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Abstract. Tensor, Clifford and Grassmann algebras belong to a wide class of
non-commutative algebras that have a Poincaré-Birkhoff-Witt (PBW) “mono-
mial” basis. The necessary and sufficient condition for an algebra to have the
PBW basis has been established by T. Mora and then V. Levandovskyy as
the so called “non-degeneracy condition”. This has led V. Levandovskyy to
a re-discovery of the so called G-algebras (previously introduced by J. Apel)
and GR-algebras (Gröbner-ready algebras). It was T. Mora who already in the
1990s considered a comprehensive and algorithmic approach to Gröbner bases
for commutative and non-commutative algebras. It was T. Stokes who eigh-
teen years ago introduced Gröbner left bases (GLB) and Gröbner left ideal
bases (GLIB) for left ideals in Grassmann algebras, with the GLIB bases
solving an ideal membership problem. Thus, a natural question is to first seek
Gröbner bases with respect to a suitable admissible monomial order for ideals
in tensor algebras T and then consider quotient algebras T/I. It was shown
by Levandovskyy that these quotient algebras possess a PBW basis if and
only if the ideal I has a Gröbner basis. Of course, these quotient algebras are
of great interest because, in particular, Grassmann and Clifford algebras of
a quadratic form arise this way. Examples of G-algebras include the quan-
tum plane, universal enveloping algebras of finite dimensional Lie algebras,
some Ore extensions, Weyl algebras and their quantizations, etc. Examples of
GR-algebras, which are either G algebras or are isomorphic to quotient alge-
bras of a G-algebra modulo a proper two-sided ideal, include Grassmann and
Clifford algebras. After recalling basic concepts behind the theory of commu-
tative Gröbner bases, a review of the Gröbner bases in PBW algebras, G-,
and GR-algebras will be given with a special emphasis on computation of such
bases in Grassmann and Clifford algebras. GLB and GLIB bases will also be
computed.
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13P10, 16P40.

Keywords. PBW bases, monomial order, Gröbner GLB and GLIB bases, nor-
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1. Introduction

The theory of Gröbner bases in multivariate polynomial rings over a field is very
well known, see for example [9,14,15,18,19,21,43] and references therein. A multi-
tude of various applications of these bases has been described in literature including
but not limited to [16,19,27], and a great online resource of new applications can
be found at [45]. An algorithmic approach to the theory of Gröbner bases and their
applications in algebraic geometry has been successfully advocated in [19] and, in
general, to the theory of commutative algebras in [28].

The concept of Gröbner bases in non-commutative algebras is much more
recent and is not as well known. One of the earliest known, at least to this author,
attempts to extend Gröbner bases theory to the non-commutative setting can be
found in [8] and [43] whereas Stokes in [51] defines and computes various Gröbner
bases in Grassmann algebras. Algorithmic methods relying on computing Gröbner
bases in non-commutative left Poincaré-Birkhoff-Witt (PBW) rings, which are al-
gebras and left noetherian domains at the same time, are studied in [17]. There,
one finds algorithms to compute Gröbner bases in PBW rings which include quan-
tum groups, Weyl algebras, enveloping algebras of finite dimensional Lie algebras,
and Ore extensions, to name a few.

Grassmann and Clifford algebras are not, in general, PBW rings as they are
not, in general, domains. Furthermore, as shown by Levandovskyy [35–37], they
are obtainable as quotients of the so called G-algebras which possess a PBW basis
consisting of generalized monomials, modulo a suitable ideal. Such quotient alge-
bras Levandovskyy calls GR-algebras and they also include, for example, algebras
given by structure constants [20]. Since in this paper we are interested in under-
standing mathematical and algorithmic differences between the commutative and
the non-commutative settings, and especially in the case of Grassmann and Clif-
ford algebras, we point out that G- and GR-algebras are the basic computational
objects in Plural [38,39,50]. Furthermore, we will show computations of Gröbner
bases in Grassmann algebras with a new Maple package TNB [11] which is based
on Stokes’ algorithms for computing the GLB and GLIB bases [51].

The organization of this paper is as follows. In Section 2 we provide a brief
review of Gröbner bases in polynomial rings. In Section 3 we give examples of
using commutative Gröbner bases: in symbolic computations in Clifford algebras,
in robotics, and when working with symmetric polynomials. In Section 4, following
[17], we define PBW rings and provide their basic properties. In Section 5, following
[39], we define and show basic properties of G- and GR-algebras. In Section 6 we
show computations of Gröbner bases in Grassmann and Clifford algebras with
Plural and TNB. In Section 7 we discuss GLB and GLIB bases introduced
by Stokes [51] for Grassmann algebras In Section 8 we summarize computational
differences and similarities when computing Gröbner bases in polynomial rings
and in Grassmann and Clifford algebras.
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2. Gröbner bases in polynomial rings

Our main reference is [19]. In particular, k[x1, . . . , xn] is a polynomial ring in
indeterminates x1, . . . , xn over a field k whereas V(f1, . . . , fs) is an affine variety
viewed as a subset of kn consisting of common zeros of polynomials f1, . . . , fs ∈
k[x1, . . . , xn]. In particular, 〈f1, . . . , fs〉 denotes an ideal in k[x1, . . . , xn] generated
by the polynomials. We say that ideal I ⊂ k[x1, . . . , xn] is finitely generated if
there exist f1, . . . , fs ∈ k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉. Then we say that
f1, . . . , fs are a basis of I.

Proposition 2.1 (Cox). If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in
k[x1, . . . , xn], so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V(f1, . . . , fs) = V(g1, . . . , gt).

Example 1. Let f1 = 4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9 and f2 = (x1 + 1)2 + x2
2 + x2

3 − 4
be in R[x1, x2, x3]. Then, V(f1) and V(f2) are two spheres viewed as varieties.
The intersection of these varieties is a circle C. Since we have equality of ideals
I = 〈f1, f2〉 = 〈256x2

2 + 256x2
3 − 495, 16x1 − 7〉,

C = V(f1, f2) = V(f1) ∩V(f2) = V(256x2
2 + 256x2

3 − 495, 16x1 − 7). (2.1)

Thus, C can also be viewed as the intersection of a cylinder 256x2
2 + 256x2

3 = 495
with a plane 16x1 = 7.

In fact, as we will see later, polynomials g1 = 256x2
2 + 256x2

3 − 495 and
g2 = 16x1 − 7 in the above example give a Gröbner basis for the ideal I.

In order to introduce Gröbner basis for polynomial ideals in k[x1, . . . , xn],
one needs to define first a monomial ordering.

Definition 2.2. A monomial ordering on k[x1, . . . , xn] is any relation > on Zn
≥0 =

{(α1, . . . , αn) |αi ∈ Z≥0}, or equivalently, any relation on the set of monomials
xα, α ∈ Zn

≥0, satisfying:
(i) > is a total ordering on Zn

≥0 (for any α, β ∈ Zn
≥0, α > β, α = β or β > α)

(ii) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

(iii) > is a well-ordering on Zn
≥0 (every non-empty subset has smallest element)

A few standard monomial orders are as follows:
- Lexicographic Order: α >lex β if, in the vector difference α − β ∈ Zn, the

left-most non-zero entry is positive.
- Graded Lex Order: α >grlex β if either |α| > |β|, or |α| = |β| and α >lex β.

Here |α| =
∑n

i=1 αi.
- Graded Reverse Lex Order: α >grevlex β if either |α| > |β|, or |α| = |β| and

in α− β ∈ Zn the right-most non-zero entry is negative.
- Graded Inverse Lex Order: α >ginvlex β if either |α| > |β|, or |α| = |β| and

in α− β ∈ Zn the right-most non-zero entry is positive.1

1The Graded Inverse Lex Order Deg[InvLex] and the Graded Lex Order Deg[Lex] will later
be used as admissible orders drp and dp when computing with Plural [50] in Grassmann and
Clifford algebras.
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Once a monomial order > has been chosen, one can then determine the
leading term LT(f) in each polynomial f, and order any two monomials. This in
turn allows one to introduce the division algorithm

Theorem 2.3 (General Division Algorithm). Fix a monomial order > on Zn
≥0,

and let F = (f1, . . . , fs) be an ordered s-tuple of polynomials. Then every f ∈
k[x1, . . . , xn] can be written as

f = a1f1 + · · · asfs + r, (2.2)

where ai, r ∈ k[x1, . . . , xn] and either r = 0 or r is a linear combination, with coef-
ficients in k, of monomials, none of which is divisible by any of LT(f1), . . . , LT(fs).
We call r a remainder of f on division by F. Furthermore, if aifi 6= 0, then we
have multideg(f) ≥ multideg(aifi).

Remark 2.4. The remainder r in (2.2) (and the quotient monomials ai), is not
unique as it depends on the monomial order and on the division order of f by
the polynomials in F. This last shortcoming of the Division Algorithm disappears
when we divide polynomials by a Gröbner basis.

Remark 2.5. The termination of the Division Algorithm in k[x1, . . . , xn] is guar-
anteed by the fact that k[x1, . . . , xn] is a noetherian ring. For the actual algorithm,
see for example [19] or [21].

The next concept needed is that of a monomial ideal so that we can state
Dickson’s Lemma and, as the main foundation for the theory, Hilbert Basis The-
orem.

Definition 2.6. An ideal I ⊂ k[x1, . . . , xn] is a monomial ideal if there is a subset
A ⊂ Zn

≥0 (possibly infinite) such that I consists of all polynomials which are finite
sums of the form

∑
α∈A hαxα, where hα ∈ k[x1, . . . , xn]. In this case we write

I = 〈xα : α ∈ A〉.

Lemma 2.7 (Dickson). Every monomial ideal I ⊂ k[x1, . . . , xn] has a finite basis.

For the proof of Dickson’s Lemma see for example [19] where it is used to
prove the following critical result.

Proposition 2.8. Let I ⊂ k[x1, . . . , xn] be an ideal.
(i) 〈LT(I)〉 is a monomial ideal.
(ii) There are finitely-many g1, . . . , gs ∈ I such that

〈LT(I)〉 = 〈LT(g1), . . . , LT(gs)〉.

In the above, LT(I) denotes the set of leading terms of elements of a non-zero ideal
I ⊂ k[x1, . . . , xn] and 〈LT(I)〉 is the ideal generated by the elements of LT(I).
Dickson’s Lemma is used in [19] to prove the famous Hilbert Basis Theorem:

Theorem 2.9 (Hilbert Basis Theorem). Every ideal I ⊂ k[x1, . . . , xn] has a finite
generating set. That is, I = 〈g1, . . . , gs〉 for some g1, . . . , gs ∈ I.
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Now that we know that every ideal in k[x1, . . . , xn] is finitely generated, we
are ready to define a Gröbner basis for an ideal I ⊂ k[x1, . . . , xn].

Definition 2.10. Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal
I is said to be a Gröbner basis for I if

〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉. (2.3)

As a consequence of Proposition 2.8 and the Hilbert Basis Theorem we have

Corollary 2.11. Fix a monomial order. Then every ideal I ⊂ k[x1, . . . , xn] other
than {0} has a Gröbner basis.

Before we describe how one can compute Gröbner bases introduced by Bruno
Buchberger [14,15], let us summarize some useful facts [19]:

Proposition 2.12. If g1, . . . , gt is a Gröbner basis for I and f ∈ k[x1, . . . , xn], then
f ∈ I if and only if the remainder of f on division by g1, . . . , gt is zero.

The above proposition provides a way of solving the so called Ideal Member-
ship Problem as it allows us to decide whether a given polynomial f ∈ k[x1, . . . , xn]
belongs to an ideal I : it is enough to compute a Gröbner basis G for I in any mono-
mial order and divide f by G. Denote the remainder of this division as r = f

G
.

By the proposition, f ∈ I if and only if r = 0. In general, due to the unique-
ness of r, one gets unique coset representatives for elements in the quotient ring
k[x1, . . . , xn]/I : The coset representative of [f ] ∈ k[x1, . . . , xn]/I will be f

G
.

Proposition 2.13. If g1, . . . , gt is a Gröbner basis for I and f ∈ k[x1, . . . , xn], then
f can be written uniquely in the form f = g + r where g ∈ I and no term of r is
divisible by any LT(gi).

This last proposition gives a practical criterion that describes when the divi-
sion of f by a Gröbner basis G = {g1, . . . , gt} stops: when no term of the remainder
is divisible by any LT(gi).

An answer for how to compute Gröbner basis is provided by Buchberger’s
algorithm and criterion (and its modifications) that use S-polynomials. This ap-
proach through S-polynomials is later generalized to non-commutative rings.

Definition 2.14. The S-polynomial of f1, f2 ∈ k[x1, . . . , xn] is defined as

S(f1, f2) =
xγ

LT(f1)
f1 −

xγ

LT(f2)
f2, (2.4)

where xγ = lcm(LM(f1), LM(f2)) and LM(fi) is the leading monomial of fi w.r.t.
some monomial order.

Theorem 2.15 (Buchberger Theorem). A basis {g1, . . . , gt} ⊂ I is a Gröbner basis

of I if an only if S(gi, gj)
G

= 0 for all i < j.
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Example 2. Let f1 = x4 − 3xy, f2 = x2y − 2 ∈ k[x, y] and lex order with x > y.
Then, LT(f1) = x4, LT(f2) = x2y and

S(f1, f2) =
x4y

x4
· f1 −

x4y

x2y
· f2 = y · f1 − x2 · f2 = −3xy2 + 2x2 ∈ 〈f1, f2〉.

Since LT(S(f1, f2)) divisible by neither LT(f1) nor LT(f2), or, LT(S(f1, f2)) /∈
〈LT(f1), LT(f2)〉, we see that f1, f2 is not a Gröbner basis of 〈f1, f2〉.

Buchberger’s algorithm for finding a Gröbner basis can be described as fol-
lows:

Buchberger’s Algorithm. Given {f1, . . . , fs} ⊂ k[x1, . . . , xn], consider the algo-
rithm which starts with F = {f1, . . . , fs} and then repeats the two steps

• (Compute Step) Compute S(fi, fj)
F

for all fi, fj ∈ F with i < j,

• (Augment step) Augment F by adding the non-zero S(fi, fj)
F

until the Com-
pute Step gives only zero remainders. The algorithm always terminates and
the final value of F is a Gröbner basis of 〈f1, . . . , fs〉.

We will see later that all of the above steps from defining a monomial order
through defining a Gröbner basis, S-polynomials, and a new algorithm in the non-
commutative cases of interest to us – Grassmann and Clifford algebras – will be
in principle repeated with certain modifications that will need to account for non-
commutativity of these algebras and for the fact that, in general, these algebras
unlike k[x1, . . . , xn] are not domains.

Example 3. Let F1 = {f1, f2} where f1 = 4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9 and f2 =
(x1 + 1)2 + x2

2 + x2
3 − 4 are as in Example 1. For the monomial order lex order

with x1 > x2 > x3, we find f3 = S(f1, f2)
F1 = −16x1 + 7, so we extend F1 to

F2 = {f1, f2, f3}. Then, f4 = S(f1, f3)
F2 = 495− 256x2

2 − 256x2
3, so we extend F2

to F3 = {f1, f2, f3, f4}. Next we find that S(f1, f4)
F3 = 0. Thus, we have

S(f1, f2)
F3 = S(f1, f3)

F3 = S(f1, f4)
F3 = 0.

Furthermore, we find that S(f2, f3)
F3 = S(f2, f4)

F3 = S(f3, f4)
F3 = 0. Since

S(fi, fj)
F3 = 0 for all i < j and fi, fj ∈ F3, we conclude that a Gröbner basis for

I = 〈f1, f2〉 finally is

F3 = {4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9, (x1 + 1)2 + x2
2 + x2

3 − 4,

− 16x1 + 7, 495− 256x2
2 − 256x2

3}. (2.5)

Before we show specific computational examples of applying Gröbner bases
in polynomial rings, we need to make the following observations:
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(i) Gröbner basis F3 shown in (2.5) is too big: A standard way to reduce it is to
replace any polynomial fi with its remainder on division by

{f1, . . . , fi−1, fi+1, . . . , ft},
removing zero remainders, and for polynomials that are left, making their
leading coefficient equal to 1. This produces a reduced Gröbner basis. In gen-
eral, for a fixed monomial order, any ideal in k[x1, . . . , xn] has a unique re-
duced Gröbner basis [19,21,28].

Example 4. We reduce Gröbner basis F3 for the ideal I shown in (2.5) as
follows: We compute

f1
F3\{f1} = f2

F4\{f2} = 0

where F4 = {f2, f3, f4}. So, we set F5 = {f3, f4} and find that

f3
F5\{f3} = −16x1 + 7 = f3, f4

F5\{f4} = 495− 256x2
2 − 256x2

3 = f4,

so a reduced Gröbner basis for the ideal I = 〈f1, f2〉 from Example 3 is

Gred = {x1 − 7
16 , x2

2 + x2
3 − 495

256}. (2.6)

It is essentially the same basis as the one shown in (2.1).

(ii) The reduced Gröbner basis G is characterized by two features: (a) the leading
coefficient of each polynomial p in G is 1, and (b) that for all p in G, no
monomial of p lies in the monomial ideal 〈LT(G \ {p})〉. Observe, that in
lex order with x1 > x2 > x3, none of the terms of x1 − 7

16 belongs to
〈LT(x2

2 + x2
3 − 495

256 )〉 = 〈x2
2〉 and, likewise, none of the terms of x2

2 + x2
3 − 495

256

belongs to 〈LT(x1 − 7
16 )〉 = 〈x1〉.

(iii) Buchberger’s Algorithm has been made more efficient, see [9, 19,28] and ref-
erences therein. See also [23] although FGb package is based on a different
algorithm than Buchberger’s.

3. Examples of applying commutative Gröbner bases

A list of problems that can be solved using Gröbner bases constantly grows. Here
is a partial list of some problems that can be solved with their help:
• The ideal membership problem, i.e., does f ∈ I = 〈f1, . . . , fs〉? See [19,21].
• Finding generators for the intersection of two ideals I ∩ J [19].
• Solving systems of polynomial equations, e.g., intersecting surfaces and curves,

finding closest point on curve to the given point, Lagrange multiplier prob-
lems (especially for several multipliers), etc. [18, 19,27,28].

• Finding curves and surfaces equidistant, respectively, to a given curve and
surface [7, 19].

• The implicitization problem, i.e., eliminating parameters and finding implicit
forms for curves and surfaces [18,19].

• The forward and the inverse kinematic problems in robotics [19].
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• Automatic geometric theorem proving [15,19].
• Expressing invariants of a finite group, e.g., symmetric polynomials, in terms

of generating invariants [19,52].
• Finding relations between polynomial functions, e.g., interpolating functions

(syzygy relations)2 [5, 19].
• For many other applications, including Integer programming, complex infor-

mation systems, or algebraic coding theory see [18] and references therein,
and [16,19,27].

• See also Bibliography on Gröbner bases at RICAM [45].
We will show a few examples, some of which are related to Grassmann and

Clifford algebras. Our first example shows how one can solve symbolic equations,
constraints, or systems of constraints in order to find a general element in a Grass-
mann or Clifford algebra that satisfies the constraint(s).

Example 5 (Idempotent variety in C`2,0). Consider Clifford algebra C`2,0 with a
Grassmann monomial basis 1, e1, e2, e12 where e12 = e1 ∧ e2. What is the most
general idempotent u ∈ C`2,0? That is, we are looking for the most general element
u ∈ C`2,0 such that u2 = u. Let u = x0 +x1e1 +x2e2 +x12e12. Then, the equation
u2 = u yields the following four polynomial equations:

p1 = x2
0 + x2

1 + x2
2 − x2

12 − x0, p2 = x1(2x0 − 1),

p3 = x2(2x0 − 1), p4 = x12(2x0 − 1) (3.1)

Thus, the family of idempotents is an affine variety V(p1, p2, p3, p4). We will solve
the above system by finding a reduced Gröbner basis G for the ideal I〈p0, p1, p2, p3〉
in R[x0, x1, x2, x12] for lex order with x0 > x1 > x2 > x12. The basis G consists
of seven polynomials:

g1 = x12(4x2
1 − 1 + 4x2

2 − 4x2
12), g2 = x2(4x2

1 − 1 + 4x2
2 − 4x2

12),

g3 = x1(4x2
1 − 1 + 4x2

2 − 4x2
12), g4 = x12(2x0 − 1),

g5 = x2(2x0 − 1), g6 = x1(2x0 − 1),

g7 = x2
0 + x2

2 − x2
12 + x2

1 − x0. (3.2)

Notice that g1, g2, g3 ∈ G1 = G ∩ R[x1, x2, x12] whereas g4, g5, g6, g7 ∈ G0 = G ⊂
R[x0, x1, x2, x12]. Thus, V(p1, p2, p3, p4) = V(g1, g2, g3, g4, g5, g6, g7). It is now easy
to find first solution when x0 = 1

2 :

u1,2 = 1
2 + x12e12 ± 1

2

√
1− 4x2

2 + 4x2
12 e1 + x2e2 (3.3)

provided 1 − 4x2
2 + 4x2

12 ≥ 0. Second solution when x0 6= 0 requires x1 = x2 =
x12 = 0 and yields trivial idempotents 0 and ±1. Thus, u1,2 in (3.3) are the only
non-trivial idempotents in C`2,0 and their variety is the surface and the inside of

2Procedure SyzygyIdeal from SP package [5] finds syzygy relations, if any, between polynomials
F = (f1, . . . , fm) ⊂ k[x1, . . . , xn] by computing a Gröbner basis for the n-th elimination ideal
IF (the ideal of relations) of the ideal JF = 〈f1 − y1, f2 − y2, . . . , fm − ym〉 for the lex order
with x1 > . . . > xn > y1 > . . . > ym. See [19].
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the hyperboloid 4x2
1 + 4x2

2 − 4x2
12 = 1. The primitive idempotents 1

2 (1 ± e1) and
1
2 (1±e2) belong to this variety when x12 = x2 = 0 and x12 = x1 = 0, respectively.
For a classification of families of general idempotents in Clifford algebras see [6].

Our second example is related to the screw theory represented in the language
of Clifford algebra C`0,3,1. This algebra contains a copy of the group of rigid
motions SE(3), its Lie algebra, the screws, and elements corresponding to points,
lines and planes in Euclidean space R3. [48] In fact, in [49], Selig and Bayro-
Corrochano take two copies of that algebra and use the Clifford algebra C`0,6,2 to
study momenta and inertia. In this example we show how symbolic computations
in C`0,6,2 can be performed modulo certain polynomial relations on elements of
the rigid group.

Example 6 (Rigid Transformations). We follow notation from [49]. Let C`0,6,2 be
generated by e1, e2, e3, e, a1, a2, a3, a such that a2

i = e2
1 = −1 and a2 = e2 = 0. A

general form of an element in C`0,3,1 ⊂ C`0,6,2 to represent a rigid transformation,
which is a combination of rotations and translations, is

g = α0 + α1e2e3 + α1e3e1 + α3e1e2 + β0ee1e2e3 + β1e1e + β2e2e + β3e3e. (3.4)

Here, g is subject to the condition g∗g = 1 where ∗ denotes Clifford conjugation and
α′s, β′s are real parameters. The condition expressed in terms of the parameters
gives two polynomial identities:

α2
0 + α2

1 + α2
2 + α2

3 = 1 and α0β0 + α1β1 + α2β2 + α3β3 = 0. (3.5)

In C`0,6,2, the authors represent co-screws (momenta) as the following elements:

P = pxa2a3 + pya3a1 + pza1a2 + lxa1a + lya2a + lza3a (3.6)

which transform under the group of rigid motions as the ordinary screws with a′s
replaced by e′s. They define an involution ū on C`0,6,2 which exchanges a′s for
e′s as follows: āi = ei, ā = e, and ēi = ai, ē = a. Then, the group action on the
moment is

P → ḡP ḡ∗ (3.7)
The evaluation map of a co-screw on a screw

s = ωxe2e3 + ωye3e1 + ωze1e2 + vxe1e + vye2e + vze3e

they state as
P(s) = P ∨ (Q0 ∧ s) = (P ∧Q0) ∨ s (3.8)

where ∨ is the shuffle product from the Cayley-Grassmann algebra [48], [53] and
Q0 is the following element of C`0,6,2 :

Q0 = a2a3e1e + a3a1e2e + a1a2e3e + a1ae2e3 + a2ae3e1 + a3ae1e2. (3.9)

It is not difficult to see that Q0 is invariant under the exchange. It is not easy to
see, as the authors claim, that Q0 is invariant under the group action (gḡ)Q0(gḡ)∗,
that is, Q0 = (gḡ)Q0(gḡ)∗, yet Q0 is not invariant under the action of g or ḡ
alone, Q0 6= gQ0g

∗ and Q0 6= ḡQ0ḡ
∗. We can verify this claim using a Gröbner

basis G for the ideal 〈f1, f2〉 ⊂ R[α0, α1, α2, α3, β0, β1, β2, β3] where f1, f2 are the
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polynomials defined by the relations (3.5) and then by reducing all coefficients of
the product (gḡ)Q0(gḡ)∗ modulo G. Since we are reducing modulo the Gröbner
basis, remainders of the reduction are uniquely defined. The Gröbner basis G for
the lex(α0 > α1 > α2 > α3 > β0 > β1 > β2 > β3) contains four polynomials
including the original two polynomials. Computing the difference we find

(gḡ)Q0(gḡ)∗ −Q0 = h1e1e2a3a + h2e1e3a2a + h3e1ea1a

+ h4e1ea2a3 + h5e2e3a1a + h6e2ea1a3

+ h7e2ea2a + h8e3ea1a2 + h9e3ea3a (3.10)

where hj ∈ R[α0, α1, α2, α3, β0, β1, β2, β3] and hj
G

= 0 for j = 1, . . . , 9. Thus,
indeed, Q0 is invariant under the group action (gḡ)Q0(gḡ)∗ where g is the rigid
transformation. The same way one can show that Q0 is not invariant under the
action of g or ḡ alone.

In general, the action on P shown in (3.7) needs to be computed modulo
G as well. Later in their paper Selig and Bayro-Corrochano deduce that the in-
ertia N must transform according to N → (gḡ)N(gḡ)∗ and hand-compute such
transformation of N when g = 1 + 1

2 txe1e. When g is more general, or as general
as possible, hand computation is no longer practical and the above approach is
superior.

Finally, we show a simple add-on procedure to CLIFFORD/Bigebra [3]
that can reduce symbolic polynomial coefficients of any element in the defined
Clifford algebra modulo a set of polynomial relations, e.g., as in (3.5). This ap-
proach is particularly useful when computing action of the Lipschitz group or the
spin groups [40] modulo relations that coefficients of general elements of these
groups must satisfy.

ReduceClipolynom:=proc(p::{cliscalar,clibasmon,climon,clipolynom})
local F,tmon,T,C,i,m,G:

F,tmon:=op(procname):
if type(p,clibasmon) then return p end if:
G:=Groebner:-Basis(F,tmon);
if type(p,cliscalar) then return Reduce(p,G,tmon) end if;
T:=convert(cliterms(p),list):
C:=[seq(coeff(p,m),m=T)];
C:=map(Groebner:-Reduce,C,G,tmon);
return add(C[i]*T[i],i=1..nops(T));
end proc:

The above procedure can be used as in ReduceClipolynom[F, T](h1) where F =
[r1, . . . , rs] is a list of initial polynomial relations, T is the chosen monomial order,
and h1 is the argument polynomial. Notice that commands Groebner:-Basis and
Groebner:-Reduce come from Maple’s Groebner package. [41]
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For our third example, we need the following result [19].3

Proposition 3.1. Suppose that f1, . . . , fm ∈ k[x1, . . . , xn] are given. Fix a monomial
order k[x1, . . . , xn, y1, . . . , xm] where any monomial involving one of x1, . . . , xn is
greater than all monomials in k[y1, . . . , ym]. Let G be a Gröbner basis of the ideal
J = 〈f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . , xn, y1, . . . , xm]. Given f ∈ k[x1, . . . , xn],
let g = f

G
be the remainder of f on division by G. Then

(i) f ∈ k[f1, . . . , fm] if and only if g ∈ k[y1, . . . , ym].
(ii) If f ∈ k[f1, . . . , fm], then f = g(f1, . . . , fm) is an expression of f as a poly-

nomial in f1, . . . , fm.

Example 7 (Symmetric polynomials). Let G be the symmetric group S3. Let

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, and σ3 = x1x2x3

be the elementary symmetric polynomials in x1, x2, x3. [52] A Gröbner basis F for
the ideal I = 〈σ1 − y1, σ2 − y2, σ3 − y3〉 in lex(x1, x2, x3, y1, y2, y3) order is

F = [x3
3 − x2

3y1 + y2x3 − y3, x2
2 + x2x3 − x2y1 + x2

3 − x3y1 + y2, x1 + x2 + x3 − y1]

Let

f = x2
1x2 + x1x

2
2 + 3x1x2x3 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 − x2

1x
2
2x

2
3.

It can be checked directly that f(x) = f(σx), ∀σ ∈ S3. That is, f is invariant
under S3 and f ∈ k[x1, x2, x3]S3 . Reducing f modulo F gives g = f

F
= y1y2−y2

3 ∈
k[y1, y2, y3]. Thus, by part (i) of the above Proposition, we see again that f is
symmetric. Furthermore, from part (ii) we get that f = σ1σ2 − σ2

3 .

For more examples on finite group generators and finding the so called syzygy
relations (or, syzygies), see [19], [52]). For a small Maple package related to finite
group invariants as well as generators (relations) of syzygy ideals, see SP pack-
age. [5]

4. PBW rings and algebras

There is a natural and important progression in developing the theory of Gröbner
bases for Grassmann and Clifford algebras through the so called left Poincaré-
Birkhoff-Witt (PBW) rings and algebras. While these rings are non-commutative,
they possess a monomial basis and an admissible order can be defined on standard
monomials. Furthermore, like ordinary polynomial rings k[x1, . . . , xn], they are
domains and are left noetherian (Hilbert’s Basis Theorem). Furthermore, PBW
rings have the terminating multivariable division algorithm property, and every
non-zero left ideal in a PBW ring possesses a Gröbner basis. In particular, if G is
a Gröbner basis for a non-zero left ideal I in a PBW ring R, any “polynomial”

3Procedure isContained from SP package [5] is based on this proposition. It returns the poly-
nomial g mentioned in the proposition.
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f ∈ R belongs to I if and only if the remainder on the division of f by G is zero.
Hence, these rings have properties very similar to the ordinary polynomial rings.

Below we provide some basic definitions and examples of PBW rings. For an
algorithmic theory of PBW rings and algebras including Gröbner bases computa-
tion see [17] on which our short introduction to these rings is based.

Definition 4.1. Let R be a ring containing a division ring k and let xα = xα1
1 . . . , xαn

n

be a standard term where x1, . . . , xn ∈ R. The ring R is said to be left polynomial
over k if the set {xα; α ∈ Nn} is a basis of R as a left k-vectors pace. Then, every
f ∈ R has a standard representation f =

∑
α∈Nn cαxα.

Definition 4.2. An admissible order on (Nn, +) is a total order � satisfying the
following two conditions: (i) 0 ≺ α, ∀α ∈ Nn, and (ii) α+γ ≺ β +γ, ∀α, β, γ ∈ Nn

with α ≺ β.

For 0 6= f ∈ R, let exp(f) = max�{α ∈ Nn, cα 6= 0} for an admissible order � .
We are now ready to define a PBW ring.

Definition 4.3. A ring R which is left-polynomial over k in x1, . . . , xn is called a
left Poincaré-Birkhoff-Witt ring (left PBW ring) if there exists an admissible order
� on (Nn, +) that satisfies the following conditions:
• ∀ 1 ≤ i < j ≤ n, ∃ qij ∈ k \ {0} s.t. exp(xjxi − qjixixj) ≺ εi + εj where

εi = (0, . . . , 1, . . . , 0) ∈ Nn.
• ∀ 1 ≤ i ≤ n and ∀ a ∈ k \ {0}, ∃ qja ∈ k \ {0} s.t. exp(xja− qjaxj) ≺ εj .

Let pji = xjxi − qjixixj for 1 ≤ i < j ≤ n, and pja = xja − qjaxj for 1 ≤ i ≤ n
and a ∈ k \ {0}. We denote the left PBW ring R as R = k{x1, . . . , xn; Q,Q′,≺}
where Q = {xjxi = qjixixj +pji; 1 ≤ i < j ≤ n} and Q′ = {xja = qjaxj +pja; 1 ≤
j ≤ n, a ∈ k∗}.

Definition 4.4. A left PBW ring R is called a PBW algebra if k is a commutative
field and if xja = axj for every a ∈ k and 1 ≤ j ≤ n.

We quote only two fundamental results proven in [17].

Lemma 4.5. Any left PBW ring is a domain.

Theorem 4.6 (Hilbert Basis Theorem). Every left PBW ring is left noetherian.

Here we list a few examples of PBW rings and algebras.
• Commutative polynomial ring k[x1, . . . , xn] : For every admissible order �

on Nn, we have

k[x1, . . . , xn] = k{x1, . . . , xn; xixj = xjxi, �}

is a PBW algebra.
• Let g be a finite-dimensional Lie k-algebra with k basis {x1, . . . , xn}. Let U(g)

be its enveloping algebra. By the Poincaré-Birkhoff-Witt theorem, U(g) is left
polynomial in x1, . . . , xn, and it is noetherian. In general, U(g) = T (g)/I,
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where T (g) is the tensor algebra over the linear space of g and I is a two-
sided ideal generated by x⊗ y − y ⊗ x− [x, y], ∀x, y ∈ g. Therefore, U(g) is
a PBW algebra and

U(g) = k{x1, . . . , xn; xixj = xjxi + [xj , xi], �deglex}
• Let q be a multiplicatively anti-symmetric n× n matrix over k, i.e., qi,j 6= 0

and qi,j = q−1
j,i for all 1 ≤ i, j ≤ n. The (multiparameter) n-dimensional

quantum space kq[x1, . . . , xn] associated to q is the quotient of the free
k-algebra k〈x1, . . . , xn〉 by the two-sided ideal associated to the relations
Q = {xjxi = qjixixj , j > i}. Let � be any admissible order on Nn. Then

Oq(kn) = k{x1, . . . , xn; Q,�}
is a PBW algebra.

• There are constructive methods to obtain new (left) PBW rings as Ore exten-
sions of a given (left) PBW ring. For example, skew polynomial Ore algebras
and rings of differential operators are particular instances of the so called
iterated Ore extensions.

• The n-th Weyl algebra An(k) is a PBW algebra.
Let R be a (left) PBW ring containing a division ring k as defined above. The
multivariable division algorithm in R, the normal form of a polynomial f in R
with respect to a set of polynomials F, the Gröbner bases in left-, and two-sided
ideals computed through S-polynomials are all discussed at length in [17].

5. G-algebras and GR-algebras

In this section we describe associative algebras that possess PBW basis. These
are G-algebras (first introduced by J. Apel [8]) and GR-algebras that have been
studied at length in [35,36,38,39]. In particular, in [38,39] one can find a description
of implementation of these algebras in Plural [50].

Definition 5.1. Let ≺ be a total well-ordering on Nn. 1. Let A be an algebra with
PBW basis and ≺A be an ordering on A induced by ≺ . Then ≺A is a monomial
ordering on A if the following conditions hold ∀α, β, γ ∈ Nn :
• If xα 6= 0, xβ 6= 0, then α ≺ β ⇒ xα ≺ xβ ,
• If xα ≺ xβ , xα+γ 6= 0 and xβ+γ 6= 0 then xα+γ ≺ xβ+γ .

2. Any f ∈ A \ {0} can be written uniquely as f = cxα + f ′, with c ∈ k∗ and
xα′ ≺A xα for any non-zero term c′xα′

of f ′. Define lm(f) = xα as the leading
monomial of f, and lc(f) = c as the leading coefficient of f.

A G-algebra is a defined as follows.

Definition 5.2. Let I be a two-sided ideal of T = k〈x1, x2, . . . , xn〉 generated by
the elements:

fj,i = xjxi − cijxixj − dij , 1 ≤ i < j ≤ n, cij ∈ k∗, dij ∈ T. (5.1)
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A k-algebra A = T/I = k〈x1, x2, . . . , xn |xjxi = cijxixj + dij ,∀1 ≤ i < j ≤ n〉 is
called a G-algebra in n variables, if the following conditions hold:

- Ordering condition: There exists a monomial well-ordering ≺ on T such that
lm(dij) ≺ xixj ,∀1 ≤ i < j ≤ n.

- Non-degeneracy condition: ∀1 ≤ i < j < k ≤ n, define polynomials

NDCijk = cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk

The condition is satisfied if all NDCijk reduce to 0 w.r.t. the relations (5.1).

In [36] Levandovskyy showed that a set of polynomials F = {fj,i} in (5.1)
is a Gröbner basis for the two-sided ideal I = 〈F 〉 with respect to the monomial
well-ordering ≺ on T if an only if NF(NDCijk, F ) = 0. For defining two-sided
Gröbner bases in free finitely generated algebras see also [10,43].

The following is a summary of important properties of G-algebras due to
Apel [8] and Levandovskyy [38].

Theorem 5.3. Let A be a G-algebra in n variables.
• A has a PBW basis {xα1

1 xα2
2 · · ·xαn

n |αk ∈ N}.
• A is left and right Noetherian.
• A is an integral domain.
• A has a left and a right quotient ring.

This last property is especially useful when defining GR-algebras. In particu-
lar recall the classical construction of Grassmann

∧
V and Clifford algebras C`(Q)

as quotients of T (V )/I of T (V ) - the ring of polynomials over k in non-commuting
variables X = {x1, . . . , xn} - over a suitable ideal I ⊂ T (V ). Here V is a free
k-module with the basis X.

Definition 5.4 (Levandovskyy). Let B be a G-algebra and I ⊂ B be a proper
non-zero two-sided ideal. Then the quotient algebra B/I is called a GR-algebra
(Gröbner-ready algebra).

Examples of G-algebras include the so called quasi-commutative polynomial
rings, for example, the quantum plane and universal enveloping algebras of finite
dimensional Lie algebras [17], positive (negative) parts of quantized enveloping
algebras [34], Weyl algebras and their quantizations, Smith algebras, and some
diffusion algebras [33]. Examples of GR-algebras include all G-algebras, Grass-
mann algebras and Clifford algebras C`(Q) (Q may be degenerate), finite dimen-
sional associative algebras given by structure constants [20]. For more examples
and references see [38].

5.1. Gröbner bases in GR-algebras

For an introduction to left Gröbner bases in GR-algebra see [38]. As it was the
case of ordinary polynomial rings and the PBW rings, one needs the concept of
an admissible monomial order as in Definition 4.2, a left normal form to compute
remainders on division, a concept of a left S-polynomials, a definition of a Gröbner
basis, and algorithms for computing the latter.
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Let Ar = Ae1⊕Ae2⊕· · ·⊕Aer, where ei = (0, . . . , 1, . . . 0), be a free module
with a monomial module ordering inherited from a monomial ordering in A. For
a set S ⊂ Ar, define `(S) to be a monoid generated by the leading exponents of
elements of S, that is, `(S) = 〈α | ∃s ∈ S , LM(s) = xα〉 ⊆ Nn. Thus `(S) is a
monoid of leading exponents [17]. By Dickson’s Lemma, `(S) is finitely generated.
Let L(S) = {xα |α ∈ `(S)} be a set of leading monomials of S.

This leads to the following definition of a Gröbner basis [38].

Definition 5.5. Let I ⊂ Ar be a submodule. A finite set G ⊂ I is called a Gröbner
basis of I if and only if L(G) = L(I), that is, for any f ∈ I \ {0} there exists
a g ∈ G satisfying LM(g)|LM(f). Here, LM(f) and LC(f) denote the leading
monomial and the leading coefficient, respectively, of f with respect to the chosen
monomial order (which are, in fact, sequences of leading monomials and coefficients
when r > 1.)

Similarity with Definition 2.3 is obvious. In order to reduce a polynomial with
respect to a list of polynomials, one needs the concept of a left normal form in Ar

that Levandovskyy defines as follows.

Definition 5.6. Let G denote the set of all finite and ordered subsets G ⊂ Ar.

(i) A map NF : Ar × G → Ar, given by (f,G) 7→ NF(f |G), is called a (left)
normal form on Ar if, for all f ∈ Ar, G ∈ G,
(a) NF(f |G) 6= 0 ⇒ LM(NF(f |G)) /∈ L(G),
(b) f −NF(f |G) ∈ 〈G〉.

(ii) Let G = {g1, . . . , gs} ∈ G. A representation f =
∑s

i=1 aigi, ai ∈ A of f ∈ 〈G〉
satisfying LM(f) ≥ LM(aigi) for all i = 1, . . . , s with aigi 6= 0 is called a
standard (left) representation of f (with respect to G).

The left normal form has been implemented in the TNB package [11] and is
described below. The following lemma shows that the Gröbner basis defined for
ideals in Ar solves the ideal membership problem. In fact, it is a bit more general
as it solves the “submodule membership problem”.

Lemma 5.7. Let I ⊂ Ar be a submodule, G a Gröbner basis of I and NF(·|G) a
normal form on Ar.

(i) For any f ∈ Ar then f ∈ I ⇔ NF(f |G) = 0.
(ii) If J ⊂ Ar is a submodule with I ⊂ J , then L(I) = L(J) implies I = J. In

particular, G generates I as a left A-module.

The S-polynomials are defined, as it can be expected, in a manner similar to
the commutative case (see Definition 2.4).

Definition 5.8. Let f, g ∈ Ar\{0} with LM(f) = xαei and LM(g) = xβej , re-
spectively. Set γ = (max(α1β1), . . . , max(αnβn)) and define the left S-polynomial
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(when r = 1 or a vector of polynomials otherwise) of f and g as:

LeftSpoly(f, g) =

 xγ−αf − LC(xγ−αf)
LC(xγ−βg)

xγ−βg, if i = j,

0, if i 6= j.

The LeftSpoly form is needed for the Gröbner basis algorithm. A character-
ization of a Gröbner basis within a G-algebra can now be given. It will be the
foundation for implementing a Gröbner basis algorithm.

Theorem 5.9. Let I ⊂ Ar be a left submodule and G = {g1, . . . , gs} ⊂ I and let
LeftNF(−|G) be a left normal form on Ar with respect to G. The following are
equivalent:

(i) G is a left Gröbner basis of I,

(ii) LeftNF(f |G) = 0 for all f ∈ I, Solves the Ideal Membership Problem
(iii) Each f ∈ I has a left standard representation with respect to G,
(iv) G generates I as a left module and LeftNF(LeftSpoly(gi, gj)|G) = 0 for

1 ≤ i, j ≤ s.

In [39] one can find algorithms that compute LeftNF and a left Gröbner
basis for a submodule I of a free module Ar. These algorithms are implemented
in Plural [50] and TNB [11].

Remark 5.10.

• Theorem 5.9 implies that the algorithm based on that theorem to compute
a Gröbner basis solves the ideal membership problem for left (right) ideals.

• The algorithm to compute a left Gröbner basis for a submodule I of a free
module Ar generalizes the classical Buchberger’s algorithm from k[x1, . . . , xn]
to a free algebra in r variables.

• In order to perform computations in quotient GR-algebras, one needs to
implement computation of two-sided Gröbner bases in ideals I. This is ac-
complished in yet another special algorithm in Plural [38]. This algorithm
uses opposite algebra.

• Clifford algebra C`p,q,d is realized in Plural as a quotient of G-algebra
A = k〈e1, e2, . . . , en | eiej = −ejei, ∀j > i〉 modulo a two-sided ideal I ⊂ A
generated as follows

I = 〈{e2
i + mi | 1 ≤ i ≤ n, mi ∈ {−1, 0, 1}}〉

where for any constants mi, the polynomials {e2
i + mi | 1 ≤ i ≤ n} give a

two-sided Gröbner basis in I. In particular, if we set mi = 0, 1 ≤ i ≤ n, we
get the Grassmann algebra [37].

• Clifford algebra C`(B) of a general form B is not realized in Plural.
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6. Grassmann and Clifford algebras in Plural

G-algebras are defined in Plural [50] using ring command extended to non-
commutative variables. Then, a GR-algebra is defined as a quotient of a G-algebra
modulo a two-sided ideal I. It is of the type qring, for example, qring Q =
twostd(I). There are various special-purpose libraries for pre-defined algebras.
In particular, clifford.lib for Clifford algebras C`(Q) and nctools.lib for
non-commutative algebras including Grassmann algebra.

We give a few examples of computation of Gröbner bases. In a special case
of a Grassmann algebra, definition of an admissible order is as follows.

Definition 6.1.
In Grassmann algebra, a monomial order < is admissible if:
(1) m > 1 for every monomial m in the Grassmann basis;
(2) If m2 > m1 then ml ∧m2 ∧mr > ml ∧m1 ∧mr for all monomials m1, m2,

ml, and mr as long as ml ∧m2 ∧mr 6= 0 and ml ∧m1 ∧mr 6= 0.

It can be easily checked that the only admissible orders in Grassmann algebras
are: Lex, InvLex, Deg[Lex], and Deg[InvLex].

Example 8. Here is a syntax to compute a Gröbner basis for the Deg[Lex] order
in a left ideal I = 〈2e1 ∧ e2 + e2 − 4e3 ∧ e4, e1〉 in the Grassmann algebra

∧
R4.

Procedure Exterior from Plural is used to set up the algebra. Notice that in
Plural the wedge product ∧ is just entered as ∗ with the software keeping track
of the order of the arguments.4

LIB "nctools.lib";
ring R = 0,(e1,e2,e3,e4),dp;
def ER = Exterior();
setring ER;
ideal I =
2*e1*e2
+ e2
+ -4*e3*e4
,
e1
;
short=0;
option(redSB);
ideal GB = std(I);
write(":w C:/transferM/Out.txt",GB);
quit;

The Gröbner basis for I is {1}, hence the ideal I is the entire algebra.

4In the code below, the write line causes Plural to write its output into a file Out.txt that
will later be read into Maple through the SINGULARPLURALlink package [2]. The line can
be omitted when working directly with Plural.
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Example 9. Consider an ideal I = 〈2e1 ∧ e2 + e2 − 4e3 ∧ e4, e1〉 ⊂
∧

R4. Plural
and TNB return the following Gröbner basis for I in the Deg[Lex] order:

{e2 ∧ e3, e2 ∧ e4, 4e3 ∧ e4 − e2, e1} (6.1)

Example 10. Consider polynomials f1 = e5∧e6−e2∧e3 and f2 = e4∧e5−e1∧e3

in
∧

R6. The Gröbner basis for the ideal I = 〈f1, f2〉 in Deg[Lex] order returned
by Plural and TNB is

{e145, e245 + e156, e256, e345, e356, e13 − e45, e23 − e56} (6.2)

where e145 = e1 ∧ e4 ∧ e5, etc. This basis is different from the Gröbner GLB basis
in Stokes (see below) for this ideal which is

{e56 − e23, e45 − e13, e234 + e136, e1236}. (6.3)

Basis (6.2) is a GLIB basis in Stokes’ terminology that solves the ideal membership
problem while basis (6.3) is a GLB basis that does not solve that problem, hence
it is different from (6.2).

Example 11. We compute a Gröbner basis in a left ideal I = 〈e1 +2e2, 3e1 +e1e2〉
in C`2,0. The monomial order is dp= Deg[Lex].
LIB "clifford.lib";
ring R = 0,(e1,e2),dp;
option(redSB);
option(redTail);
matrix M[2][2];
M[1,1]=2;M[2,2]=2;
clifAlgebra(M);
qring Q =twostd(clQuot);
ideal I =
e1
+ 2*e2
,
3*e1
+ e1*e2
;
short=0;
ideal GB = std(I);

The Gröbner basis for I is {1}, hence the ideal I is the entire algebra.

Example 12. Take C`2,0
∼= Mat(2, R) and a primitive idempotent f = 1

2 (1 + e1).
Let S = C`2,0f = spanR{f, e2f} be a spinor ideal. Then a Gröbner basis for S in
the monomial order dp = Deg[Lex] is h = 1 + e1. Note that h = 2f is an almost
idempotent.

Example 13. Consider C`3,3
∼= Mat8(R) with a monomial order Deg[InvLex].

This order has no special name in Plural but we’ll call it “degree inverse lex
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order” drp. It can be entered in Plural as (a(1:n),rp) where n refers to the
number of non-commuting generators.

Algebra C`3,3 is a simple algebra and any primitive idempotent f will be a
product of three non-primitive idempotents [40]. In particular,

f = 1
2 (1 + e14) 1

2 (1 + e25) 1
2 (1 + e36) (6.4)

Then, a spinor left ideal S = C`3,3f ∼= R8 may be spanned by the following basis:

S = C`3,3f = spanR{f, e1f, e2f, e3f, e12f, e13f, e23f, e123f} (6.5)

Let F be a list of the basis elements. A Gröbner basis for S returned by Plural
contains this single polynomial

g = e456 + e156 − e246 + e126 + e345 − e135 + e234 + e123 (6.6)

which is nilpotent g2 = 0 and g̃ = −g. Then g is related to the original idempotent
f through a unit: f = ug where u = −e123 = −u−1. Thus, S = C`3,3g = C`3,3f
as left ring ideals.

Furthermore, notice that the relation f = ug implies f̃ = g̃ũ = (−g)(−u) =
gu hence S̃ = f̃C`3,3 = gC`3,3. Thus g generates the left spinor space S as well as
the right space S̃ of conjugate spinors.

Example 14. Take C`3,1
∼= Mat(4, R) and a primitive idempotent

f1 = 1
4 (1 + e1)(1 + e34). (6.7)

Let S1 = C`3,1f1 = spanR{f1, e2f1, e3f1, e23f1} be a spinor ideal. We set the same
monomial order dp = Deg[Lex] in Plural.

Then, a Gröbner basis G for S1 contains only one polynomial:

g = e13 + e14 − e3 − e4 = −e3f1, g2 = 0, f1 = −e3g. (6.8)

It is interesting to note that the idempotent f1 does not constitute a Gröbner basis
for S1. Relations (6.8) imply that since f1 and g differ by a unit, we get the same
ideal S1 = C`3,1f1 = C`3,1g. Obviously, since G is a Gröbner basis for S1, we have

NF(f1, G) = NF(e2f1, G) = NF(e3f1, G) = NF(e23f1, G) = 0.

So, for any spinor s ∈ S1 we also get NF(s,G) = 0. Now let f̃1 be the reversion
of f1. So,

f2 = f̃1 = 1
2 (1 + e1) 1

2 (1− e34), f2f2 = f2, f2f1 = f1f2 = 0,

thus f2 is a primitive idempotent and it generates another spinor ideal S2 =
C`3,1f2. Let s2 ∈ S2 then obviously NF(s2, G) 6= 0. For example, if

s2 = (4 + 6e23 − 2e123)f2 = e123 − e124 − e134 + e23 − e24 − e34 + e1 + 1 ∈ S2

then NF(s2, G) = −2e124 − 2e24 + 2e1 + 2 6= 0. This is of course the case since
the Gröbner basis G solves the ideal membership problem for the ideal S1 and
S2 ∩ S1 = {0}.
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This last example shows the usefulness of the Gröbner basis for any left spinor
ideal S ⊂ C`p,q : Element p ∈ C`p,q belongs to S if and only if NF(p, G) = 0; that
is, the remainder on division of p on G is zero where G is a Gröbner basis for S
for some admissible monomial order.

Let’s continue this last example.

Example 15. Take again C`3,1
∼= Mat(4, R) and a complete set of primitive mutu-

ally annihilating idempotents summing up to 1 :

f1 = 1
4 (1 + e1)(1 + e34), f2 = 1

4 (1 + e1)(1− e34),

f3 = 1
4 (1− e1)(1 + e34), f4 = 1

4 (1− e1)(1− e34). (6.9)

Let Si = C`3,1fi, i = 1, 2, 3, 4, be the corresponding left spinor spaces; that is,
left minimal ideals in C`3,1. A Gröbner basis in dp = Deg[Lex] monomial order for
each ideal is given, respectively for each ideal, by a single nilpotent element:

g1 = e13 + e14 − e3 − e4, g2 = e13 − e14 − e3 + e4,

g3 = e13 + e14 + e3 + e4, g4 = e13 − e14 + e3 − e4. (6.10)

Let u = − 1
4e3, hence u is a unit in C`3,1. Due to the following set of identities,

f1 = ug1, f2 = ug2, f3 = −ug3, f4 = −ug4 (6.11)

f̄1 = g1u, f̄2 = g2u, f̄3 = −g3u, f̄4 = −g4u (6.12)

where f̄1 denotes conjugation in C`3,1, we see that Si = C`3,1fi = C`3,1gi, and
S̄i = f̄iC`3,1 = giC`3,1 since ḡi = −gi, for i = 1, 2, 3, 4. Thus, these nilpotent
elements gi’s can be used instead of the idempotents fi’s to generate left and
right spinor ideals. Finally, we have this interesting way to factor each primitive
idempotent into a product of nilpotents:

g4ḡ1 = 16f1, g1ḡ4 = 16f4, g2ḡ3 = 16f3, g3ḡ2 = 16f2

with all other products gigj = 0.

The last three examples may leave a false impression that a spinor ideal
is always generated, as a left ideal in C`p,q considered as a ring, by a Gröbner
basis consisting of one nilpotent generator. This last statement is true for these
semisimple Clifford algebras: C`2,1, C`3,2, C`4,3 yet it is not true for C`0,7. In the
next example we show that C`0,7 is rather special in that any spinor ideal S =
C`0,7f is generated by seven mutually annihilating nilpotent elements. Due to the
importance of this algebra in triality [40, 44], we compute a Gröbner basis for a
left spinor ideal in C`0,7 and show its relation to a standard vector basis for S.

Example 16. Let S = C`0,7f where f is a primitive idempotent used by Lounesto
(see [40, p. 307]). Thus,

f = 1
16 (1 + w)(1− e12...7) = 1

16 (1− e124)(1− e137)(1− e156)(1− e235), (6.13)

where 1
2 (1±e12...7) is a central idempotent and w = ve−1

12...7. Element v ∈
∧3 R0,7

defines Fano triples and can be used to define octonionic product a ◦ b of two
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paravectors a, b ∈ R ⊕ R0,7 as shown by Lounesto. Element v is uniquely defined
by the chosen primitive idempotent f as v = we12...7 and w = 8(f + f̂) − 1. 5

Here, v = e124 + e235 + e346 + e457 + e561 + e672 + e713. A Gröbner basis for the
ideal S = C`0,7f in monomial order drp = Deg[InvLex] is:

g1 = e7f, g2 = e6f, g3 = e5f, g4 = e4f, g5 = e3f, g6 = e2f, g7 = e1f. (6.14)

It can be easily checked that gigj = 0, i, j = 1, . . . , 7. Units ei, i = 1, . . . , 7,
link these generators to the idempotent f. Of course, a Gröbner basis for the
corresponding ideal Ŝ = C`0,7f̂ is

ĝ1 = e7f̂ , ĝ2 = e6f̂ , ĝ3 = e5f̂ , ĝ4 = e4f̂ , ĝ5 = e3f̂ , ĝ6 = e2f̂ , ĝ7 = e1f̂ , (6.15)

and again ĝiĝj = 0. It is interesting to note that all seven nilpotent polynomi-
als (6.14) together with the idempotent f constitute eight basis elements for S
considered as a vector space.

In our last example in this section we will list Gröbner bases G for left spinor
ideals S = C`p,qf in all semisimple and simple Clifford algebras in dimensions
2 ≤ p + q ≤ 8. Furthermore, we discuss only Clifford algebras C`p,q such that
fC`p,qf ∼= R, that is, when p−q mod 8 = 0, 1, or 2. As our primitive idempotents
f we will pick the ones listed in [1, 3]. The Gröbner bases for the monomial order
drp = Deg[InvLex] usually consist of one single nilpotent element, although there
are exceptions. We will list also unit(s) (up to a non-zero constant) linking the
Gröbner basis polynomial(s) with the generating idempotent f. That is, f = uigi,
i = 1, . . . , |G|.

Example 17.
A. Semisimple algebras (p− q = 1 mod 4).
• S = C`2,1f = LI(g) where g = e13 + e12 − e3 − e2, g2 = 0, and u = e2.
• S = C`3,2f = LI(g) where g2 = 0, u = e23, and

g = e145 + e125 − e134 + e123 + e45 + e25 − e34 + e23. (6.16)

• (Exception) S = C`0,7f = LI(g1, . . . , g7) where f = uigi, gigj = 0, 1 ≤ i, j ≤
7, and the units are e7, e6, e5, e4, e3, e2, e1.

• S = C`4,3f = LI(g) where g2 = 0, u = e234, and

g = e1567 + e1267 − e1357 + e1237 + e1456 − e1246 + e1345 + e1234

− e567 − e267 + e357 − e237 − e456 + e246 − e345 − e234. (6.17)

B. Simple algebras when p− q 6= 1 mod 4.

• S = C`1,1f = LI(g) where g = e1 + e2, g2 = 0, and the unit u = e1.
• (Exception) S = C`2,0f = LI(g) where g = 1 + e1, g2 = 2g, and u = 1.
• S = C`2,2f = LI(g) where g = e34 + e14 − e23 + e12, g2 = 0, and u = e12.
• S = C`3,1f = LI(g) where g = e13 + e14 − e3 − e4, g2 = 0, and u = e3.

5Of course, the choice of Fano triples decides the form of v which in turn decides which primitive
idempotent f is chosen to generate the spinor ideal.
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• (Exception) S = C`0,6f = LI(g1, . . . , g5) where f = uigi, gig1 6= 0, gigj = 0
for 1 ≤ i ≤ 5, 2 ≤ j ≤ 5, g2

1 = g1, g2
i = 0, i = 2, . . . , 5, and the units are

1, e1, e3, e5, e6.
• S = C`3,3f = LI(g) where g2 = 0, u = e123, and

g = e456 + e156 − e246 + e126 + e345 − e135 + e234 + e123. (6.18)

• S = C`4,2f = LI(g) where g2 = 0, u = e34, and

g = e156 + e136 − e145 + e134 + e56 + e36 − e45 + e34. (6.19)

• (Exception) S = C`0,8f = LI(g1, . . . , g7) where

f = 1
16 (1 + e123)(1 + e345)(1 + e146)(1 + e367),

f = uigi, gigj = 0, for 1 ≤ i, j ≤ 7, and the units are e7, e6, e5, e4, e3, e2, e1.
• (Exception) S = C`1,7f = LI(g1, . . . , g5) where f = uigi, gigj = 0, for

1 ≤ i, j ≤ 5, and the units are e1, e14, e12, e17, e16.
• S = C`4,4f = LI(g) where g2 = 0, u = e1234, and

g = e5678 + e1678 − e2578 + e1278 + e3568 − e1368 + e2358 + e1238

− e4567 + e1467 − e2457 − e1247 + e3456 + e1346 − e2345 + e1234. (6.20)

• S = C`5,3f = LI(g) where g2 = 0, u = e345, and

g = e1678 + e1378 − e1468 + e1348 + e1567 − e1357 + e1456 + e1345

− e678 − e378 + e468 − e348 − e567 + e357 − e456 − e345. (6.21)

• (Exception) S = C`8,0f = LI(g1, . . . , g7) where

f = 1
16 (1 + e1)(1 + e2345)(1 + e4567)(1 + e2468),

f = uigi, gig1 6= 0, for 1 ≤ i ≤ 7, gigj = 0 for 1 ≤ i ≤ 7, 2 ≤ j ≤ 7, g2
1 = g1,

g2
i = 0, i = 2, . . . , 7, and the units are 1, e2, e5, e7, e8, e23, e24.

Let us summarize our findings. As above, S = C`p,qf is a left spinor ideal.
1. In all cases other than the Exceptions, S has a Gröbner basis consisting of

one nilpotent element.
2. In C`0,7 and C`0,8, the ideal S has a Gröbner basis consisting of seven mu-

tually annihilating nilpotents.
3. In C`1,7, the left ideal S has a Gröbner basis consisting of five mutually

annihilating nilpotents.
4. In C`0,6, the Gröbner basis for S has five elements: one idempotent and four

nilpotents.
5. In C`8,0, the Gröbner basis for S has seven elements: one idempotent and six

nilpotents.
6. In C`2,0, the only Gröbner basis polynomial is the generating idempotent.
7. In every case, each Gröbner basis polynomial is related via a different unit

to the generating idempotent f.

The reason(s) for these exceptions should be explained.
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7. GLB and GLIB bases in Grassmann algebras

In 1990 Timothy Stokes showed that Grassmann algebra is suitable for algorithmic
treatment when treated as graded-commutative algebra of “exterior polynomials”.
In [51] he defined two different Gröbner bases for left ideals in (super) Grassmann
polynomial algebra

∧
n,m of order (n, m) over a field k, char k 6= 2. Furthermore,

he proved convergence of his algorithms for computing Gröbner Left Bases (GLB)
and Gröbner Left Ideal Basis (GLIB) for such ideals.

Stokes showed that obtaining Gröbner bases in Grassmann algebras is more
complicated than in PBW algebras, which are domains, due to the abundance of
zero divisors. This led him to the two types of Gröbner bases. Such dichotomy of
bases does not exist in PBW algebras. In this section we will briefly summarize
Stokes’ approach as it is very instructive in gaining a better understanding of the
computational differences.

Definition 7.1 (Stokes). The (super) Grassmann polynomial algebra
∧

n,m of order
(n, m) over a field k, char k 6= 2, is the associative algebra k[α1, . . . , αm] ⊗

∧
V

where V = spank{e1, . . . , en}.

Stokes proved that
∧

n,m is left noetherian and, hence, every left ideal has a
finite basis. Thus, in particular, the Grassmann algebra

∧
n (identified with

∧
n,0)

is left noetherian. Any product p of variables (a monomial) in
∧

n,m can be written
in a unique canonical way by applying the commuting and anticommuting rules
above once we select a linear order, for example, e1 < e2 < · · · < en < α1 <
α2 < · · · < αm. Following Stokes, let p denote the unique corresponding element
in the set of monomials and let Tn,m be the set of those monomials for which p = p
(Stokes calls them positive).

In order to define a Gröbner basis, as we have seen above, one needs to define
an admissible monomial order on Tn,m, a reduction relation that will be noetherian
(so that a sequence of reductions of any f ∈

∧
n,m would terminate after a finite

number of steps), a definition of a Gröbner basis, and an algorithm to compute
such basis that will terminate.

Definition 7.2 (Stokes). A total ordering ≤ on Tn,m is compatible (or, admissible)
if, for all s, t, u ∈ Tn,m, (i) 1 < t, and (ii) If s < t then us < ut, as long as us 6= 0
and ut 6= 0 (and, automatically, su < tu by graded-commutativity).6

One such order is the ‘total degree order’ (or, Deg[InvLex]) on
∧

3 :

e123 > e23 > e13 > e12 > e3 > e2 > e1 > 1

and another is Deg[Lex] which gives:

e123 > e12 > e13 > e23 > e1 > e2 > e3 > 1

6The condition 1 < t for all t ∈ Tn,m is necessary to guarantee termination of the division

algorithm. See also [43].
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Proposition 7.3 (Stokes). Every compatible order on Tn,m is a well-order, i.e.,
every non-empty subset of Tn,m has a smallest element w.r.t. to the order.

One can now define, in a standard way, LTerm(f), LCoeff(f), LMon(f), and
coef(f, t) for any polynomial f ∈

∧
n,m and term t of f.

Definition 7.4 (Stokes). Let F be a finite list of polynomials. Then, polynomial g
left reduces to h modulo F, denoted g →F h, if there exist an u ∈ Tn and f ∈ F
with h = g − buf, and

coef(g, u · LTerm(f)) 6= 0, b = coef(g, u · LTerm(f))/LCoeff(f) · sign

where and sign = coef(u · LTerm(f), u · LTerm(f)). Here →F is the reduction
relation for F.

As a consequence of Proposition 7.3, Stokes proved that the reduction relation
→F is a noetherian relation; that is, there is no infinite sequence of reductions of
any f ∈

∧
n,m . Thus, h will be a normal form of f modulo F if there is a finite

sequence of reductions

f →F f1 →F f2 →F · · · →F h

yet @ h′ ∈
∧

n,m such that h →F h′. We will the write NF(f, F ) = h for the given
admissible order < .

Requiring →F to be confluent and terminating reduction relation leads to
the idea of a GLB basis for left ideals whereas requiring that any polynomial in
the left ideal generated by the basis reduces to zero modulo the basis leads to the
idea of a GLIB basis. Recall the following definition of reduction relations from
[13,14,51].

Definition 7.5. Let ↔∗
F be the equivalence relation defined by →F , that is, ↔∗

F is
the reflexive, symmetric, and transitive closure of →F . Let →∗

F be the reflexive
transitive closure of →F . Reduction →F on a set S is confluent if for all x, y, z,∈ S,
whenever z →∗

F x and z →∗
F y, there is w ∈ S such that x →∗

F w and y →∗
F w.

We say f ≡l
F g (f is left-congruent to g modulo F ) whenever f − g ∈ LI(F ) and

f ≡F g (f is congruent to g modulo F ) whenever f − g ∈ Ideal(F ).7

A Gröbner left basis (GLB) basis for a left ideal LI(F ) is defined by Stokes
as follows.

Definition 7.6. F is a Gröbner left basis (GLB) for a left ideal LI(F ) if for all g, h1

and h2 in
∧

n,m, if h1 and h2 are normal forms of g modulo F, then h1 = h2.

Thus, a GLB basis F gives uniqueness of the normal form when reducing
any polynomial modulo the basis, but, as we will see, it does not solve the left
ideal membership problem. The following theorem due to Stokes [51] characterizes
a GLB basis and gives a foundation for his algorithm to compute it.

7LI(F ) (resp., Ideal(F )) denotes the left ideal (resp., ideal) in
V

n,m generated by F.
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Theorem 7.7 (GLB Characterization Theorem). The following conditions are equiv-
alent.

(i) F is a GLB.
(ii) If f1, f2 ∈ F, and t ∈ Tn,m satisfies t · lcm(LMon(f1), LMon(f2)) 6= 0, then

t · S(f1, f2) →∗
F 0 where S(f1, f2) is an S-polynomial of f1, f2.

8

Note the important difference with the commutative case: It is not just
S(f1, f2) →∗

F 0 that is required but also t ·S(f1, f2) →∗
F 0. This is because f →∗

F 0
does not imply t ·f →∗

F 0 for all terms t ∈ Tn,m due to the presence of zero divisors
in

∧
n,m .

Example 18. Let f1 = e2456−e3, f2 = e14−e1, f3 = e3 ∈
∧

6 and let the admissible
monomial order be Deg[InvLex]. A GLB basis G for the left ideal LI(f1, f2, f3)
required computation of six S-polynomials and is as follows:

f1 = e2456 − e3, f2 = e14 − e1, f3 = e3, f4 = −e13 + e1256. (7.1)

It can be easily demonstrated that even if f ∈ LI(f1, f2, f3) = LI(G), the remainder
NF(f,G) need not be zero. For example, letting

f = f1 + (−6− 6e24 + e16 − 6e3 + e35)f2+

(−2 + 4e3 − 6e5 − 6e1346)f3 + (e126 + e24)f4

= −3e3 + e2456 − 6e13 − 6e14 + 6e1+

6e124 + 6e134 − e135 − e1345 + 6e35 + e1234 (7.2)

we find that NF(f,G) = −2e3 + 6e12 even though NF(fi, G) = 0, i = 1, . . . , 4.

It should be observed that the GLB Characterization Theorem:
• Does not guarantee that the GLB basis G produced by the algorithm based

on Theorem 7.7 is unique, minimal, or reduced.
• NF(S(fi, fj), G) = 0, fi 6= fj , fi, fj ∈ G like for any Gröbner basis in a

commutative case, but also NF(t · S(fi, fj), G) = 0, fi 6= fj , fi, fj ∈ G but
only for t ∈ Tn,m such that t · lcm(LMon(fi), LMon(fj)) 6= 0.

• Does not guarantee that NF(t ·S(f1, f2), G) = 0, f1, f2 ∈ G, for every Grass-
mann basis monomial t. However, it is possible to include such extra non-zero
remainders in G and a new set is also a GLB basis.

A Gröbner left ideal basis is defined as follows.

Definition 7.8 (Stokes). F is a Gröbner left ideal basis (GLIB) for LI(F ) if f ∈
LI(F ) implies that f →∗

F 0.

Stokes showed that every GLIB Gröbner basis is a GLB Gröbner basis and
proved the following useful characterization theorem.

Theorem 7.9 (GLIB Characterization Theorem). The following statements are
equivalent.

8The S-polynomial S(f1, f2) is defined in a similar manner as we have seen it before. See [51] for
details.
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(i) F is a GLIB.
(ii) If f1, f2 ∈ F, then for any t ∈ Tn,m, t·f1 →∗

F 0 and t·LeftSpoly(f1, f2) →∗
F 0.

(iii) For f1, f2 ∈ F and for any t1, t2 ∈ Tn,m satisfying the conditions

t1 · LTerm(f1) = 0 and t2 · lcm(LTerm(f1), LTerm(f2)) 6= 0,

then t1 · f1 →∗
F 0 and t2 · LeftSpoly(f1, f2) →∗

F 0.

Remark 7.10. See Stokes [51] for a discussion of correctness and termination of his
algorithm to compute a GLIB basis G from the initial list F. Stokes proves that
LI(F ) = LI(G).

Example 19. Let f1, f2, f3 be as in Example 18. A GLB basis for LI(f1, f2, f3) was
shown in (7.1). A GLIB basis G1 for LI(f1, f2, f3) for the same monomial order
Deg[InvLex]required computation of six S-polynomials and is given by

g1 = e2456 − e3, g2 = e14 − e1, g3 = e3, g4 = e1 (7.3)

This time, we find that NF(f,G1) = 0 where f is given in (7.2).

For a more detailed presentation of algorithms that compute GLB and GLIB
bases as well as for more detailed step-by-step examples see [11,12].

8. Conclusions

Here are some computational differences and similarities when computing Gröbner
bases in k[x1, . . . , xn], and Grassmann and Clifford algebras:

• k[x1, x2, . . . , xn] is a domain for any field k–in fact, it is a unique factorization
domain (UFD). In particular, it has no non-zero zero divisors. Grassmann
algebras are never domains whereas most Clifford algebras C`(Q) are not
domains either as they possess non-trivial idempotents e2 = e, e 6= 0, 1, and
e(e− 1) = 0.

• Let R = k[x1, . . . , xn] and k be a field. Then, R is a noetherian ring. In
particular, every ideal in R is finitely generated, equiv., R has ACC, equiv.,
R satisfies the maximum condition: Every non-empty family F of ideals in R
has a maximal element. Any quotient ring R/I where I is any ideal, is also
noetherian.

• Grassmann algebras and superalgebras are left noetherian [51].
• Left and right ideals in Grassmann and Clifford algebras do not coincide due

to non-commutativity whereas they are identical in k[x1, . . . , xn].
• In the polynomial ring k[x1, . . . , xn] the division algorithm terminates due

to noetherianness of the ring. Some non-commutative algebras are not noe-
therian [43]; therefore, the division algorithm may not terminate in general.
However, Grassmann algebra is left noetherian as it has no infinite ascending
chain of ideals [46,51].
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• When reducing an S-polynomial S(fi, fj) ∈ R = k[x1, . . . , xn] modulo a finite
set of polynomials F, for example, when computing a Gröbner basis, suppose
S(fi, fj)

F
= 0. Then, m · S(fi, fj)

F
= 0 for any monomial m = xα ∈ R. This

is often not the case in Grassmann or Clifford algebra due to the presence
of non-zero zero divisors. This complicates computation of Gröbner bases in
these algebras.
A major difference aside from the non-commutativity when computing Gröb-

ner bases in Grassmann and Clifford algebras is the presence, if not abundance,
of non-zero zero divisors. Algorithms to compute a left normal form and then a
left Gröbner basis in [35, 36] generalize the classical Buchberger’s algorithm from
k[x1, . . . , xn] to a quotient GR-algebras and solve the ideal membership problem.
However, care must be taken as vanishing of an S-polynomial modulo a set of
“polynomials” in Grassmann or Clifford algebra does not guarantee its vanish-
ing when the S-polynomial is pre-multiplied by a basis monomial. This has been
shown clearly by Stokes [51] who has introduced two types of Gröbner bases in
left ideals in Grassmann algebra: a GLB basis which guarantees uniqueness of a
the remainder, and GLIB which also guarantees that f

G
= 0 modulo a GLIB-type

Gröbner basis G is equivalent to f ∈ 〈G〉. See [11] for implementation of GLB and
GLIB bases for Grassmann algebras in a Maple package TNB.

Finally, we mention that non-commutative Gröbner bases in Grassmann al-
gebras and the issue of ideal membership surface when analyzing systems of partial
differential equations that arise in physics, i.e., in exterior differential systems as
shown in [29] and references therein. In particular, Hartley and Tuckey provide
another approach through the so called saturating sets to Gröbner bases in Grass-
mann and Clifford algebras in a REDUCE package called XIDEAL. A major appli-
cation emphasized in the paper is that Gröbner bases may help simplify exterior
differential systems and so help solve systems of partial differential equations.
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[29] D. Hartley and Ph. Tuckey, Gröbner Bases in Clifford and Grassmann Algebras,
Preprint, 1995.

[30] A. Hayworth, One Sided Non-Commutative Gröbner Bases with Applications to
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