xIA). Observing that

(6) −H(−xIA) ≤ Qx(A) ≤ H(xIA) for every A ∈ B,

we obtain Qx µ. Thus, there is a Radon-Nikodym derivative qω(x) such that Qx(A) =

A
qω(x) dµ(ω).

II. µ-almost everywhere properties of qω(x) and construction of x̃
∗
ω(x). Given a, b ∈ R

and x, y ∈ X, the linearity and Property (b) of the extension Q imply respectively
that (a) qω(ax + by) = a qω(x) + b qω(y) and (b) qω(x) ≤ hω(x) for µ-a.e. ω ∈ Ω.
By introducing a countable dense subset X0 of X satisfying ax + by ∈ X0 whenever
x, y ∈ X0 and a, b ∈ Q, we can find a subset N0 of measure zero for which both (a) and
(b) in the previous sentence hold for all ω ∈ Ω \N0 and for all x, y ∈ X0 and a, b ∈ Q.
Then, for each ω ∈ Ω \ N0, there is a unique extension to X, denoted by x̃∗ω, of the
restriction qω on X0; furthermore, it satisfies x̃∗ω = supx∈X0 qω(x) ≤ hω , and

(7) x̃∗ω(x) = lim
xn→x

qω(xn) for every sequence {xn} of X0 converging in X.

It is easy to see that the map ω → x̃∗ω(x) is B-measurable for each x ∈ X, and that
x̃∗ω ∈ X∗ satisfying qω ≤ hω for each ω ∈ Ω \N0.
III. µ-almost everywhere equivalence with qω(x) and construction of x

∗
ω(x). By using

(6) and the continuity of hω with integrable upper bound hω , we can see that

lim
xn→x

sup
A∈B

|Qxn(A)−Qx(A)| = 0,

which in turn indicates that limxn→x |qω(xn)− qω(x)| dµ(ω) = 0. Therefore, together
with (7), we can show for every x ∈ X that x̃∗ω(x) and qω(x) must coincide almost
everywhere. Thus, we obtain

x̃∗ω(x) dµ(ω) = qω(x) dµ(ω) = Q(xIΩ) = x
∗(x).

Finally set x∗ω = x̃∗ω for ω ∈ Ω \ N0. For each ω ∈ N0 we can find x∗ω ∈ X∗ satisfying
x∗ω ≤ hω by the Hahn-Banach theorem. Note that the map ω → x∗ω(x) is B-measurable
for each x ∈ X by the µ-completeness of B. Therefore, x∗ω is a linear kernel as desired
in (ii).

3 Strassen’s theorem for conditional distributions.

3.1 Conditional distributions.

Let (R,F) be another measurable space, and let P be a real-valued function defined
on F × Ω. Then P is called a conditional distribution if (a) P (·,ω) is a probability
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measure on F for µ-a.e. ω ∈ Ω, and (b) the map ω → P (E,ω) is B-measurable for
every E ∈ F . A conditional distribution P defines the probability measure (P × µ) on
(R×Ω,F ⊗ B) via

(1) g d (P × µ) = g(r,ω)P (dr,ω) dµ(ω)

for any (P×µ)-integrable function g (see, e.g, Theorem 10.2.1 of [2]). It should be noted
that, given the measures µ and (P×µ), the existence of conditional distribution P cannot
be guaranteed unless R is a Polish space (i.e., a complete separable metric space) with
Borel σ-algebra F (see Theorem 10.2.2 and page 351 of [2]). When it exists, the map
ω → P (E,ω) coincides with a Radon-Nikodym derivative of (P ×µ)(E×·) with respect
to µ for every E ∈ F (see Theorem 10.2.5 of [2]).

3.2 Strassen’s theorem.

Let R be a Polish space with Borel σ-algebra F , and let C(R) be the Banach space
of bounded continuous real-valued functions on R. Let {hω}ω∈Ω be a collection of
continuous Minkowski functionals on C(R) such that (a) the map ω → hω(x) is B-
measurable for every x ∈ C(R), and (b) hω(x) ≤ supx(R). Then hω is continuous on
C(R), and therefore, it is a kernel.

Theorem 3.1. Let ν be a probability measure on (R,F). Then the following statements
are equivalent:

(i) x(r) dν(r) ≤ hω(x) dµ(ω) for all x ∈ C(R);

(ii) there is a conditional distribution P on F × Ω such that

x(r)P (dr,ω) ≤ hω(x) for every x ∈ C(R) and for all ω ∈ Ω;(2)

ν(E) = P (E,ω) dµ(ω) for every E ∈ F .(3)

It clearly follows from (1) that (ii) is sufficient for (i). Here we explore the subtle
difference between Theorem 2.1 and 3.1 in connection with the necessity of (ii). Define
the continuous linear functional

(4) x∗(x) := x(r) dν(r), x ∈ C(R),

and similarly define the linear kernel x∗ω via x∗ω(x) := x(r)P (dr,ω). Then (3) implies
(5). In fact, the converse is true: Given a linear kernel x∗ω satisfying Theorem 2.1(ii),
we can construct a conditional distribution P desired for Theorem 3.1(ii) in the spirit of
Riesz representation theorem. (R is not a compact space as in the usual setting for the
representation theorem, but a variation of this theorem can be found for locally convex
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space R in Section 56 of [4].) Therefore, we can rewrite Theorem 3.1 in the form of
Theorem 2.1. However, the Banach space C(R) in the place of X is not separable in
general. The following proof of Theorem 3.1 introduces an additional technique to get
around.

Proof of Theorem 3.1. Assuming (i), we claim that there exists a desired conditional
distribution P in (ii).

I. Introduction of separable Banach space X. Let V be the countable algebra generated
by countable open base. For each B ∈ V choose a sequence {Bn} of increasing compact
subsets such that B = limn→∞Bn. Then we can construct a countable algebra U which
includes the algebra V and all the sequences {Bn}’s for all B ∈ V (cf. the proof of
Theorem 10.2.2 in [2]). Now for each A ∈ U and ε > 0 choose a continuous function
xA,ε on R such that

xA,ε(r) =
1 if r ∈ A;
0 if d(r,A) := inf{d(r, s) : s ∈ A} > ε,

and 0 ≤ xA,ε(r) ≤ 1 for all r ∈ R. Thus, we can construct a separable subspace X of
C(R) which contains all xA,ε’s for all A ∈ U and all ε > 0.
II. Construction of probability measure P (·,ω). When restricted on X, the kernel hω
and the linear functional x∗ in (4) satisfies Theorem 2.1(i), and therefore, there exists
a linear kernel x∗ω satisfying Theorem 2.1(ii). Observe for A ∈ U \ {R, ∅} that

0 = − sup(−xA,ε(R)) ≤ −hω(−xA,ε) ≤ x∗ω(xA,ε) ≤ hω(xA,ε) ≤ sup(xA,ε(R)) = 1.

For each ω ∈ Ω we can define a finitely additive nonnegative measure P (·,ω) on the
algebra U via

P (A,ω) = lim
k→∞

x∗ω(xA,1/k), A ∈ U .

Then the map ω → P (A,ω) is B-measurable, and satisfies (3) for every A ∈ U .
Let ω ∈ Ω be fixed. Then P (·,ω) satisfies for each B ∈ V,

P (B,ω) = sup{P (K,ω) : K ∈ U and K is a compact subset of B},

and is called regular on V for U . According to Theorem 10.2.4 of [2], the regular finitely
additive P (·,ω) is countably additive on V. Thus, we can extend it uniquely to a
measure P (·,ω) on the Borel σ-algebra F (see, e.g., Theorem 3.1.4 and 3.1.10 of [2])
satisfying (2). We can also show that P (·,ω) is a probability measure for µ-a.e. ω ∈ Ω.
Since R is separable and ν is tight (cf. Theorem 7.1.4 of [2]), for any δ > 0 we can find
a sequence {Kn} of compact subsets such that R = limn→∞Kn and ν(Kn) > 1−δ2−2n.
We can immediately see that P (R,ω) = limn→∞ P (Kn,ω) ≤ 1 for every ω ∈ Ω. Let
an := µ({ω : P (Kn,ω) > 1− 2−n}) for each n = 1, 2, . . .. Then we have an > 1− δ2−n
since

1− δ2−2n < ν(Kn) = P (Kn,ω) dµ(ω) ≤ (1− 2−n)(1− an) + an.
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Therefore, we obtain

µ({ω : P (Kn,ω) > 1− 2−n for all n }) > 1−
∞

n=1

(1− an) ≥ 1− δ,

which implies that P (R,ω) = 1 for µ-a.e. ω ∈ Ω.
III. Monotone class argument for the existence of P . Let E be the collection of E ∈ F
such that the map ω → P (E,ω) is B-measurable, satisfying (3). It is easy to check
that E is a monotone class; thus, E = F by the monotone class theorem (see, e.g., 4.4.2
of [2]). Therefore, P is a conditional distribution as desired in (ii).

4 Capacity and Strassen’s Theorem 4.

Let G be the family of open subsets in R. A real-valued function f is called a
normalized capacity alternating of order 2 if (a) f(∅) = 0 and f(R) = 1, (b) f(U) ≤ f(V )
whenever U ⊂ V , (c) f(U) = limn→∞ f(Un) whenever Un ↑ U , and (d) f(U ∪ V ) +
f(U ∩ V ) ≤ f(U) + f(V ). The normalized capacity f alternating of order 2 defines the
continuous Minkowski functional h(x) on C(R) via

(1) h(x) = inf x(R) +
∞

inf x(R)
f({r : x(r) > t}) dt, x ∈ C(R).

Once h is found to be a Minkowski functional (see [1] for the proof), h is clearly con-
tinuous since h(x) ≤ supx(R).

Let F be a real-valued function on G×Ω. Then F is said to be a kernel alternating of
order 2 if (a) F (·,ω) is a normalized capacity alternating of order 2 for every ω ∈ Ω, and
(b) the map ω → F (U,ω) is B-measurable for every U ∈ G. If F is a kernel alternating
of order 2, then

(2) f(U) = F (U,ω) dµ(ω), U ∈ G

defines a normalized capacity alternating of order 2.

Theorem 4.1. Let ν be a probability measure on (R,F), and let F be a kernel alter-
nating of order 2. Then the following statements are equivalent:

(i) ν(U) ≤ f(U) in (2) for all U ∈ G;
(ii) there is a conditional distribution P on F × Ω such that

P (U,ω) ≤ F (U,ω) for every U ∈ G and for all ω ∈ Ω;
ν(E) = P (E,ω) dµ(ω) for every E ∈ F.
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Proof. Again (ii) is sufficient for (i). Here we outline the proof for its necessity. We can
define a kernel hω via

hω(x) = inf x(R) +
∞

inf x(R)
F ({r : x(r) > t},ω) dt, x ∈ C(R).

Clearly we have hω(x) ≤ supx(R) as in the setting of Theorem 3.1. Furthermore,
we can observe in (1) that h(x) = hω(x) dµ(ω) for all x ∈ C(R). Then it is not
difficult to show that Theorem 4.1(i) implies Theorem 3.1(i), and that the conditional
distribution P in Theorem 3.1(ii) is the one desired in Theorem 4.1(ii).
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