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OVERCOMING STUDENTS' DIFFICULTIES IN LEARNING TO 
UNDERSTAND AND CONSTRUCT PROOFS1 

 
Annie Selden and John Selden 
New Mexico State University2 

 
 When a topologist colleague was asked to teach remedial geometry, he used 
Schaum's Outline of Geometry and also wrote proofs on the blackboard.  One day a 
student, who was familiar with two-column proofs having statements such as  

ABD ≅ BCD and reasons such as SAS , blurted out in utter surprise, "You mean 
proofs can have words!"   
 While this geometry student's previous experience had led him to an unfortunate 
view of proof.   Other students experience epiphanies about themselves and proof.  Asked 
what she (personally) got out of a transition-to-proof course, one of our students 
answered, "I learned that I could wake up at 3 a.m. thinking about a math problem."   
 What do responses like this tell us?  Almost all undergraduate mathematics 
courses are about the concepts and theorems of mathematics -- when a matrix has an 
inverse, how to find it, and when to use it; when a series converges; the distinction 
between continuous and uniformly continuous; the meaning of compact.  However, 
students in courses like abstract algebra, real analysis, and topology normally 
demonstrate their competence by solving problems and proving theorems.  And, if 
students go beyond a few lower-division courses such as calculus or first differential 
equations, this usually involves constructing original proofs or proof fragments.  But, 
often not much time can be devoted to helping students learn how to construct proofs.  
This might not lead to difficulties, if only students came to university understanding 
something about the nature of proof and already had some experience constructing simple 
proofs.  Unfortunately, many students, even high-performing ones, do not.  And the 
resulting difficulties they encounter may be one of the reasons many students do not 
continue in mathematics. 
 Transition-to-proof courses, also called bridge courses, are meant to ameliorate 
this situation. Their main focus is not on the concepts and theorems of mathematics, but 
on helping students learn to construct proofs.3  This is perhaps best seen as a complex 
constellation of content knowledge, beliefs, problem solving ability, and skills.  These 
skills include identifying hypotheses and conclusions, locating relevant definitions and 
theorems, using them appropriately, isolating the mathematical "problem," coming up 
with "key" ideas to solve it, and finally, organizing them into a logically coherent 
deductive argument.   Their acquisition seems to be considerably aided by practice, and 
                                                 
1 This manuscript will appear as a chapter in an upcoming MAA Notes Volume:  Making Connections: 
Research to Practice in Undergraduate Mathematics Education. 
2 Annie Selden has retired from Tennessee Technological University and is now Professor Emerita.  John 
Selden is retired from and also formerly taught at Tennessee Technological University.  The Seldens have 
retired to Las Cruces, New Mexico and now jointly teach one graduate course per semester at New Mexico 
State University 
3 However, the introduction to one transition-to-proof textbook asserts something different.  It states that 
the purpose of such courses, often called something like Introduction to Mathematical Reasoning, is to 
gather together results concerning basic set notions, equivalence relations, and functions so teachers will 
not have to cover them repeatedly at the beginning of courses like abstract algebra and real analysis. 
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the process of learning to construct proofs may even involve students coming to know 
themselves better.  Indeed, the above student's comment, about waking up with a math 
problem, suggests that she has learned to persist until she eventually comes up with a 
solution, even if that's in the middle of the night.  Unfortunately, many students believe 
that they either know how to solve a problem (prove a theorem) or they don't, and thus, if 
they don't make progress within a few minutes, they give up and go on to something else.   
 Of course, undergraduate students do not learn to construct proofs only in 
transition-to-proof courses.  They tend to improve their ability to construct proofs 
throughout the entire undergraduate mathematics program.  Some departments do not 
even offer transition-to-proof courses, and some combine them with mathematics content 
courses such as discrete structures.  Occasionally, students are offered an R. L. Moore 
type course,4 that is, a course in which the textbook and lectures are replaced by a brief 
set of notes and in which the students produce all the proofs.  To some extent, the 
emphasis in such courses is on a deep understanding of the mathematical content -- 
however, it has been our experience that once students get started in such courses they 
often improve their proof making abilities very rapidly.  Unfortunately, a few students 
may have great difficulty getting started.   
 In whatever setting students are to progress in their proving abilities, one might 
expect the teaching to be somewhat special.  In many university mathematics content 
courses, teachers can profitably explain mathematical theorems and why they are true, 
but in teaching the skills and problem solving abilities involved in proving, one should 
also expect to emphasize guiding students' practice.  In developing such teaching, it can 
be useful to ask:  What kinds of difficulties do student have, and how might these 
difficulties be alleviated?   
 We will describe some results from the mathematics education research literature 
that address these questions.  However, it is important to note that this research typically 
makes no claim (as one familiar with other social sciences might expect) that all, or even 
most, students have the described difficulties.  Instead, the main point of this literature is 
to uncover, understand, and describe features of student learning, in this case difficulties 
that might otherwise go unnoticed, at least to the degree claimed.  Evidence in such work 
is usually directed towards being sure that the observations and descriptions are accurate 
about the particular (often, small) group of students studied.   
 As we proceed, we will mention possible pedagogical reasons for the difficulties 
described, and when they are known, we will give some pedagogical suggestions. In 
conclusion, we will offer some additional teaching suggestions, based partly on the 
research literature and partly on our own teaching experience.   

The Curriculum and Students’ and Teachers’ Conceptions of Proof 

 That the concept of proof in mathematics is a difficult one for students is not 
surprising given various everyday uses of the word "proof."  To a jury, it can mean 
"beyond a reasonable doubt" or "the preponderance of the evidence."  To a social 
scientist or statistician, it can mean "occurring with a certain (rather large) probability."  

                                                 
4 Such courses are also referred to as modified Moore Method or Texas Method courses.  For more 
information, see Mahavier (1999) or Jones (1977).   
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And, to a scientist, it can mean the positive results of an empirical investigation.  To 
comprehend the special way that "proof" is used in mathematics can take time and such 
everyday meanings can get in the way. 

Views of High School Geometry Students   

 A number of studies have documented the finding that the concept of 
mathematical proof is not quickly or easily grasped.  For example, in the middle of a 
year-long U.S. high school geometry course, after being introduced to deductive proof, 
students in five classes were given a short instructional unit designed to highlight 
differences between measurement of examples and deductive proof.  Seventeen of the 
students were interviewed and asked to compare and contrast two arguments (for 
different theorems) -- a deductive proof and an argument containing four examples using 
differently shaped triangles.  Some of these students had a nuanced "evidence is proof" 
view.  They considered empirical evidence to be sufficient proof for a statement about all 
triangles, provided one took measurements of each type of triangle -- acute, obtuse, right, 
scalene, equilateral, and isosceles.  Others had a qualified view of deductive proof, 
believing that a two-column proof only proved a theorem for the type of triangle depicted 
in the accompanying figure and would need to be reproved, perhaps using the same steps, 
for other types of triangles.  Most surprising and quite disturbing, especially after an 
instructional unit designed to help them make the distinction between empirical 
justification and deductive proof, was the result that some of these geometry students 
simultaneously believed that empirical evidence is sufficient proof and that proof is just 
evidence for a claim (Chazan, 1993). 

The Influence of the Curriculum  

 It would seem that partly, perhaps even to a large extent, how students see proof 
is a consequence of how it is portrayed by their teachers and the overall curriculum.  To 
give a well-documented example, we turn to secondary schools in England where a new 
National Curriculum, for students aged 5-16 years, was adopted following the 1982 
publication of the influential Cockcroft Report.  The new curriculum was partly "in 
response to evidence of children's poor grasp of formal proof in the 60's and 70's” 
(Hoyles, 1997).  The intent of the new curriculum was for students to test and refine their 
own conjectures in order to gain personal conviction of their truth, and to present 
justifications for their validity, that is, deductive arguments.   
 Somehow, in that new National Curriculum, proof was relegated to only one of 
several strands, called student Attainment Targets (ATs), namely, to AT1: Using and 
Applying Mathematics.5  Unfortunately, as was found several years later, even high-
attaining secondary students came to see proof in terms of the "investigations" that were 
undertaken in this applied strand of the curriculum (Coe & Ruthven, 1994; Healy & 
Hoyles, 1998, 2000).  While such investigations were undertaken with the intention of 
having students see proof as less of a formal ritual demanded by teachers and more as a 
                                                 
5 The new National Curriculum has undergone several changes in the number of attainment targets (ATs).  
In 1995, the other three ATs were AT2: Number and Algebra; AT3: Shape, Space, and Measures; and AT4: 
Handling Data.  Relegating proof to AT1 (Using and Applying Mathematics) had the effect of separating 
the function of proof away from the other mathematical strands (Hoyles, 1997, p. 8). 
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natural outgrowth of testing, refining, and verifying their own conjectures, the results 
were disappointing, even disastrous, for students entering England's universities.  
Apparently, the verifications, that had been intended to be student constructed deductive 
arguments, were instead turned into standardized templates and empirical arguments 
(Coe & Ruthven, 1994).   
 By 1995, the situation had caused so much concern that the London Mathematical 
Society issued a report on the problems as mathematicians perceived them.  The report 
stated that recent changes in school mathematics "have greatly disadvantaged those who 
need to continue their mathematical training beyond school level."  In particular, the 
following problems were cited:  "serious lack of essential technical facility -- the ability 
to undertake numerical and algebraic calculation with fluency and accuracy," "a marked 
decline in analytical powers when faced with simple problems requiring more than one 
step," and "a changed perception of what mathematics is -- in particular of the essential 
place within it of precision and proof" (London Mathematical Society, 1995, p. 2). 
 After the public outcry of mathematicians, a large-scale study, called Justifying 
and Proving in School Mathematics, was undertaken.  The study surveyed 2,459 high-
attaining Year 10 students (14-15 years old, that is, comparable to U.S. high school 
sophomores) in 94 classes from 90 English and Welsh schools.  In a series of papers and 
reports, it was convincingly documented that it was the new National Curriculum, as 
implemented by teachers, that was, in large part, responsible for the perceived decline in 
U.K. students' notions of proof and proving (Hoyles, 1997; Healy & Hoyles, 1998, 2000).   
 What did this large, mostly quantitative, but partly qualitative, study find?  In the 
Executive Summary of the report (Healy & Hoyles, 1998), one finds the following 
conclusions, amongst others.  (1)  Students' performance on constructing proofs was 
"very disappointing."  These better-than-average6 students were asked to judge whether a 
number of empirical, narrative, and algebraic arguments were correct and convincing, as 
well as which they would produce and which would get the best marks from their 
teachers.  They were also asked to prove a familiar result, the sum of any two odd 
numbers is even, and an unfamiliar result, if p and q are two odd numbers, then  
  ( p + q) × ( p − q)  is a multiple of 4.  Only 40% of students showed evidence of deductive 
reasoning for the familiar result, and just 10% did so for the unfamiliar result.  (2)  Even 
so, most students (84% in geometry, 62% in algebra) were aware that once a statement is 
proved "no further work was necessary to check if it applied to a particular range of 
instances," for example, the sum of two odd numbers that are squares is also even.  (3)  
Students who expected to take the higher level GCSE examination at age 16, rather than 
the middle-level examination, were better at constructing and identifying correct 
arguments.7   In conclusion, the report stated:  

The major finding of the project is that most high-attaining Year 10 students after 
following the National Curriculum for 6 years are unable to distinguish and 
describe mathematical properties relevant to a proof and use deductive reasoning 
in their arguments.  . . .  at least some of the poor performance in proof of our 

                                                 
6 They had scored an average of 6.56 on a national test (the Key Stage 3) whose overall average is normally 
between 5 and 6. 
7 British students can opt for one of three levels of examination:  foundation-, middle-, and higher-tier.  It 
has been argued elsewhere that the acceptability (for entrance to university) of good results on the middle-
tier has discouraged many students from taking the higher-tier GCSE mathematics examination. 
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highest-attaining students may simply be explained by their lack of familiarity 
with the process of proving. (Healy & Hoyles, 1998, p. 6) 

 Thus, the way a curriculum conveys proof and proving is clearly crucial, but 
skilled and knowledgeable teachers are also critical for implementing such a curriculum.  
The current NCTM Standards (2000) advocate reasoning and proof across the K-12 
curriculum.  For example, in a section describing the Reasoning and Proof Standard for 
Grades 9-12, one reads, "Students should understand that having many examples 
consistent with a conjecture may suggest that the conjecture is true but does not prove it, 
whereas one counterexample demonstrates that a conjecture is false."  (NCTM, 2000, p. 
345.)  Are current U.S. secondary school teachers capable of providing the rich 
opportunities and experiences with proof that would enable students to come to such an 
understanding?   

Secondary Teachers' Views and Knowledge of Proof 

 In one recent study (Knuth, 2000a, 2000b), seventeen secondary school 
mathematics teachers, with from 3 to 20 years teaching experience, some with master's 
degrees, were interviewed on their conceptions of proof and its place in secondary school 
mathematics.  They were asked such questions as:  What does the notion of proof mean 
to you?  Why teach proof in secondary school?  When should students encounter proof?  
They were also presented with arguments for several mathematical statements and asked 
to evaluate them.  Some of these arguments were proofs; others were not.   
 Although all these teachers professed the view that a proof establishes the truth of 
a conclusion, several also thought it might be possible to find a counterexample or some 
other contradictory evidence to refute a proof.  The interviews produced no evidence to 
suggest the teachers saw proof as promoting understanding or insight.  Three teachers did 
talk about the role of proof in explaining why something is true, but by this they meant 
understanding how one proceeded step-by-step from the premise to the conclusion. 
 In the context of secondary school, the teachers distinguished formal proofs, less 
formal proofs, and informal proofs.  For some teachers, two-column geometry proofs 
were the epitome of formal proofs.  Less formal proofs were not as mathematically 
rigorous, and informal proofs were explanations or empirically-based arguments.  All the 
teachers considered proof as appropriate only for those students in advanced mathematics 
classes and those intending to pursue mathematics-related majors in college.  All 
indicated that they accepted informal proofs from students in lower-level mathematics 
classes.  However, doing only this may have the unfortunate consequence that students 
develop the belief that checking several examples constitutes proof (Knuth, 2002a).  

The teachers were given five sets of statements with 3 to 5 arguments purporting 
to justify them; in all, there were 13 arguments that were proofs and 8 that were not.  The 
teachers rated each argument on a four-point scale with 1 not a proof and 4 a proof and 
provided rationales for their ratings.  Ratings of 2 or 3 were included to allow teachers to 
express alternative views of validity.  In general, the teachers were successful in 
recognizing proofs, with 93% of the proofs rated as such.  However, the number of 
nonproofs they also rated as proofs was surprising -- a third of the nonproofs were rated 
as proofs.  In fact, every teacher rated at least one of the eight nonproofs as a proof and 
eleven teachers rated more than one as a proof.  Indeed, ten teachers considered an 
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argument demonstrating the converse of the statement, If x > 0 , then x + 1
x
≥ 2 , to be a 

proof of it; these teachers seemed to focus on the correctness of the algebraic 
manipulations, rather than on the validity of the argument (Knuth, 2000b). 
 Given this result regarding some better and more committed secondary 
mathematics teachers, can one expect that beginning U.S. university students would be 
reasonably skilled at proof and proving?  Would they, for example, understand the 
distinction between proof and empirical argument?  Probably not.  

University Students' Views of Proof  

Undergraduate students sometimes come to see proofs and proving as unrelated to 
their own ways of thinking.  In order to cope, they may employ mimicking strategies with 
the result that they develop various views of proof that are unusual from a 
mathematician's viewpoint; Harel and Sowder (1998) have classified some of these 
"proof schemes."  These are not techniques of (mathematical) proof, but rather kinds of 
arguments, sometimes incorrect or incomplete, that some university students find 
convincing, and may even think of as proofs.8  An example of preservice elementary 
teachers’ views of proof follows.    
 In the 10th week of a sophomore-level mathematics course, 101 preservice 
elementary teachers were asked to judge verifications of a familiar result, if the sum of the 
digits of a whole number is divisible by 3, then the number is divisible by 3, and an 
unfamiliar result, if a divides b and b divides c, then a divides c.  For each of these, 
students were given, in randomized order, inductive arguments based on examples, 
patterns, and specific large numbers, and deductive arguments -- a general proof, a false 
"proof," and a particular (or generic9) proof.  These students, who had met the idea of 
proof in their high school geometry courses and in the current course, rated these 
arguments on a four-point scale, where 4 indicated they considered the argument to be a 
mathematical proof and 1 indicated it was not a proof.  The results showed that both 
inductive and deductive arguments were acceptable to the students.  Apparently the 
current course that had given "extensive and explicit instruction about the nature of proof 
and verification in mathematics" had not achieved its goal.  In particular, each of the 
inductive arguments was rated high (3 or 4) by more than 50% of the students.  For both 
familiar and unfamiliar contexts, 80% gave a high rating (3 or 4) to at least one inductive 
argument, and over 50% gave a very high rating (4) to at least one inductive argument.  
Also, while over 60% accepted a correct deductive argument as a valid mathematical 
proof, 52% also accepted an incorrect deductive argument (Martin & Harel, 1989).   
 Nonstandard views of mathematical proof can be seen as obstacles to overcome.  
While it is not clear precisely how to bring students' views of proof in line with 
mathematicians' views, it seems plausible that working towards mathematical sense-
making, explanation, and justification on the part of students would be one possible route, 

                                                 
8 The taxonomy of "proof schemes" also includes various axiomatic proof schemes, that is, arguments that 
mathematicians would consider proofs. 
9 A generic  proof is a proof of a particular case that can be generalized in a straightforward way.  For 
example, see Rowland (2002). 



7 

provided one avoids the pitfall, described above, of allowing mathematical 
"investigations" to conclude with purely empirical justifications.   

Understanding and Using Definitions and Theorems 

 Not only are there everyday uses of "proof" that might compound students' 
difficulties in coming to know what a mathematical proof is, students can be confused 
about the role of definitions in mathematics.   

Mathematical Definitions 

 Everyday descriptive, or dictionary, definitions10 describe both concrete and 
abstract things, already existing in the world, such as trees, love, democracy, or 
epistemology.  They can be both redundant and incomplete, and it is never clear whether 
all aspects of a definition must apply for its proper use. In contrast, mathematical 
definitions11 bring concepts into existence; the concept, say of group, means nothing 
more and nothing less than whatever the definition says.  While all parts of a 
mathematical definition definitely need to be considered when producing examples and 
nonexamples, other features of prospective examples need not be considered.  This point 
is often missed.  When asked whether F = 151×157 is prime, a number of preservice 
elementary teachers correctly, but irrelevantly noted that both 151 and 157 are prime, 
before going on to conclude that their product is composite (Zazkis & Liljedahl, 2004).   
Furthermore, in proving theorems, one should consider all parts of a definition.   
 Students may not be aware of, or may not make, the distinction between everyday 
definitions and mathematical definitions.  One could help them become aware of this 
distinction by discussing it with them and by engaging them in the act of defining.  

Interpreting and Using Theorems 

 Undergraduate students often fail to use relevant theorems or interpret the content 
of theorems incorrectly [see Rasmussen and Ruan in this volume for a notable exception].  
Below, we provide some examples that illustrate students’ difficulties in using and 
interpreting theorems.  

The Fundamental Theorem of Arithmetic, guaranteeing a unique prime 
decomposition of integers, is part of the core mathematics curriculum for preservice 
elementary teachers, but in practice some of these students appear to deny the 
uniqueness.  Zazkis and Campbell (1996) asked preservice elementary teachers whether 
173 was a square number or whether K = 16,199 = 97 x 167 could have 13 as a divisor, 
given both 97 and 167 are primes.  These students took out their calculators -- in the first 
instance, to multiply out and extract the square root, and in the second instance, to divide 
by 13.  When asked to determine (and explain) whether M = 32 × 52 × 7  was divisible by 
                                                 
10 Dictionary definitions are also referred to as descriptive, extracted, or synthetic definitions. 
11 Mathematical definitions are also referred to as stipulated or analytic definitions.  Such definitions apply 
in an "all or nothing" sense, that is, a given set, together with an operation, is a group or is not a group.  In 
contrast, one can say that two countries are democracies, yet that one is more democratic than the other. 
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2, 3, 5, 7, 9, 11, 15, or 63, a majority (29 of 54) stated that 3, 5, 7 were divisors since 
those were among the factors in the prime decomposition.  However, sixteen were unable 
to apply similar reasoning to 2 and 11, some noting instead that “M is an odd number” so 
“2 can’t go into it” or resorting to calculations (like the above) for 11.  In addition, many 
of these students believed that prime decomposition means decomposition into small 
primes (see also Zazkis & Liljedahl, 2004).   
 Undergraduate students often ignore relevant hypotheses or apply the converse 
when it does not hold.  A well-know instance is the use, by Calculus II students, of the 
converse of:  If  an∑  converges, then lim

n→∞
an = 0 , as an easy, but incorrect, test for 

convergence.  Some calculus books go on to point out that this theorem provides a Test 
for Divergence.  But, perhaps it would be better to explicitly state the contrapositive, 
If

  
lim
n→∞

an ≠ 0 , then  an∑ diverges. 

 Sometimes undergraduate students use theorems, especially theorems with names, 
as vague "slogans" that can be easily retrieved from memory, especially when they are 
asked to answer questions to which the theorems seemingly apply.  For example, Hazzan 
and Leron (1996) asked twenty-three abstract algebra students:  True or false?  Please 
justify your answer.  "In S7 there is no element of order 8."  It was expected that students 
would check whether there was a permutation in S7 having 8 as the least common 
multiple of the lengths of its cycles.  Instead, 12 of the 16 students who gave incorrect 
answers invoked Lagrange's Theorem12 or its converse.  Seven of them incorrectly 
invoked Lagrange's Theorem to say the statement was false -- there is such an element 
since 8 divides 5040.  Another two students inappropriately invoked a contrapositive 
form of Lagrange's Theorem to say the statement was true because 8 doesn't divide 7.  
The authors go on to point out that students often think Lagrange's Theorem is an 
existence theorem, although its contrapositive shows that it is a non-existence theorem:  If 
k doesn't divide o(G), then there doesn't exist a subgroup of order k.  Perhaps it would be 
good to state this version explicitly for students. 
 The above examples refer to students’ misuse of theorems when they are asked to 
solve specific problems, for example, determine whether a number is prime or a series 
converges, or decide whether a group has an element of order 8.  However, it is not hard 
to imagine similar difficulties when students attempt to use theorems in constructing their 
own proofs.   

A Positive Result on Improving Students' Mathematical Reasoning 

 That even young children can make remarkable strides towards proof, when 
challenged with appropriate tasks and probing questions, can be seen from one 
noteworthy longitudinal study (Maher & Martino, 1996a, 1996b, 1997).  The study 
consisted of a series of relatively small, but coherent, long-term interventions with one 
group of children over a number of years.  It led to some extraordinary instances of 
mathematical sense-making, explanation, and justification, including the development by 
children, on their own, of the idea of proof in a concrete case.  

                                                 
12 Lagrange's Theorem states:  Let G be a finite group.  If H is a subgroup of G, then o(H) divides o(G).  
Here o(H) stands for the order of the group H, i.e., its cardinality.   
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We describe the reasoning progress of Stephanie, one of the children with whom 
Maher and Martino (1996a, 1996b, 1997) began their long-range, but occasional, 
interventions commencing in Grade 1.  By Grade 3, the children had begun building 
physical models and justifying their solutions to the following problem:  How many 
different towers of heights 3, 4, or 5 can be made using red and yellow blocks?  
Stephanie not only justified her solutions, she validated or rejected  

her own ideas and the ideas of others on the basis of whether or not they made 
sense to her.  . . .  She recorded her tower arrangements first by drawing pictures 
of towers and placing a single letter on each cube to represent its color, and then 
by inventing a notation of letters to represent the color cubes. (Maher & Speiser, 
1997, p. 174)   

She used spontaneous heuristics like guess and check, looking for patterns, and thinking 
of a simpler problem, and developed arguments to support proposed parts of solutions, 
and extensions thereof, to build more complete solutions.  Occasional interventions 
continued for Stephanie through Grade 7.  Then in Grade 8 she moved to another 
community and another school and her mathematics was a conventional algebra course.  
The researchers interviewed her that year about the coefficients of (a + b)2  and  (a + b)3 .  
About the latter, she said "So there's a cubed . . .  And there's three a  squared  b  and 
there's three  a   b  squared and there's bcubed.  . . .  Isn't that the same thing?"  Asked 
what she meant, she replied, "As the towers."  It turned out, upon further questioning, that 
Stephanie had been visualizing red and yellow towers of height 3 in order to organize the 
products aib j .  At home, before the interview, she had written out the coefficients for the 
first six powers of a + b .  Also, in a subsequent interview, she could explain how 
counting the towers related to the binomial coefficients and used Pascal’s triangle to 
predict the terms of (a + b)n .   (For a more complete discussion, see Maher & Speiser, 
1997.)   Her understanding prompted Speiser to remark, "I wish some of my [university] 
students were able to reason that well."  The case of Stephanie illustrates possibilities for 
developing solid mathematical reasoning early on.   
 However, most undergraduate students do not come to university with such 
experiences.  Rather, as described above, many come with nonstandard views of proof.  
In addition, they often need to acquire much of the complex constellation of knowledge 
and skills used in proving theorems. 

Understanding the Structure of a Proof and the Order in which it Might be Written 

Transition-to-proof course students often say they don't know what the teacher 
wants them to do or where to begin.  This is especially true of intuitively obvious results 
such as A∪ B = B∪ A , where one "follows one's nose" logically and there is no "trick" 
or mathematical problem-solving aspect.  Rather it is a matter of knowing how to use, 
and sometimes unpack, the relevant definitions, including using them in the "right" order.  
For mathematicians, this has become automatic, whereas students often don't know what 
to do.  For example, on the final exam in a transition-to-proof course, students were asked 
to prove:  Let f and g be functions on A.  If  f go  is one-to-one, then g  is one-to-one.  In 
the course, the definition of  f  one-to-one was that if f (x) = f ( y) then x = y .  However, 
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all but one student unsuccessfully began with the hypothesis --  f go  is one-to-one -- 
rather than assuming that  g(x) = g( y) . (Moore, 1994).  They did not appear to know how 
to use the definition of one-to-one and relate that to the structure of their proofs.13    

Unpacking the Logical Structure of Statements of Theorems   

 Another difficulty students have when constructing their own proofs is an 
inability to unpack the logical structure of informally stated theorems -- theorems that 
depart from a natural language version of predicate calculus.  That is, theorems that omit 
specific mention of some variables or depart from the use of for all, there exists, and, or, 
not, if-then, and if-and-only-if in a significant way.  For example the statement, 
Differentiable functions are continuous, is informal because a universal quantifier and the 
associated variable are understood by convention, but not explicitly indicated.  Similarly, 
A function is continuous whenever it is differentiable is informal because it departs from 
the familiar if-then expression of the conditional as well as not explicitly specifying the 
universal quantifier and variable.   
 Being able to unpack the logical structure of such informally stated theorems is 
important because the logical structure of a mathematical statement is closely linked to 
the overall structure of its proof.  For example, knowing the logical structure of a 
statement helps one recognize how one might begin and end a direct proof of it.  When 
asked to unpack the logical structure of four informally worded syntactically correct 
statements, two true and two false, undergraduate mathematics students, many in their 
third or fourth year, did so correctly just 8.5% of the time.  Especially difficult for them 
was the correct interpretation of the order of the existential and universal quantifiers in 
the false statement:  For a < b , there is a c so that f (c) = y  whenever   f (a) < y  
and  y < f (b) 14 (Selden & Selden, 1995).    
 Furthermore, the ability to unpack the logical structure of the statement of a 
theorem also allows one to know whether an argument proves that statement, as opposed 
to some other statement.  For example, eight mid-level undergraduate mathematics and 
mathematics education majors were asked to judge the correctness of student-generated 
"proofs" of a single theorem.15  Upon finding a proof of the converse particularly easy to 
follow, four initially incorrectly stated that it was a proof of the original statement, and  
two of these maintained this view throughout the interview (Selden & Selden, 2003).   

Understanding the Effect of Existential and Universal Quantifiers  

 One source of students' difficulties in discerning the logical structure of theorems 
is a lack of understanding of the meaning of quantifiers and that their order matters.  
                                                 
13 In a rather formally written proof, one might begin something like, “Suppose f go is one-to-one.”  But 
(with this definition), the hypothesis is not used until one attempts to prove that g is one-to-one by 
assuming ( ) ( )g x g y= .  An alternative definition, x y≠ implies ( ) ( )f x f y≠ , might have made this 
particular theorem easier to prove, but apparently the students did not think of using it. 
14 If  f  were continuous and if it were stated that a c b< < , this would be the Intermediate Value 
Theorem as stated in most beginning calculus textbooks. 
15 The theorem was:  For any positive integer n, if n2 is a multiple of  3, then n is a multiple of  3. 
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Undergraduate students often consider the effect of an interchange of existential and 
universal quantifiers as a mere rewording.  For example, in another study, when given the 
two statements:  

• For every positive number a  there exists a positive number bsuch that b < a .  
• There exists a positive number bsuch that for every positive number  a  b < a . 

24 of 54 students in undergraduate mathematics courses, such as linear algebra and 
multivariable calculus, and 3 of 9 students in a beginning graduate abstract algebra course 
said they were "the same" or were merely reworded (Dubinsky & Yiparaki, 2000).   
 While understanding the logical structure of a definition or a theorem is certainly 
not sufficient for constructing a proof, it is definitely necessary.  In other words, if you do 
not understand what something really says, you certainly cannot prove it.   

Knowing How to Read and Check Proofs 

 An integral part of the proving process is being able to tell whether one’s 
argument is correct and proves the theorem it was intended to prove.  For this, one must 
check one's own proof.  How do undergraduates read and check proofs?  

An Exploratory Study 

 We conducted an exploratory study of how eight undergraduates (four secondary 
education mathematics majors and four mathematics majors) from the beginning of a 
transition-to-proof course validated, that is, evaluated and judged the correctness of, four 
student-generated "proofs" of a very elementary number theory theorem (Selden & 
Selden, 2003).  The "proofs" were real student work from a similar transition-to-proof 
course.  The theorem was:  For any positive integer n , if n2 is a multiple of  3 , then  n is a 
multiple of  3 .  Unbeknownst to the students, for later reference, we had dubbed the 
student-generated “proofs”:  (a) Errors Galore, (b) The Real Thing, (c) The Gap, and (d) 
The Converse, indicating our view of them.  Each of the eight students was interviewed 
individually for about one hour in a semistructured interview consisting of four phases.  
In Phase 1, the students were asked to explain the statement of the theorem in their own 
words, give some examples of it, and try to prove it.  Two were successful, and after 
some time, those who could not complete a proof were asked to proceed with the other 
portions of the interview.  In Phase 2, the students were shown the four “proofs,” one 
after the other, and asked to think out loud as they read each one and decided whether it 
was, or was not, a proof.  In Phase 3, having seen and thought about the “proofs” one 
after the other, they were given an opportunity to reread them all together and rethink 
their earlier decisions.  In Phase 4, they were asked some general questions about how 
they read proofs.  For example:  When you read a proof is there anything different you 
do, say, than in reading a newspaper?  How do you tell when a proof is correct or 
incorrect?  How do you know a proof proves this theorem instead of some other theorem? 
 The students made judgments regarding the correctness of each student-generated 
“proof” four times, at the beginning and end of each of their two readings in Phases 2 and 
3.  At each time, there were 32 person-proof judgments.  At the beginning (Time 1), these 
were just 46% (15 of 32) correct, but by the end (Time 4) 81% were correct.  We attribute 
this difference to the students (at Time 4) having thought about the “proofs” several 
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times, and perhaps, to the interviewer’s no longer accepting “unsure” as a response.  
Most of the errors detected were of a local/detailed nature rather than a global/structural 
nature, with only the two students who had proved the theorem themselves observing that 
the converse had been proved in (d).   
 When asked how they read proofs, the students said they attempted careful line-
by-line checks to see whether each mathematical assertion followed from previous 
statements, checked to make sure the steps were logical, and looked to see whether any 
computations were left out.  Several said they went through the proofs using an example.  
Also, for these students, a feeling of personal understanding or not--that is, of making 
sense or not--seemed to be an important criterion when making a judgment about 
correctness of a “proof.”  Thus, what students say about how they read proofs seems a 
poor indicator of whether they can actually validate proofs with reasonable reliability.  
While these students tended to “talk a good line,” their judgments at Time 1 were no 
better than chance (46% correct).   
 On the other hand, even without explicit instruction, the reflection and 
reconsideration engendered by the interview process eventually yielded 81% correct 
judgments, suggesting that explicit instruction in validation could be effective (Selden & 
Selden, 2003).  Indeed, several transition-to-proof textbooks include "proofs to grade,"16 
but we think it would also be helpful to have students validate actual student-generated 
proofs. 

Knowing and Using Relevant Concepts 

 In addition to the ability to unpack, understand, and interpret definitions and 
theorems correctly, and check one's logic, one must have some relevant content 
knowledge.  Constructing all but the most straightforward of proofs involves a good deal 
of persistence and problem solving to put together relevant concepts.  And in order to use 
a concept flexibly, it is important to have a rich concept image, that is, a lot of examples, 
non-examples, facts, properties, relationships, diagrams, and visualizations, that one 
associates with that concept.17  
 In many upper-level mathematics courses, students are given definitions together 
with a few examples, after which they are expected to use these definitions reasonably 
flexibly.  To do this, students may need to find additional examples and non-examples 
and to prove or disprove related conjectures, more or less without guidance.  One can 
think of these activities as helping to build students' concept images.  How does one go 
about building a rich concept image for a newly introduced concept?  Do undergraduate 

                                                 
16 Textbooks for such courses have from none to just a few to a moderate number of exercises involving 
critiquing “proofs.” The directions vary -- students may be asked to: (a) find the fallacy in a “proof;” (b) 
tell whether a “proof” is correct; (c) grade a “proof,” A for correct, C for partially correct, or F; or (d) 
evaluate both a “proof” and a “counterexample.” Most of these “proofs” have been carefully constructed by 
the textbook authors so there is just one error to detect. See, for example, Smith, Eggen, and St. Andre 
(1990; p. 39). 
 
17 The idea of concept image was introduced by Vinner and Hershkowitz (1980), elaborated by Tall and 
Vinner (1981), and is now a much used notion in mathematics education research.   
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students actively try to enhance their concept images, for instance, by considering 
examples and nonexamples?  

Getting to Know and Use a New Definition 

 In one study conducted by Dahlberg & Housman (1997), eleven students, all of 
whom had successfully completed introductory real analysis, abstract algebra, linear 
algebra, set theory, and foundations of analysis, were presented with the following formal 
definition.  A function is called fine if it has a root (zero) at each integer.  They were first 
asked to study the definition for five to ten minutes, saying or writing as much as possible 
of what they were thinking, after which they were asked to generate examples and 
nonexamples.  Subsequently, they were given functions and asked to determine whether 
these were fine functions and, if so, why.  Next, they were asked to determine the truth of 
four conjectures, such as "No polynomial is a fine function."   
 Four basic learning strategies were used by the students on being presented with 
this new definition – example generation, reformulation, decomposition and synthesis, 
and memorization.  Examples generated included the constant zero function and a 
sinusoidal graph with integer x-intercepts.  Reformulations included  f(-1) = 0,  f(0) = 0,  
f(1) = 0, f(2) = 0, . . . , and f (n) = 0 ∀n ∈ Z.  Decomposition and synthesis included 
underlining parts of the definition and asking about the meaning of "root."  Two students 
simply read the definition – they could not provide examples without interviewer help 
and were the ones who most often misinterpreted the definition.   
 Of these four strategies, example generation, together with reflection, elicited the 
most powerful  "learning events," that is, instances where the authors thought students 
made real progress in understanding the newly introduced concept. Students who initially 
employed example generation as their learning strategy came up with a variety of 
discontinuous, periodic continuous, and non-periodic continuous examples and were able 
to use these in their explanations.  Those who employed memorization or decomposition 
and synthesis as their learning strategies often misinterpreted the definition, for example, 
interpreting the phrase "root at each integer" to mean a fine function must vanish at each 
integer in its domain, but that its domain need not include all integers.  Students who 
employed reformulation as their learning strategy developed algorithms to decide 
whether functions they were given were fine, but had difficulty providing 
counterexamples to false conjectures (Dahlberg & Housman, 1997). 
 Thus, it seems that while students are often reluctant, or unable, to generate 
examples and counterexamples, doing so helps enrich their concept images immensely 
and enables them to judge the probable truth of conjectures.   

Dealing with Various Symbolic Representations 

Another aspect of understanding and using a concept is knowing which symbolic 
representations are likely to be appropriate in certain situations; this can be very 
important for success in proving.  Concepts can have several (easily manipulated) 
symbolic representations or none at all.  For example, prime numbers have no such 
representation; they are sometimes defined as those positive integers having exactly two 
factors or being divisible only by 1 and themselves.  It has been argued that the lack of an 
(easily manipulated) symbolic representation makes understanding prime numbers 
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especially difficult, in particular, for preservice teachers (Zazkis & Liljedahl, 2004).  
Similarly, irrational numbers have no such representation; thus, in proving results such as 

 2  is irrational or the sum of a rational and an irrational is irrational, one is led to 
consider proofs by contradiction -- something often difficult for beginning students.    
 Symbolic representations can make certain features transparent and others 
opaque.18  For example, if one wants to prove a multiplicative property of complex 
numbers, it is often better to use the representation reiθ , rather than x + iy , and if one 
wants to prove certain results in linear algebra, it may be better to use linear 
transformations, T, rather than matrices.  Students often lack the experience to know 
when a given representation is likely to be useful.   
 It has been argued that moving flexibly between representations (e.g., of functions 
given symbolically or as a graph) is an indication of the richness of a student's 
understanding of a concept (Even, 1998).  Also, understanding an abstract mathematical 
concept can be regarded as possessing "a notationally rich web of representations and 
applications"  (Kaput, 1991, p. 61). 

Bringing Appropriate Knowledge to Mind 

 No one questions the need for content knowledge, sometimes referred to as 
resources,19 in order to solve problems and prove theorems.  But students can have such 
resources and not be able to bring them to bear on a problem, or proof, at the right time. 

 Knowing, but not Using, Factual Knowledge 

In two companion studies, 19 volunteer third quarter A and B calculus students, 
and later 28 volunteer differential equations students, took a one-hour paper-and-pencil 
test (without calculators) asking them to solve five moderately non-routine first calculus 
problems, that is, problems somewhat, but not very, different from what they had been 
taught.  Immediately afterwards, they took a half-hour routine test, covering the resources 
needed to solve the non-routine problems.  For example, one non-routine problem was:  
Find at least one solution to the equation 4x3 − x4 = 30  or explain why no such solution 
exists.  Two-thirds of the calculus students failed to solve a single problem completely 
and more than 40% did not make substantial progress on a single problem.  Also, more 
than half of the differential equations students were unable to solve even one problem and 
more than a third made no substantial progress toward a solution.  Of those non-routine 
problems for which the students had full factual knowledge, just 18% of the calculus 
students' solutions and 24% of the differential equations students' solutions were 
completely correct (Selden, Selden, & Mason, 1994; Selden, Selden, Hauk, & Mason, 
2000).   

                                                 
18 Representations can be transparent or opaque with respect to certain features.  For example, representing 
784 as 282 makes the property of being a perfect square transparent, but representing 784 as (13 ×  60) + 4 
makes that property opaque.  For more details, see Zazkis and Liljedahl (2004, pp. 165-166). 
19 Schoenfeld (1985) described good mathematical problem-solving performance in terms of resources, 
heuristics, control, and belief systems. 
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To solve the above non-routine problem, one needs to know (1) that one might set 
the derivative of   4x3 − x4 − 30  equal to zero to find its maximum -3 and (2) that solutions 
of the given equation are where this function crosses the x -axis (which it does not).  
Many of the students had these two resources, but apparently could not bring them to 
mind at an appropriate time.  We conjectured that, in studying and doing homework, the 
students had mainly followed worked examples from their textbooks and had thus never 
needed to consider various different ways to attempt problems.  Thus, they had no 
experience at bringing their assorted resources to mind.  It seems very likely that a similar 
phenomenon could occur in attempting to prove theorems. 
 How does one think of bringing the appropriate knowledge to bear at the right 
time?  To date, mathematics education research has had only a little to say about the 
difficult question of how an idea, formula, definition, or theorem comes to mind when it 
would be particularly helpful, and probably there are several ways.  In their study of 
problem solving, Carlson and Bloom (2005) found that mathematicians frequently did not 
access the most useful information at the right time, suggesting how difficult it is to draw 
from even a vast reservoir of facts, concepts, and heuristics when attempting to solve a 
problem or to prove a theorem.  Instead, the authors found that mathematicians’ progress 
was dependent on their approach, that is, on such things as their ability to persist in 
making and testing various conjectures.  
 Our own personal experience of eventually bringing to mind resources that we 
had -- but did not at first think of using -- suggests that persistence, over a time  
considerably longer than that of the Carlson and Bloom interviews, can be beneficial.  
We conjecture that certain ideas get in the way of others, and that after a good deal of 
consideration, such unhelpful ideas become less prominent and no longer block more 
helpful ideas.  This may be related to a psychological phenomenon that can take several 
forms; for example, in vision, if one fixates on a single spot in a picture, it will eventually 
disappear.    

While coming to mind at the right time can be seen as an idiosyncratic, individual 
act, it may sometimes be related to the idea of transfer of one's knowledge.  How does 
one come to see a new mathematical situation as similar to a previously encountered 
situation and bring the earlier resources to bear on the new situation? 

Knowing What's Important and Useful 

 In addition to knowing what a proof is, being able to reason logically, unpack 
definitions, and apply theorems, and having a rich concept image of relevant ideas, one 
needs a "feel" for the content and what kinds of properties and theorems are important.  
Knowing what’s important should go a long way towards bringing to mind appropriate 
resources.     

Not Seeing that Geometry Theorems are Useful when Making Constructions 

Seeing the relevance and usefulness of one's knowledge and bringing it to bear on 
a problem, or a proof, is not easy.  Schoenfeld (1985, pp. 36-42) provides an example of 
two beginning college students who had completed a year of high school geometry and 
were asked to make a construction:  You are given two intersecting straight lines and a 
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point P marked on one of them.  Show how to construct, using straightedge and compass, 
a circle that is tangent to both lines and that has the point P as its point of tangency to 
one of the lines.  During a 15-minute joint attempt, they made rough sketches and 
conjectures, and tested their conjectures by making constructions.  When asked why their 
constructions ought or ought not to work, they responded in terms of the mechanics of 
construction, but did not provide any mathematical justification.  Yet the next day they 
were able to give the proof of two relevant geometric theorems within five minutes.  
Apparently, these students simply did not see the relevance of these theorems at the time.   

Knowing to Use Properties, Rather than the Definitions, to Check Whether Groups are 
Isomorphic 

 In another study, four undergraduates who had completed a first abstract algebra 
course and four doctoral students working on algebraic topics were observed as they 
proved two group theory theorems and attempted to prove or disprove whether specific 
pairs of groups are isomorphic:  Zn  and  Sn,  Q and Z,  Zp x Zq and  Zpq (where p and q 
are coprime),  Zp x Zq and Zpq (where p and q are not coprime),  S4 and D12.  Nine times 
these undergraduates, who were successful in only two of twenty instances, first looked 
to see if the groups had the same cardinality; after which they attempted unsuccessfully to 
construct an isomorphism between the groups.  They rarely considered properties 
preserved under isomorphism, despite knowing them (as ascertained by a subsequent 
paper-and-pencil test).  For example, they all knew Z is cyclic, Q is not, and a cyclic 
group could not be isomorphic to a non-cyclic group, but they did not use these facts and 
none were able to show Z is not isomorphic to Q, until afterwards.  These facts did not 
seem to come to mind spontaneously, or in reaction to this kind of question. 
 In contrast, the doctoral students, who were successful in comparing all of the 
pairs of groups, rarely considered the definition of isomorphic groups.  Instead, they 
examined properties preserved under isomorphism.  When the groups were not 
isomorphic, they showed one group possessed a property that the other did not; for 
example, Z is cyclic, but Q is not.  To prove Zp x Zq is isomorphic to Zpq , where p and q 
are coprime, three of them noted that the two groups have the same cardinality and 
showed  Zp x Zq is cyclic.  None tried to construct an isomorphism (Weber & Alcock, 
2004).   

Knowing which Theorems are Important 

In comparing the proving behaviors of four undergraduates who had just 
completed abstract algebra and four doctoral students who were writing dissertations on 
algebraic topics, it was found that the doctoral students had knowledge of which 
theorems were important when considering homomorphisms.  For example, in 
considering the proposition:  Let G and H be groups.  G has order pq (where p and q are 
prime).  f is a surjective homomorphism from G to H.  Show that G is isomorphic to H or 
H is abelian, all four doctoral students recalled the First Isomorphism Theorem within 90 
seconds.  In contrast, two undergraduates did not invoke the theorem, while the other two 
invoked its weaker form only after considerable struggle.  When the doctoral students 
were asked why they used such sophisticated techniques, a typical response was, 
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"Because this is such a fundamental and crucial fact that it's one of the first things you 
turn to” (Weber, 2001).   
 Another four undergraduates, who had recently completed their second course in 
abstract algebra, and four mathematics professors, who regularly used group-theoretic 
concepts in their research, were interviewed about isomorphism and proof (Weber & 
Alcock, 2004).  They were asked for the ways they think about and represent groups, for 
the formal definition and intuitive descriptions of isomorphism, and about how to prove 
or disprove two groups are isomorphic.  The algebraists thought about groups in terms of 
group multiplication tables and also in terms of generators and relations, as well as 
having representations that applied only to specific groups, such as matrix groups.  Each 
algebraist gave two intuitive descriptions of groups being isomorphic:  that they are 
essentially the same and that one group is simply a re-labeling of the other group.  To 
prove or disprove two groups are isomorphic, they said they would do such things as 
"size up the groups" and "get a feel for the groups," but could not be more specific.  In 
addition, they said that they would consider properties preserved by isomorphism and 
facts such as Zn is the cyclic group of order n. 
 In contrast, none of the undergraduates could provide a single intuitive description 
of a group; for them, it was a structure that satisfies a list of axioms.  While all four 
undergraduates could give the formal definition of isomorphic groups, none could 
provide an intuitive description.  To prove or disprove that two groups were isomorphic, 
these undergraduates said they would first compare the order (i.e., the cardinality) of the 
two groups.  If the groups were of the same order, they would look for bijective maps 
between them and check whether these maps were isomorphisms (Weber & Alcock, 
2004). 
 It may be that undergraduates mainly study completed proofs and focus on their 
details, rather than noticing the importance of certain results and how they fit together.  
That is, they may not come to see some theorems as particularly important or useful.  The 
mathematics education research literature contains few specific teaching suggestions on 
how to help students come to know which theorems are likely to be important in various 
situations.  But, it might be helpful to discuss with them: (1) which theorems and 
properties you (the teacher) think are important and why, (2) your own intuitive, or 
informal ideas, regarding concepts, and (3) the advantages and disadvantages of various 
representations.    

Teaching Proof and Proving 

Some Suggestions Emanating from Research 

One very positive finding, which was described earlier, is the remarkable 
sophistication of reasoning reached by some average school students who received brief 
interventions over a number of years (Maher & Martino, 1996a, 1996b, 1997).  As 
described above, these students used a variety of spontaneously developed heuristics.  
Eventually, in order to come to agreement, these students, more or less, invented the idea 
of proof in a concrete case.  If grade school students can be encouraged in this way, why 
not university students?  Perhaps this could be done in part with relatively short 
"interventions" spread across the entire undergraduate program.   
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 Another result is that younger students seem to prefer explanatory proofs written 
with a minimum of notation.  This was certainly the case for U.K. Year 10 students 
(Healy & Hoyles, 1998).  For example, instead of using mathematical induction to prove 
that sum of the first n integers is n(n+1)/2, one could use a variant of Gauss's original 
argument.  Namely, for any n, one can write the sum in two ways as (1 + 2 + 3 +  L  + n) 
and as (n + (n-1) + (n-2) +  L  + 1), then add corresponding terms to obtain n identical 
summands equal to n+1, so twice the original sum equals n(n+1).  Hence, the original 
sum must equal n(n+1)/2 (Hanna, 1989, 1990).  It seems plausible that undergraduates, 
and people more generally, might prefer proofs that provide insight to proofs that just 
establish the validity of a result.20  
 It also appears that great care should be taken to distinguish empirical reasoning 
from mathematical proof.  Exactly how this can be done effectively is not especially 
clear, since merely giving high school geometry students a short instructional unit on this 
distinction left some of them very unclear as to the difference between empirical 
evidence and proof (Chazan, 1993).  Perhaps secondary and university teachers need to 
stress this distinction often and also get students to discuss and reflect on situations where 
simple pattern generalization does not work. 
 Since current secondary teachers' conceptions of proof are somewhat limited and 
they sometimes accept non-proofs as proofs (Knuth, 2002a, 2002b), one way to enhance 
preservice secondary teachers' abilities to check the correctness of proofs might be to 
have them consider and discuss, in groups, a variety of student-generated "proofs," as 
well as having them provide feedback on each other's proofs. 
 In addition to explaining the difference between descriptive definitions in a 
dictionary and mathematical definitions, one can engage students in the defining process.  
For example, when using Henderson's (2001) investigational geometry text, one can 
begin with a definition of triangle initially useful in the Euclidean plane, on the sphere, 
and on the hyperbolic plane, but eventually students will notice that the usual Side-
Angle-Side Theorem (SAS) is not true for all triangles on the sphere.  At this point, they 
can be brought to see the need for, and participate in developing, a definition of "small 
triangle" for which SAS remains true on the sphere. 
 Perhaps it would also be possible to create classroom activities to improve 
students' ability to enhance their concept images and deal with representations flexibly.  
One suggestion is that upon introducing a new definition, one could ask students to 
generate their own examples, alternatively, to decide whether professor-provided 
instances are examples or non-examples, "without authoritative confirmation by an 
outside source"  (Dahlberg & Housman, 1997, p. 298).  Another possibility might be to 
engage students in conjecturing which kinds of symbolic representations might be useful 
for solving a given problem or proving a specific result.  Also, one could point out that 
when a theorem has a negative conclusion (e.g., 2 is irrational), a proof by 
contradiction may be just about the only way to proceed.   

For certain theorems in number theory, it has been suggested that the transition to 
formal proof can be aided by going through a (suitable) proof using a generic example 
                                                 
20 It has been suggested that proofs have various functions within mathematics: explanation, 
communication, discovery of new results, justification of a new definition, developing intuition, and 
providing autonomy (e.g., Hanna, 1989; de Villiers, 1990; Weber, 2002). 
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that is neither too trivial nor too complicated (Rowland, 2002).  Gauss's proof that the 
sum of the first n integers is n(n+1)/2, done for n = 100 is one such generic proof.  Done 
with care, going over generic proofs interactively with students could enable them to 
"see" for themselves the general arguments embedded in the particular instances.  If the 
theorem involves a property about primes, 13 and 19 are often suitable, provided the 
proof is constructive and that prime (e.g., 13) can be "tracked" through the stages of the 
argument.  A generic proof, but not the standard one, can be given for Wilson's Theorem:  
For all primes p,  ( p −1)!≡ p −1(mod p) .  That argument for p = 13 involves pairing each 
integer from 2 to 11 with its (distinct) multiplicative inverse mod 13, noting the product 
of each pair is congruent to 1(mod 13), and concluding that12!≡ 1×1×12(mod13) .21  
There is one caveat; there is some danger that students will not understand the generic 
character of the proof.  In an attempt to avoid this, one can subsequently have them write 
out the general proof. 

Some Personal Observations and Ongoing Work 

 We see learning to construct proofs, especially for beginning students, as 
composed largely of the acquisition of a complex constellation of skills, content 
knowledge, beliefs, and problem solving ability -- much of which is best learned by 
doing.  As a result, we think university teachers should consider including a good deal of 
student-student and teacher-student interaction regarding students' proof attempts, as 
opposed to just presenting their own or textbook's proofs.  Trying to teach such a 
complex constellation entirely by lecture seems like trying to teach someone to tie her/his 
shoelaces entirely over the telephone.  It might be possible, but seems unlikely to be the 
most effective way. 
 In that connection, it might be useful, and certainly could do no harm, to discuss 
with students some of the difficulties mentioned above: in particular, the difference 
between mathematical proof and other types of arguments and the difference between 
mathematical definitions and everyday definitions.  It might be helpful to stress that 
mathematicians of today see proofs as consisting of such careful deductive reasoning 
that, barring mistakes, the results (theorems) require no further evidence, are permanently 
true, and can be immediately used anywhere that the premises hold. 
 Another suggestion is that, when presenting proofs, one could take a top-down 
approach to explanation, first giving a global overview of the proof's structure to avoid 
the appearance of "pulling a rabbit out of a hat," followed by introducing and developing 
concepts as needed (Leron 1983, 1985).   
 Students often do not appreciate that proofs themselves can have a hierarchical 
structure -- that there are subproofs (and subconstructions) within proofs, perhaps several 
levels deep.  One could make students aware of this and illustrate how structure comes 
into thinking about how to prove a theorem.  Students need to understand that proofs are 
not generally conceived of in the order they are written.  Not realizing this may result in 
quite a few students not making use of the hierarchical structure of proofs in their own 
proving attempts and lead to some of the difficulties mentioned earlier.  Students need to 

                                                 
21 For details of this and some other number-theoretic generic proofs, along with a description of how they 
were used with Cambridge University undergraduates, see Rowland (2002). 
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be encouraged to write parts of a tentative proof "out of order" (e.g., What will the last 
line say?), even when they sometimes resist doing so. 
 There seems to be quite a lot to learn about the way in which proofs are 
customarily written.  If students were taught about this way of writing in some of their 
courses, they might not be so puzzled about how to begin a proof.  Indeed, we take the 
point of view that proofs are deductive arguments in an identifiable genre.  They differ 
from arguments in legal, political, and philosophical works.  Within this genre, individual 
styles can vary, just as novels by Hemingway and Faulkner have differing styles, 
although their novels are easily seen as belonging to a single genre that clearly differs 
from newspaper articles, short stories, or poems.  As part of some ongoing work, we have 
been collecting general features of the genre of proof.  For example, definitions already 
stated outside of proofs tend not to be written into them.  In teaching, we have found that 
pointing out such features, especially in the context of a student's own work, can be 
helpful to students. 
 Furthermore, we have found it useful to have students carefully examine the 
structure of the statement that they are trying to prove, and even to think about how a 
tentative proof might be structured, before launching into it.  For example, consider 
proving the theorem (mentioned earlier):  Let  f  and  g  be functions on A.  If f go  is 
one-to-one, then g is one-to-one.  It would be useful for a prover to first unpack the 
meaning of g being one-to-one.  Doing so can direct one to begin the proof by writing, 
"Let x and y be in the domain of g and suppose g(x) = g(y)."  This also makes clear that 
the desired conclusion is "Thus x = y."  In this way, one exposes the "real, but hidden" 
mathematical task, namely, to get from g(x) = g(y) to x = y.  After that, students can 
concentrate on how the hypothesis that f go  is one-to-one might help. 
 
Concluding Remarks   

 We have tried to provide readers with a coherent organization of some of the 
mathematics education research on proof and proving, but there is much more.22  
Awareness of the variety of difficulties undergraduates have with proof and proving can 
make one more sensitive regarding how to help them.  The above pedagogical 
suggestions indicate some steps one might take; however, more information on "what 
works" is needed.    
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