
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

GRÖBNER BASIS ALGORITHMS

FOR GRASSMAN
ALGEBRAS IN A MAPLE PACKAGE

MR. TROY BRACHEY

Tennessee Tech University

OCTOBER 2008

No. 2008 - 1

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Gröbner Basis Algorithms for Grassmann

Algebras in a Maple Package

Troy Brachey

September 30, 2008

Abstract

A brief discussion of an approach to calculating Gröbner bases in the
Grassmann (exterior) algebra with emphasis on the ideal membership
problem is presented. A new package written for computing Gröbner
bases in Grassmann algebras for Maple 11 is introduced.

1 Introduction

This paper will give details of the algorithms used by the author for the Maple
package TNB. The TNB package is capable of calculating Gröbner bases in the
Grassmann algebra. Very little space is devoted to background information and
more to the workings of the algorithms themselves.

Two separate types of Gröbner bases will be developed. However, only one
will be capable of determining left ideal membership. The steps taken to arrive
at each type of Gröbner basis will be similar to the steps taken to compute a
commutative Gröbner basis.

2 Gröbner Basis Algorithms

This paper is primarily concerned with computations of Gröbner bases within
the Grassmann algebra (

∧
V,∧). The product of any two or more basis elements,

ei ∧ ej will be denoted as eij . For example, e1 ∧ e2 ∧ e3 ∧ e4 is denoted as e1234.
The identity element of the algebra is denoted by 1.

Definition 1. [7] The super Grassmann or super exterior polynomial
algebra of order (n, m) over a field k, not of characteristic 2, denoted by

∧
n,m is

the k-linear associative algebra with identity element 1, generated by the sets A =
{e1, e2, . . . , en} and B = {α1, α2, . . . , αm}1 subject to the following relations:

(i) eiej = −ejei, 1 ≤ i, j ≤ n (also written as ei ∧ ej = −ej ∧ ei)

1In [7], the generators in these sets are referred to, respectively, as “vector” and “scalar”
variables.

1

(ii) αiαj = αjαi, 1 ≤ i, j ≤ m

(iii) eiαj = αjei, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Note that as a consequence of (i) above e2
i = 0. Thus there exist nonzero

zero divisors. Also observe that
∧

n,0 is a copy of the Grassmann algebra of
order n over the field k. Note also that

∧
0,m

∼= k[x1, x2, . . . , xm], is the ring of
commutative polynomials in m variables over the field k. Thus it is not a big
leap to see that the commutative techniques should produce similar results on
the super Grassmann algebra as they do on k[x1, . . . , xn] since our commutative
ring is embedded in the algebra. For the remainder of this paper, let m = 0,
and so we will be working within the Grassmann algebra.

The quality of being Noetherian is a very important concept in the computa-
tion of commutative Gröbner bases as it guarantees termination of the division
algorithm. Following the idea that commutative techniques will yield similar
results, the quality of being Noetherian needs to be developed for a Grassmann
algebra.

Definition 2. A non-commutative ring R is left Noetherian if it has no
infinite ascending chain of left ideals.

Lemma 1. [7]
∧

n,m is left Noetherian. Every left ideal has a finite basis over∧
n .

Monomial order plays a large role in the computation of noncommutative
Gröbner bases just as it does in the commutative case. Choosing a different
monomial order can greatly increase the speed of the computation by reducing
the number of polynomials needed to generated before a basis is found. Further-
more, in the noncommutative case the monomial order must also be admissible.

Definition 3. A monomial order in
∧

n is said to be admissible, or compat-
ible, if:

(i) m ≥ 1 for every monomial m in the Grassmann basis;

(ii) If m2 > m1 then mlm2mr > mlm1mr for every m1,m2,ml, and mr such
that mlm2mr 6= 0 and mlm1mr 6= 0.

Example 1. Consider
∧

3 whose basis is given by [1, e1, e2, e3, e12, e13, e23, e123].

• Lex order gives [e123, e12, e13, e1, e23, e2, e3, 1]

• InvLex order gives [e123, e23, e13, e3, e12, e2, e1, 1]

• RevLex order gives [1, e1, e2, e12, e3, e13, e23, e123]

• InvRevLex order gives [1, e3, e2, e23, e1, e13, e12, e123]

• Deg[Lex] order gives [e123, e12, e13, e23, e1, e2, e3, 1]

2

• Deg[InvLex] order gives [e123, e23, e13, e12, e3, e2, e1, 1]

• InvDeg[Lex] order gives [1, e1, e2, e3, e12, e13, e23, e123]

Note that RevLex, InvRevLex, and InvDeg[Lex] orders are not admissible.
The admissibility of the monomial order is important when reducing a polyno-
mial and calculating the S-polynomial of two polynomials as termination of the
division algorithm only occurs with admissible orders. The S-polynomial in the
noncommutative case performs the same function as it does in the commutative
case and its definition is analogous to its commutative counterpart.

Definition 4. [4] Let f, g ∈ Ar\{0} with LM(f) = xαei and LM(g) = xβej , re-
spectively. Set γ = (max(α1β1), . . . , max(αnβn)) and define the left S-polynomial
of f and g to be

LeftSpoly(f, g) =

 xγ−αf − LC(xγ−αf)
LC(xγ−βg)

xγ−βg, if i = j,

0, if i 6= j.

The left S-polynomial can be simplified if LM(g)|LM(f) and LM(g) = xβei,
LM(f) = xαei, this simplified form is defined as

Spoly(f, g) = f − LC(f)
LC(xα−βg)

xα−βg.

The simplified form of the left S-polynomial, Spoly is used for the normal
form algorithm but the LeftSpoly form is used for the Gröbner basis algorithm.
The use of the Spoly in the normal form algorithm increases efficiency of com-
putation. The definition of the normal form used in this paper and the TNB
package is as follows.

Definition 5. [4] Let G denote the set of all finite and ordered subsets G ⊂
∧

n .
then a map NF :

∧
n ×G →

∧
n, given by (f,G) 7→ NF(f |G), is called a (left)

normal form on
∧

n if, for all f ∈
∧

n, G ∈ G,

(a) LeftNF(f |G) 6= 0 ⇒ LM(LeftNF(f |G)) /∈ 〈LT(G)〉,

(b) f − LeftNF(f |G) ∈ 〈G〉.

Note that in line 2 of Algorithm 1 the only polynomials that are being
used are ones in which the LM(g)|LM(h) and so the simplified form of the S-
polynomial can be used. Thus h is reduced by repeatedly computing the Spoly
of itself and one of the g ∈ Gh to eliminate the LM(h) until all the monomials
of h are eliminated or there is no g ∈ G such that LM(g)|LM(h).

Definition 6. [7] F is a Gröbner left basis (GLB) in
∧

n if for all g, h1

and h2, if h1 and h2 are normal forms of g modulo F, then h1 = h2.

3

Algorithm 1 [4] Left Normal Form LeftNF(f |G)
1: h = f
2: while h 6= 0 and Gh = {g ∈ G |LM(g)|LM(h)} 6= ∅ do
3: choose g ∈ Gh

4: h = Spoly(h, g)
5: end while
6: return h

Theorem 1 (Characterization Theorem for GLBs). [7] The following condi-
tions are equivalent.

(i) F is a GLB.

(ii) If f1, f2 ∈ F, and t ∈ Tn satisfies t · lcm(LMon(f1), LMon(f2)) 6= 0, then
LeftNF(t · LeftSpoly(f1, f2)), F) = 0.

Based on the characterizations in Theorem 1, Algorithm 2 will compute a
GLB for a given list of Grassmann polynomials. Note that lines 6 and 7 of
Algorithm 2 ensure that the “if” condition in (ii) of Theorem 1 is met while
lines 8 through 17 perform the “then” statement of the Theorem.

Algorithm 2 [7] Gröbner left basis in
∧

n

1: G := F , B = {{f1, f2} | f1, f2 ∈ G; f1 6= f2}
2: while B 6= ∅ do
3: {f1, f2} := an element of B
4: B := B − {f1, f2}
5: g := LeftSpoly(f1, f2)
6: V := A− V (lcm(LMon(f1), LMon(f2)))
7: T := T (V) ∪ {1}
8: while T 6= ∅ do
9: t := an element of T

10: T := T − {t}
11: h := t · g
12: h′ := N(G, h)
13: if h′ 6= 0 then
14: B := B ∪ {{g, h′} | g ∈ G}
15: G := G ∪ {h′}
16: end if
17: end while
18: end while
19: return G

Definition 7. [7] F is a Gröbner left ideal basis (GLIB) if f ∈ LI(F)
implies that LeftNF(f, F) = 0.

4

Theorem 2 (Characterization Theorem for GLIBs). [7] The following state-
ments are equivalent.

(i) F is a GLIB.

(ii) If f1, f2 ∈ F, then for any t, LeftNF(t · f1, F) = 0 and
LeftNF(t · LeftSpoly(f1, f2), F) = 0.

(iii) For f1, f2 ∈ F and for any t1, t2 ∈ T (V) satisfying the conditions

t1 · LTerm(f1) = 0 and t2 · lcm(LTerm(f1), LTerm(f2)) 6= 0,

then LeftNF(t1 · f1, F) = 0 and LeftNF(t2 · LeftSpoly(f1, f2), F) = 0.

Theorem 2 leads directly to Algorithm 3 for computing GLIBs.

Algorithm 3 [7] Gröbner left ideal basis in
∧

n

1: G := F , H := F , B = {{f1, f2} | f1, f2 ∈ G; f1 6= f2}
2: while H 6= ∅ do
3: f := an element of H
4: H := H − {f}
5: W := V (LMon(f))
6: S := {t | t ∈ T (A), V (t) ∩W 6= ∅}
7: while S 6= ∅ do
8: u := an element of S
9: k := u · f

10: k′ := NF(G, k)
11: if k′ 6= 0 then
12: H := H ∪ {k′}
13: G := G ∪ {k′}
14: B := B ∪ {{g, k′} | g ∈ G}
15: end if
16: end while
17: end while
18: G:=GLB(G)
19: return G

Algorithm 3 is based on Theorem 2 part (iii). Observe that lines 3 through 6
fulfill the “if” condition on t1 and lines 7 through 16 fulfill the “then” statement
concerning t1. The role of t2 is fulfilled by line 18 where Algorithm 2 is called.
Thus it is easy to see that every GLIB is a GLB. A GLB will not determine left
ideal membership. However, the GLIB will determine the left ideal membership
making it far more useful to work with. Thus the GLB’s importance comes from
its contribution to the GLIB computation.

5

3 The TNB Package

The TNB package is a package of procedures written for Maple 11 that can
compute Gröbner left bases and Gröbner left ideal bases in a Grassmann algebra.
When the package is loaded, 20 functions are exported.
> with(TNB);

TNB - package for computing Groebner bases in Grassmann algebras
TNB version delta 0.3 (March 12, 2008)
20 functions exported

[Deg , InvDeg , InvLex , InvRevLex , LCoeff , LMon, LTerm, Lex , NF , RevLex ,

TLSpolyG , TglbG , TglibG , TlcmG , TmingbG , idealpoly , isadmissible, makelist ,
pairs, testing]

Several procedures are from the package GfG [2]. These procedures are the
monomial orderings and procedures that use the monomial orderings to find
the leading term, monomial, and coefficients. The procedures are Deg , InvDeg ,
InvLex , InvRevLex , LCoeff , LMon, LTerm, Lex , RevLex , isadmissible. They
are included with permission [2].

The remaining procedures were written specifically for the TNB package.
These procedures are described below.

1. Procedure TlcmG returns the lcm of two Grassmann monomials, A and B.
An optional third argument can be used to return a list [a, lcm, b] where
a and b are signed factors of the lcm, that is a ∧ A = lcm(A,B) and
b ∧B = lcm(A,B).

2. Procedure NF reduces a single Grassmann polynomial p1 by a list of
Grassmann polynomials P following Algorithm 1.

3. Procedure TLSpolyG takes two polynomials f and g and following Defi-
nition 4 returns LeftSpoly(f, g).

4. Procedure TglbG will compute a Gröbner left basis according to Theo-
rem 1 using Algorithm 2.

5. Procedure TglibG computes a Gröbner left ideal basis according to The-
orem 2 based on Algorithm 3.

6. Procedure TmingbG will compute a minimal Gröbner basis. An optional
third argument can be used to have the original list returned on the first
line, the rejected polynomials on the second line, and the minimal Gröbner
basis on the third line of the output. Assigning a name to the procedure
will result in the minimal Gröbner basis being assigned that name.

7. Procedure pairs generates all possible pairs of elements from a given list.

8. Procedure makelist makes a random list of N Clifford polynomials of type
clibasmon, climon, or clipolynom in a Clifford or Grassmann algebra over

6

a space of dimension n. The procedure does not return a zero polynomial.
If one of its randomly generated polynomials happens to be zero, it re-
cursively calls itself until it returns exactly N nonzero such polynomials.
This procedure is useful for testing purposes.

9. Procedure idealpoly creates a random polynomial (Clifford or Grassmann,
depending on the second argument) in an one-sided ideal J - left or right,
depending on the third argument- and generated by polynomials supplied
as the first list F. The second argument is expected to be wedge - for the
wedge product in a Grassmann algebra, or cmul - for the Clifford product
in a Clifford algebra. In either case, the algebra is considered over a space
of dimension equal to the largest index found in the list F. An output of
this procedure contains three items, in the following order:

(a) A list of random coefficients.

(b) A list of generators (it is a permuted list F due to removal of dupli-
cates in the first line of the procedure when Maple may and usually
does permute elements of F).

(c) Random polynomial. Assigning a name to this procedure will result
in the random polynomial being assigned to that name.

This procedure is useful for testing purposes.

10. Procedure testing takes a list of polynomials F and for each t ∈ T (V)
and computes the product t ∧ fi for i = 1, . . . , n where n is the number
of polynomials in the given list F then finds the LeftNF(t∧ fi|F). This is
based on Theorem 2. It is useful in determining whether a given Gröbner
basis is a GLIB.

Package TNB also relies upon the CLIFFORD package [1]. The CLIFFORD pack-
age provides the basis monomials and exterior, or wedge, product which is used
for multiplication of Grassmann monomials. Type checking of arguments passed
to TNB procedures is also provided by the CLIFFORD package. When loading, the
TNB package automatically loads the CLIFFORD package and the BIGEBRA pack-
age which is part of the CLIFFORD library.

4 Applications and Examples

This section will show examples of the TNB package in use. In many examples
the results are compared to those from Plural which computes Gröbner bases
for Grassmann algebras using the methods described in [4]. Plural is more
flexible than TNB package in that it can perform Gröbner basis calculations for
many other algebras than only the Grassmann algebra. However, TNB holds a
pedagogical value as it allows us to understand differences between GLB and
GLIB bases. It is important to note that the TNB package will return monic
polynomials where Plural does not [6].

7

Example 2. [7] Given f1 = e56−e13 and f2 = e45−e23 procedures TglibG and
TglibG will be used to compute a Gröbner left basis and a Gröbner left ideal
basis, respectively.
> restart:with(linalg):B:=diag(0$9):

eval(Clifford:-makealiases(9,’ordered’)):
with(SINGULARPLURALlink):
with(TNB):

> f1:=e56-e13;f2:=e45-e23;F:=[f1,f2];

f1 := e56 − e13
f2 := e45 − e23

F := [e56 − e13 , e45 − e23]
> TglbG(F,Deg[InvLex]);

Computed 10 S-polynomials among 5 polynomials in Groebner basis and
needed to compute 10

[e1236 , e1234 , e236 − e134 , e56 − e13 , e45 − e23]
> GLIB:=TglibG(F,Deg[InvLex]);

Computed 21 S-polynomials among 7 polynomials in Groebner basis and
needed to compute 21

This procedure took 6.630 seconds to run.

GLIB := [e236 − e134 , e136 , e235 , e135 , e234 , e56 − e13 , e45 − e23]

The results just obtained agree with results from Plural .
> Pgb:=PLURALforGlink(F,6,ls,[e1,e2,e3,e4,e5,e6],

input for Singular,input for Maple,’infty’,’d’);

Pgb := [e56 − e13 , e45 − e23 , −e134 + e236 , e235 , e234 , e136 , e135]
> evalb(convert(GLIB,set)=convert(Pgb,set));

true
In the last line the two lists of generators from the Gröbner bases GLIB and

Pgb are converted into sets to be easily compared and the result is true, that is
they are identical.

Example 3. Consider the following list of polynomials. The w is the syntax
used by CLIFFORD to represent the wedge product of the Grassmann algebra.
Similarly CLIFFORD uses the Id symbol to represent the identity element of the
algebra.
> p1:=Id+2*e1+3*e3+e1we3;

p2:=e1+3*e2we3;
p3:=e2+e1;
p4:=e1we2we3;
P:=[p1,p2,p3,p4];

p1 := Id + 2 e1 + 3 e3 + e13
p2 := e1 + 3 e23
p3 := e2 + e1

8

p4 := e123

P := [Id + 2 e1 + 3 e3 + e13 , e1 + 3 e23 , e2 + e1 , e123]
First a GLIB will be computed by TNB. This Gröbner basis is capable of deter-
mining ideal membership.
> Tgb:=TglibG(P,Deg[Lex]);

Computed 21 S-polynomials among 7 polynomials in Groebner basis and
needed to compute 21

This procedure took 3.495 seconds to run.

Tgb := [e123 , Id + 2 e1 + 3 e3 + e13 , 1
3e1 + e23 , e2 + e1 , e2 , e3 , Id]

Now a minimal Gröbner basis will be computed from the GLIB Tgb. The
minimal Gröbner basis computed here is analogous to the minimal Gröbner basis
from the commutative case [3]. Since its input is the GLIB Tgb the minimal
Gröbner basis will also be able to determine membership.
> Tmgb:=TmingbG(Tgb,Deg[Lex]);

Tmgb := [Id]
The minimal Gröbner basis Tmgb has only one generator, the Id element of the
algebra. This indicates that the ideal generated by P is the whole algebra. Next
Plural will compute a reduced Gröbner basis for the polynomials p1, p2, p3, and
p4 contained in the list P.
> Pgb:=PLURALforGlink(P,0,dp,[e1,e2,e3],input_for_Singular,

input_for_Maple,’infty’,’d’);

Pgb := [Id]
> Tmgb=Pgb;

[Id] = [Id]
Finally, the results obtained show that in this case the minimal Gröbner basis
computed by TNB is the same as the reduced Gröbner basis Plural computed.
It is important to note that the minimal Gröbner basis is not always the same
as the reduced Gröbner basis in either the commutative or non-commutative
cases.

Example 4. By altering the polynomials from Example 3 more interesting
results can be obtained. For this example, the Id monomial will be removed
from p1. As in the previous example, a GLIB will be computed first and then
a minimal Gröbner basis will be computed from it.
> p1:=e1+e3+e13;

p2:=e1+e23;
p3:=e2+e1;
p4:=e123;
P:=[p1,p2,p3,p4];

p1 := e1 + e3 + e13
p2 := e1 + e23
p3 := e2 + e1
p4 := e123

9

P := [e1 + e3 + e13 , e1 + e23 , e2 + e1 , e123]
> GBt:=TglibG(P,Deg[Lex]);

Computed 15 S-polynomials among 6 polynomials in Groebner basis and
needed to compute 15

This procedure took 3.494 seconds to run.

GBt := [e123 , e1 + e3 + e13 , e1 + e23 , e2 + e1 , −e3 + e2 , e3]
> GBtm:=TmingbG(GBt,Deg[Lex]);

GBtm := [e2 + e1 , −e3 + e2 , e3]
The minimal Gröbner basis GBtm is capable of determining ideal membership.
Now Plural will compute a reduced Gröbner basis.
> Pgb:=PLURALforGlink(P,0,dp,[e1,e2,e3],input_for_Singular,

input_for_Maple,’infty’,’d’);

Pgb := [e3 , e2 , e1]
> GBtm<>Pgb;

[e2 + e1 , −e3 + e2 , e3] 6= [e3 , e2 , e1]
Note that the lists GBtm and Pgb are not identical. The difference is due to

the fact that Gröbner basis returned by TNB is a minimal Gröbner basis and the
one returned by Plural is a reduced Gröbner basis, which is a concept that is
also applicable in the non-commutative case [5]. To show that they are in fact
equal, it is sufficient to show that each of the generators of one ideal is contained
in the other. This can be accomplished by using the NF procedure to reduce
each generator with respect to the generators of the other ideal. Since Pgb is a
reduced Gröbner basis it can determine ideal membership.
> for i from 1 to 3 do NF(GBtm[i],Pgb,Deg[Lex]) end do;

0, 0, 0
This shows that every generator in the list GBtm is in the ideal generated by the
polynomials (in this case monomials) of Pgb.
> for i from 1 to 3 do NF(Pgb[i],GBtm,Deg[Lex]) end do;

0, 0, 0
It is important to recall that a minimal Gröbner basis given by the procedure
TmingbG is capable of determining ideal membership since it is a reduced form
of the GLIB given by the procedure TglibG. This last result shows that every
generator in the list Pgb belongs to the ideal generated by the polynomials in
the list GBtm. Each generator reduces to zero modulo the generators of the other
ideal. Thus, as ideals, GBtm ⊆ Pgb and Pgb ⊆ GBtm and therefore, GBtm=Pgb as
desired. This means that the left ideals generated by the two lists are equal.

Example 5. For this example the polynomials will be randomly generated.
Once again a GLIB will be computed first, then a minimal Gröbner basis and
the results compared to the reduced Gröbner basis produced by the Plural
system. The TNB package is capable of calculating Gröbner bases in Grassmann
algebras of up to nine variables.

10

> N:=4:numofpols:=4:
i:=’i’:
P:=[]:
for i from 1 to numofpols do
p||i:=0:
end do:
for i from 1 to numofpols do
while p||i=0 or p||i=Id do
p||i:=rd_clipolynom(N):
end do:
P:=[op(P),p||i];
end do;
vars:=[e||(seq(i,i=1..N))];

P := [7 Id − 8 e14]

P := [7 Id − 8 e14 , 6 Id + 6 e13]

P := [7 Id − 8 e14 , 6 Id + 6 e13 , −4 e1 + 5 e3]

P := [7Id − 8e14 , 6Id + 6e13 , −4e1 + 5e3 , Id − 2e34 − 2e23 + e14 + e13 + e3]

vars := [e1 , e2 , e3 , e4]
> GB1:=TglibG(P,Deg[Lex]);

Computed 15 S-polynomials among 6 polynomials in Groebner basis and
needed to compute 15

This procedure took 17.784 seconds to run.

GB1 := [Id − 2 e34 − 2 e23 + e14 + e13 + e3 ,

Id + e13 , − 7
8 Id + e14 , e1 − 5

4 e3 , e3 , Id]
> GB1m:=TmingbG(TNBglib,Deg[Lex]);

GB1m := [Id]
> Pgb:=PLURALforGlink(P,0,dp,vars,input_for_Singular,

input_for_Maple,’infty’,’d’);

Pgb := [Id]
> evalb(GB1m=Pgb);

true

The last result shows that the two lists are equivalent. Thus the ideal generated
by the four polynomials is the whole algebra. Even though the polynomials
were restricted to degree at most 4, any degree polynomial will be in the left
ideal generated by them. This is from the fact that the reduced Gröbner basis
is only the Id element and so any polynomial in any degree algebra will be a
multiple of the generator.

Example 6. This example will use randomly generated polynomials of a higher
degree. Instead of using four polynomials of degree up to 4, there will be two
polynomials of unto degree 6 generated. That is the polynomials will be from
the Grassmann algebra

∧
6 . The same procedure will be used as before.

11

> N:=6:numofpols:=2:
i:=’i’:
P:=[]:
for i from 1 to numofpols do
p||i:=0:
end do:
for i from 1 to numofpols do
while p||i=0 or p||i=Id do
p||i:=rd_clipolynom(N):
end do:
P:=[op(P),p||i];
end do;
vars:=[e||(seq(i,i=1..N))];

P := [−e13 + 3 e46 − e6 − e2356]

P := [−e13 + 3 e46 − e6 − e2356 , e2]

vars := [e1 , e2 , e3 , e4 , e5 , e6]
> GB1:=TglibG(P,Deg[Lex]);

Computed 45 S-polynomials among 10 polynomials in Groebner basis and
needed to compute 45

This procedure took 16.769 seconds to run.

GB1 := [e1456 + 1
3e156 , e13 − 3 e46 + e6 + e2356 , e135 + 3 e456 + e56 ,

e146 − 1
3e16 , e156 , e346 − 1

3e36 ,

e13 − 3 e46 + e6 , e16 , e36 , e2]

> GB1m:=TmingbG(GB1,Deg[Lex]);

GB1m := [e13 − 3 e46 + e6 , e16 , e36 , e2]
> Pgb:=PLURALforGlink(P,0,dp,vars,input_for_Singular,
input_for_Maple,’infty’,’d’);

Pgb := [e2 , e36 , e16 , e13 − 3 e46 + e6]
> evalb(convert(GB1m,set)=convert(Pgb,set));

true

In the last result the two lists GB1m and Pgb were converted to sets and compared
since Maple usually puts lists in random order making it difficult to compare
longer lists. The result is true and so the two sets are equal and thus the lists
are equal. This means that the ideal generated by the polynomials that were
randomly generated can be generated by the four polynomials given in GB1m
and Pgb. Thus TNB gave the same result as Plural did.

Example 7. This example will demonstrate that the GLB does not solve the
membership problem but the GLIB will. A few extra lines of code also allow
one to follow the computation of the GLB by listing out the S-polynomials as
they are computed and the new polynomials as they are added to the GLB G.

12

> f1:=e2456-e3;f2:=e14-e36;f3:=e1256-e13;
F:=[f1,f2,f3];

f1 := e2456 − e3
f2 := e14 − e36

f3 := e1256 − e13

F := [e2456 − e3 , e14 − e36 , e1256 − e13]
> GLB:=TglbG(F,Deg[InvLex]);

LSpoly(e2456-e3,e1256-e13)=-e13+e134
Add polynomial -e13+e134 to GLB
LSpoly(e2456-e3,-e14+e36)=0
LSpoly(e1256-e13,-e14+e36)=0
LSpoly(e2456-e3,-e13+e134)=e12356
LSpoly(e1256-e13,-e13+e134)=e12356
LSpoly(-e14+e36,-e13+e134)=-e136

Computed 6 S-polynomials among 4 polynomials in Groebner basis and
needed to compute 6

GLB := [e2456 − e3 , e1256 − e13 , −e13 + e134 , −e14 + e36]
> GLIB:=TglibG(F,Deg[InvLex]);

Computed 28 S-polynomials among 8 polynomials in Groebner basis and
needed to compute 28

This procedure took 6.703 seconds to run.

GLIB := [e2456 − e3 , e1256 − e13 , −e14 + e36 , e35 , e34 , e14 , e23 , e13]
> f:=idealpoly(F,w,left);

[2e1234 + 2e156 + 2e456 − e46 , −6Id − 6e2356 ,

− 2Id − 2e4 − 2e2 − 2e1 − 2e6]

[e14 − e36 , e2456 − e3 , e1256 − e13]

f := −6 e2456 + 6 e3 − 2 e1256 − 2 e12456 + 2 e13 + 2 e134 − 2 e123 + 2 e136
> NF(f,GLB,Deg[InvLex]);

−2 e123
> NF(f,GLIB,Deg[InvLex]);

0
Note that f does not reduce to 0 modulo GLB even though f1 , f2 , and f3 all

reduce to 0 modulo GLB. However, f does reduce to 0 modulo GLIB. This shows
that the GLIB solves the ideal membership problem while the GLB does not.

5 Conclusion

The above algorithms and examples show how the package TNB computes GLB
and GLIB bases in the Grassmann algebra. In particular, we have explicitly

13

demonstrated that the GLB bases do not solve the ideal membership problem
whereas the GLIB bases do. Once a Gröbner basis is computed using the TglibG
procedure a polynomial can be tested for membership in the ideal generated by
that Gröbner basis using the NF procedure. If the NF procedure returns 0, then
the polynomial belongs to the ideal, otherwise it does not.

References

[1] R. Ab lamowicz and B. Fauser, ‘CLIFFORD’ - Maple 11 package for Clifford
algebra computations, ver. 11, http://math.tntech.edu/rafal/cliff11/,
2008.

[2] R. Ab lamowicz and B. Fauser, ‘GfG’ - Maple 11 package for Gröbner Bases
for Grassmann Algebras, ver. 0.5, http://math.tntech.edu/rafal/GfG/,
2008.

[3] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 2nd ed.
Springer, NY, 2000.

[4] V. Levandovskyy and H. Schönemann, Plural – A Computer Algebra System
for Noncommutative Polynomial Algebras, Proceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computation, New York, 2003,
176–183.

[5] T. Mora, An introduction to commutative and non-commutative Gröbner
Bases, J. Theoretical Comp. Sci. 135 (1994), 131–174.

[6] Singular with Plural, http://www.singular.uni-kl.de/, 2008.

[7] T. Stokes, Gröbner Bases in Exterior Algebra, J. Automated Reasoning 6
(1990), 233–250.

Acknowledgment

Many thanks to Dr. Rafa l Ab lamowicz for his assistance in the research and
preparation of this material.

14

