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Abstract Gröbner bases in polynomial rings have numerous applications in geome-

try, applied mathematics, and engineering. We show a few applications of Gröbner

bases in robotics, formulated in the language of Clifford algebras, and in engineer-

ing to the theory of curves, including Fermat and Bézier cubics, and interpolation

functions used in finite element theory.1
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1 Introduction

Gröbner bases were introduced in 1965 by B. Buchberger. [5–8] For an excellent

exposition on their theory see [10,11,17] while for a basic introduction with applica-

tions see [9]. These bases gave rise to development of computer algebra systems like

muMath, Maple, Mathematica, Reduce, AXIOM, CoCoCA, Macaulay, etc. Buch-

berger’s Algorithm to compute Gröbner bases has been made more efficient [5] or

replaced with another approach [12]. Algorithms to compute Gröbner bases have

been implemented, for example, in Maple [20], Singular [15,25], and FGb [12]. For

a multitude of applications of Gröbner bases see [8,14] and, in particular, an online

repository [16]. For a recent new application in geodesy, see [4].
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2 Gröbner basis theory in polynomial rings

We follow presentation and notation from [10]. Let k[x1, . . .,xn] be a polynomial ring

in n indeterminates over a field k. Let f1, . . ., fs be polynomials in k[x1, . . .,xn]. Then

〈 f1, . . ., fs〉 denotes an ideal finitely generated by the chosen polynomials. We say

that the polynomials form a basis of the ideal. Then, by V( f1, . . ., fs) we denote an

affine variety defined by f1, . . ., fs, that is, a subset of kn, possibly empty, consisting

of all common zeros of f1, . . ., fs, namely

V( f1, . . ., fs) = {(a1, . . .,an) ∈ kn | fi(a1, . . .,an) = 0 for all 1 ≤ i ≤ s}.

In order to define Gröbner bases in the ideals of k[x1, . . .,xn], we first need a concept

of a monomial order.

Definition 1. A monomial order on k[x1, . . .,xn] is any relation > on Z
n
≥0 =

{(α1, . . .,αn) |αi ∈ Z≥0}, or equivalently, any relation on the set of monomials

xα , α ∈ Z
n
≥0, satisfying: (i) > is a total ordering on Z

n
≥0 (for any α,β ∈ Z

n
≥0,

α > β ,α = β or β > α); (ii) If α > β and γ ∈ Z
n
≥0, then α + γ > β + γ; (iii)

> is a well-ordering on Z
n
≥0 (every nonempty subset has smallest element). We

will say that xα > xβ when α > β . Let f = ∑α aα xα be a nonzero polynomial in

k[x1, . . .,xn]. Then, the multidegree of f is

multideg( f ) = max{α ∈ Z
n
≥0 : aα 6= 0}

where the maximum is taken with respect to > . The leading coefficient of f is

LC( f ) = amultideg( f ); the leading monomial of f is LM( f ) = xmultideg( f ); and the

leading term of f is LT( f ) = LC( f ) ·LM( f ).

Some of the monomial orders are: (i) lexicographic (lex)2: α >lex β if, in the vector

difference α −β ∈ Z
n, the left-most nonzero entry is positive; (ii) graded reverse

lex: α >grevlex β if either |α| > |β |, or |α| = |β | and in α −β ∈ Z
n the right-most

nonzero entry is negative; (iii) graded inverse lex: α >ginvlex β if either |α|> |β |, or

|α|= |β | and in α −β ∈ Z
n the right-most nonzero entry is positive.

In order to divide any polynomial f by a list of polynomials f1, . . ., fs, we need

a generalized division algorithm.

Theorem 1 (General Division Algorithm). Fix a monomial order > on Z
n
≥0, and

let F = ( f1, . . ., fs) be an ordered s-tuple of polynomials. Then every f ∈ k[x1, . . .,xn]
can be written as

f = a1 f1 + · · ·as fs + r, (1)

where ai, r ∈ k[x1, . . .,xn] and either r = 0 or r is a linear combination, with coef-

ficients in k, of monomials, none of which is divisible by any of LT( f1), . . .,LT( fs).
We call r a remainder of f on division by F. Furthermore, if ai fi 6= 0, then we have

multideg( f ) ≥ multideg(ai fi).

2 In the following, lex(x1, . . .,xn) will denote the lex order in which x1 > x2 > · · ·> xn.
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The remainder r in (1) is not unique as it depends on the order of polynomials in F

and on the monomial order. This shortcoming of the Division Algorithm disappears

when we divide polynomials by a Gröbner basis.

Definition 2. Let I ⊂ k[x1, . . .,xn] be a nonzero ideal. Then, LT(I) is the set of lead-

ing terms of elements of I and 〈LT(I)〉 is the ideal generated by the elements of

LT(I).

The ideal 〈LT(I)〉 is an example of a monomial ideal. Dickson’s Lemma states that

every monomial ideal I ⊂ k[x1, . . .,xn] has a finite basis. [10] Since the polynomial

ring k[x1, . . .,xn] is noetherian, the famous theorem of Hilbert states that every ideal

I ⊂ k[x1, . . .,xn] is finitely generated.

Theorem 2 (Hilbert Basis Theorem). Every ideal I ⊂ k[x1, . . .,xn] has a finite gen-

erating set. That is, I = 〈g1, . . .,gs〉 for some g1, . . .,gs ∈ I.

Definition 3. Fix a monomial order. A finite subset G = {g1, . . .,gt} of an ideal I is

said to be a Gröbner basis if 〈LT(g1), . . .,LT(gt)〉 = 〈LT(I)〉.
As a consequence of Hilbert’s theorem, every ideal I ⊂ k[x1, . . .,xn] other than {0}
has a Gröbner basis once a monomial order has been chosen.

When dividing f by a Gröbner basis, we denote the remainder as r = f
G
. Due

to the uniqueness of r, one gets unique coset representatives for elements in the

quotient ring k[x1, . . .,xn]/I : The coset representative of [ f ] ∈ k[x1, . . .,xn]/I will

be f
G
.

Gröbner bases are computed using various algorithms. The most famous one is

the Buchberger’s algorithm that uses S-polynomials. One of its many modifications

is discussed in [10] whereas [12] implements a completely different approach.

Definition 4. The S-polynomial of f1, f2 ∈ k[x1, . . .,xn] is defined as S( f1, f2) =
xγ

LT( f1)
f1 − xγ

LT( f2)
f2, where xγ = lcm(LM( f1),LM( f2)) and LM( fi) is the leading

monomial of fi w.r.t. some monomial order.3

Theorem 3 (Buchberger Theorem). A basis {g1, . . .,gt} ⊂ I is a Gröbner basis of

I if and only if S(gi,g j)
G

= 0 for all i < j.

Buchberger’s algorithm for finding a Gröbner basis implements the above criterion:

If F = { f1, . . ., fs} fails because S( fi, f j)
G 6= 0 for some i < j, then add this remain-

der to F and try again.

Gröbner bases computed with the Buchberger’s algorithm are usually too large:

A standard way to reduce them is to replace any polynomial fi with its remainder

on division by { f1, . . ., fi−1, fi+1, . . ., ft}, removing zero remainders, and for poly-

nomials that are left, making their leading coefficient equal to 1. This produces a

reduced Gröbner basis. For a fixed monomial order, it is well known that any ideal

in k[x1, . . .,xn] has a unique reduced Gröbner basis. See, for example, [10] and ref-

erences therein.

3 Here, lcm(LM( f1),LM( f2)) denotes the least common multiple of the leading monomials

LM( f1) and LM( f2).
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2.1 Examples of using Gröbner bases

There are many problems, in many different areas of mathematics and applied sci-

ences, that can be solved using Gröbner bases. Here we just list a few applied prob-

lems:

− Solving systems of polynomial equations, e.g., intersecting surfaces and curves,

finding closest point on a curve or on a surface to the given point, Lagrange

multiplier problems (especially those with several multipliers), etc. Solutions to

these problems are based on the so called Extension Theory. [10]

− Finding equations for equidistant curves and surfaces to curves and surfaces

defined in terms of polynomial equations, such as conic sections, Bézier cu-

bics; finding syzygy relations among various sets of polynomials, for example,

symmetric polynomials, finite group invariants, interpolating functions, etc. So-

lutions to these problems are based on the so called Elimination Theory. [10]

− Finding equidistant curves and surfaces as envelopes to appropriate families of

curves and surfaces, respectively. [2,10]

− The implicitization problem, i.e., eliminating parameters and finding implicit

forms for curves and surfaces.

− The forward and the inverse kinematic problems in robotics. [7,10]

− Automatic geometric theorem proving. [7,8,10]

− Expressing invariants of a finite group in terms of generating invariants. [10]

− Finding relations between polynomial functions, e.g., interpolation functions

(syzygy relations).

− For recent applications in geodesy see [4].

− See also bibliography on Gröbner bases at Johann Radon Institute for Compu-

tational and Applied Mathematics (RICAM). [16]

Our first example is an inverse kinematics problem consisting of finding an elbow

point of a robot arm on the circle of intersection between two spheres. This problem

is elegantly formulated in the language of conformal algebra CGA in [18,19].

Example 1 (Elbow of a robot arm) We model CGA as a Clifford algebra of a 5-

dimensional real vector space V which is an extension of 3D Euclidean space by an

origin-infinity plane. Let {e1,e2,e3,e4,e5} be basis vectors for V which satisfy the

following relations in CGA:

e2
i = 1, ei ·e j = e j ·ei = 0, ei ·e4 = ei ·e5 = 0, e2

4 = e2
5 = 0, e4 ·e5 =−1. (2)

for i, j = 1,2,3, and i 6= j.4 Euclidean points, spheres, and planes are modeled,

respectively, in CGA by the following 5D vectors:

4 We identify e4 with the origin vector e0 and e5 with the infinity vector e∞ from [18]. Thus, CGA

is isomorphic to the Clifford algebra C`4,1. The dot · denotes the inner product in V.
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P = p+ 1
2

p2e∞ + e0, S = s+ 1
2
(s2 − r2)e∞ + e0, π = n+de∞ (3)

where p is the 3D point location, s is the 3D sphere center and r is the sphere

radius5, n is the 3D unit normal vector of the plane, and d is distance of the plane

from the origin. In particular, for a sphere we have S2 = r2.6 Two spheres S1 and

S2 intersect in a 3D circle (resp., a single point, or do not intersect) when S1 · S2 +
r1r2 > 0 (resp., S1 · S2 + r1r2 = 0, or otherwise). The circle is represented in CGA

by the element C = S1 ∧ S2.
It is shown in [18] that when two spheres intersect in a circle, the bivector C

equals the following quantity:

Z = c∧nc −nc ∧ e0 − (c ·nc)E +[(c ·nc)c− 1
2
(c2 − r2)nc]∧ e∞ (4)

where E = e∞∧e0, c is the circle center, r is its radius, and vector nc is normal to the

plane π in 3D containing the circle. We will solve a system of polynomial equations

resulting from the condition Z = C for the components of c, nc and for the radius r

with a Gröbner basis. For example, let

f1 = 4(x1 −1)2 +4x2
2 +4x2

3 −9 and f2 = (x1 +1)2 + x2
2 + x2

3 −4 (5)

be in R[x1,x2,x3]. Then, V( f1) and V( f2) are the two spheres viewed as varieties.

These two spheres are represented in CGA as these 1-vectors:

S1 = e1 − 5
8
e∞ + e0, S2 = −e1 − 3

2
e∞ + e0 (6)

Since S1 · S2 + r1r2 = 33
8

> 0, the spheres intersect in a circle C given as:

C = S1 ∧ S2 = − 17
8

e1 ∧ e∞ +2e1 ∧ e0 − 7
8
e0 ∧ e∞ (7)

By letting C = Z and nc = (n1,n2,n3), c = (c1,c2,c3), and by equating symbolic

coefficients at corresponding Grassmann basis monomials, we obtain the following

system of polynomial equations:

5 Of course, we can recover the analytic equation of the sphere by setting (x− s)2 = S2 where x is

a vector in 3D from the origin to a surface point on the sphere S.
6 To be precise, S2 = r21 where 1 is the identity element of CGA. When r = 0, the sphere becomes

a point.



6 Rafał Abłamowicz

f1 = c1n3 − c3n1 = 0,

f2 = −c3n2 + c2n3 = 0,

f3 = c1n2 − c2n1 = 0,

f4 = 8c3n3 +8c2n2 +8c1n1 +7 = 0,

f5 = −n1 −2 = 0, (8)

f6 = −n2 = 0,

f7 = −n3 = 0,

f8 = 8c1c2n2 +4c2
1n1 +17 +4n1r2 −4n1c2

2 +8c1c3n3 −4n1c2
3 = 0,

f9 = c2
2n2 +2c2c1n1 −n2c2

1 +2c2c3n3 +n2r2 −n2c2
3 = 0,

f10 = 2c3c2n2 + c2
3n3 +2c3c1n1 −n3c2

1 −n3c2
2 +n3r2 = 0

The reduced Gröbner basis for the ideal I generated by the above ten polynomials

in lex order with n1 > n2 > n3 > c1 > c2 > c3 > r is

{−495 +256r2,c3,c2,−7 +16c1,n3,n2,n1 +2} (9)

from which we get, as expected, that nc = (−2,0,0),c = (0,0,0), and r =
√

5
2

. In

the same way, one can handle the degenerate cases when the spheres just touch at a

single point, when one is included in the other, and when they do not intersect.

Our second example is related to the above and shows how to visualize the circle

of intersection of two spheres C = S1∩S2 as an intersection of a cylinder and a plane.

Often such visualizations simplify the picture and especially when one considers an

additional constraint.

Example 2 Let S1 and S2 be the spheres defined by the polynomials f1 and f2 given

in (5), that is, S1 = V( f1) and S2 = V( f2). Then, a reduced Gröbner basis for the

ideal J generated by these two polynomials for the lex order x > y > z is

G = {256x2
2 +256x2

3 −495,16x1−7} (10)

where the first polynomial c gives the cylinder V(c) and the second of course is the

plane V(π). Thus, the circle C = S1 ∩ S2 = V(c)∩V(π) can be visualized in two

different ways: As the intersection of the two spheres Fig. 1 or, as the intersection of

the cylinder and the plane Fig. 2. By adding an additional constraint consisting, for

example, of an additional plane V(π2) defined by a polynomial π2 = x3 −x1− 1
4
, we

can identify two points on the circle C and the plane π2. To find their coordinates,

it is enough to solve the system of polynomial equations f1 = 0, f2 = 0,π2 = 0. We

can employ the Gröbner basis approach once more by computing a reduced basis

for the ideal J generated by f1, f2,π2 for the lex order x1 > x2 > x3 and we get

G = {16x3 −11,128x2
2−187,16x1−7} (11)

which gives the two points P1,P2 = (x1 = 7
16

,x2 = ± 1
16

√
374,x3 = 11

16
).
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Fig. 1 Circle C as the intersection of two spheres V(S1)∩V(S2).

Our third example is a classical problem of finding equidistant curves (envelopes)

of various polynomial curves. Here we show how a general envelope of a parabola

can be computed in a general case. Such problems also appear in engineering in

designing cam mechanisms (cf. [23] and [26]).

Example 3 (Equidistant curves to a parabola) We compute equidistant curves to

a parabola defined by a polynomial

f1 = 4py0 − x2
0 = 0 (12)

where |p| denotes the distance between the focus F = (0, p) and the vertex V =
(0,0). Polynomial f2 defines a circle of radius (offset) r centered at a point (x0,y0)
on the parabola f1,

f2 = (y− y0)
2 +(x− x0)

2 − r2 = 0 (13)

while a polynomial f3,

f3 = 2xp−2x0 p + x0y− x0y0 = 0 (14)
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Fig. 2 Circle C as the intersection of the cylinder and the plane V(c)∩V(π1).

gives a condition that a point P(x,y) on the circle f2 lies on a line perpendicular

to the parabola f1 at the point (x0,y0). There are two such points for any given

point (x0,y0) : one on each side of the parabola. All these points P belong to an

affine variety V = V( f1, f2, f3) – the envelope of the family of circles – and define

two equidistant curves at the distance r from the parabola. To find a single polyno-

mial equation for this envelope, we compute a reduced Gröbner basis for the ideal

I = 〈 f1, f2, f3〉 ⊂ R[x0,y0,x,y, p, r] for a suitable elimination order. Then, eliminat-

ing variables x0 and y0 gives a single polynomial g ∈ R[x,y, p, r] that defines the

envelope. Polynomial g provides a Gröbner basis for the second elimination ideal

I2 = I ∩R[x,y, p, r].
The reduced Gröbner basis G for the ideal I for lex(y0,x0,x,y, r, p)order consists

of fourteen homogeneous polynomials while I2 = 〈g〉 where g is as follows:

g = −2pr2yx2 +8pr2y3 +8p2r2y2 −32yp3r2 +16p4r2 −16y4 p2 +32y3 p3

−16p4y2 +3r2x4 +8p2r4 +20p2r2x2 − y2x4 +10ypx4 − x6 − x4 p2

+8py3x2 −32x2y2 p2 +8x2yp3 −3r4x2 +2r2x2y2 + r6 − r4y2 −8pr4y (15)



Some Applications of Gröbner Bases in Robotics and Engineering 9

–2
–1

0
1

2
x1

–2

–1

0

1

2

x2

–2

–1

0

1

2

x3

Fig. 3 Two points as the intersection of the circle C and the additional plane V(π2).

It is possible now to analytically analyze singularities of the envelope by finding

points on V(g) where ∇g = 0. This gives a critical value rcrit = 2|p| of r that deter-

mines whether V(I2) has one or three singular points. For more details, as well as

for a complete treatment of other conics, see [2].

In a manner similar to Example 3, it is possible to analyze envelopes and their

singularities of other curves defined via polynomial equations like Fermat curves,

Bézier cubics, etc., and surfaces, like quadrics, Bézier surfaces. This aids in studying

the so called caustics [3], shell structures through the finite element analysis [2], and

in designing machinery [23].

3 Fermat curves and Bézier cubics

In this section we briefly discuss other curves such as the Fermat curves and the

Bézier cubics. We begin with the Fermat curves.
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3.1 Fermat curves

The Fermat curves are defined as

f1 = xn
0 + yn

0 − cn, n ∈ Z
+, c > 0.

Define f2 to be the circle of radius r centered at (x0,y0) on f1 and let f3 give a

normal line to f1 at (x0,y0).
Let n = 3 and I = 〈 f1, f2, f3〉 ⊂ R[x0,y0,x,y, r,c] where

f1 = x3
0 + y3

0 − c3, f2 = (x− x0)
2 +(y− y0)

2 − r2, f3 = xy2
0 − x0y2

0 − x2
0y+ x2

0y0

For the elimination order lexdeg([x0,y0], [x,y, r,c]),7 the reduced Gröbner basis for I

consists of 129 polynomials of which only one g∈ R[x,y, r,c]. Polynomial g has 266

terms and is homogeneous of degree 18. The variety V(I) contains our offset curves

shown in Figure 4.

–1.5

–1

–0.5

0.5

1

1.5

y

–1.5 –1 –0.5 0.5 1 1.5
x

Fig. 4 Fermat cubic n = 3 with equidistant curves and growing singularities

Let n = 4 and I = 〈 f1, f2, f3〉 ⊂ R[x0,y0,x,y, r,c] where

f1 = x4
0 + y4

0 − c4, f2 = (x− x0)
2 +(y− y0)

2 − r2, f3 = xy3
0 − x0y3

0 − x3
0y+ x3

0y0

7 In the degree lexicographic order lexdeg([x0,y0], [x,y, r,c]) monomials involving only x0 and y0

are compared using the total degree tdeg(x0,y0) (tdeg is also known as the graded reverse lex-

icographic order grevlex); monomials involving only x,y, r,c are compared using the term order

tdeg(x,y, r,c); a monomial involving x0 or y0 is higher than another monomial involving only

x,y, r,c. Such a term order is usually used to eliminate the indeterminates listed in the first list

namely x0,y0 [10].
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A reduced Gröbner basis for I for the same order consists of 391 polynomials of

which only one g ∈ R[x,y, r,c]. Polynomial g has 525 terms and is homogeneous of

degree 32. The variety V(I) contains our offset curves shown in Figure 5.
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–0.5

0.5

1

1.5

y

–1.5 –1 –0.5 0.5 1 1.5
x

Fig. 5 Fermat cubic n = 4 with equidistant curves and growing singularities

3.2 Bézier cubics

A Bézier cubic is defined parametrically as:

X = (1− t)3x1 +3t(1− t)2x2 +3t2(1− t)x3 + t3x4,

Y = (1− t)3y1 +3t(1− t)2y2 +3t2(1− t)y3 + t3y4 (16)

where (xi,yi), i = 1, . . .,4, are the coordinates of four control points, and 0 ≤ t ≤ 1.

3.2.1 First application of Gröbner bases to Bézier cubics

In our first application of Gröbner basis we show how to eliminate the parameter t

from the defining polynomials (16) and find a single polynomial that defines the

cubic implicitly. We compute a reduced Gröbner basis G for the ideal

I = 〈x−X ,y−Y 〉 ⊂ R[x,y,xi,yi, t]

for the elimination order lexdeg([t], [x,y,xi,yi]). The basis G has 12 polynomials of

which only one g does not contain t , or, g ∈ R[x,y,xi,yi]. Then, g is homogeneous

of degree 6 and it contains 460 terms.
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Let the control points be ( 3
2
,0), (0, 1

4
), (3,2), (2,0). Then, the Bézier cubic in

Figure 6 has this implicit form:

g = −213948x+66420y−214164yx−145656y2x+89964x2y

+110079x2 +135756 +78608y3−18522x3 +219456y2 = 0 (17)

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5 3

Fig. 6 Bézier cubic in implicit form with control points and points where curvature is maximum

or minimum

3.2.2 Second application of Gröbner bases to Bézier cubics

As our second application we find a parameterization (x(t),y(t)) for a variety of

equidistant curves to a Bézier cubic by computing a reduced Gröbner basis G for a

suitable ideal I in elimination order lexdeg([y], [x, t]).
Let the control points be (2,0), (3,3),(4,1),(3,0), then

X = 2 +3t−2t3, Y = 9t −15t2 +6t3,

and consider an ideal I = 〈x−X ,y−Y, f3, f4〉 ∈ R[x,y, r, t] where f3 gives equation

of circle of radius r at (X(t),Y(t)) on the cubic

f3 = (y−Y )2 +(x−X)2 − r2, (18)

while f4 gives equation of a normal at (X(t),Y(t)) to the cubic

f4 = 3x−6xt2 −6 +417t2−90t −642t3

−120t5 +9y−30yt +18yt2 +450t4 (19)
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for the offset values r = 2
25

, 4
25

, 6
25

. For each r, the basis G has four polynomials

I = 〈h1,h2,h3,h4〉 : Polynomial h1 depends only on x, t and is quadratic in x while

polynomials h2,h3,h4 depend on x,y, t. The discriminant of h1 is always positive or

zero when ts = for 0 ≤ t ≤ 1. This means that x can always be parameterized in

terms of t by solving h1 = 0 for x with radicals [10].

Let gx1i,gx2i be the solutions of h1 = 0 for x for three offset values of r, i = 1,2,3.
Then each gx1i,gx2i is continuous but not smooth. Furthermore, the first elimination

ideal is I1 = 〈h1〉 = I ∩R[x, t] . Here, indices 1 (red) and 2 (blue) refer to opposite

sides of the Bézier cubic in Figure 7. The graphs intersect at t = ts = given above.

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 0.2 0.4 0.6 0.8 1
t

Fig. 7 Graphs of gx1i and gx2i for i = 1,2,3

Polynomials h2,h3 are linear in y while h4 is quadratic in y, and h2,h3,h4 ∈ R[x, t][y].
Since one of their leading coefficients is a nonzero constant, by the Extension The-

orem [10], any partial solution of h1 = 0 in terms of x and t is extendable to the

y-solution.

To find a parameterization for y = y(t), substitute gx1i,gx2i into h3 for each i =
1,2,3 and solve for y : We obtain discontinuous functions gy1i,gy2i that belong to

the variety V(h2,h3,h4). The single discontinuity appears at t = ts. See Figure 8.

For the offset values r smaller than rcrit , the equidistant curves are smooth curves

in the Euclidean plane since, as shown later, they can be defined globally by an equa-

tion g(x,y) = 0 where g is a polynomial of two variables, and the partial derivatives

gx and gy are not simultaneously equal to 0. That is, equidistant curves to the Bézier

cubic form a non-singular variety when r < rcrit.
For the Bézier cubic we conjecture that rcrit = 1

κmax
= ρmin. In this example we

chose the three values of r to satisfy this condition. Thus, we can parameterize the

equidistant curves for the Bézier cubic in our example as, for one side:
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0

0.5

1

1.5

0.2 0.4 0.6 0.8 1
t

Fig. 8 Graphs of gy1i and gy2i for i = 1,2,3

Gx1i(t) =

{

gx1i(t), t < ts

gx2i(t), t ≥ ts
, Gy1i(t) =







gy1i(t), t < ts

y1i, t = ts

gy2i(t), t > ts,

(20)

where y1i = limt→t−s gy1i(t)= limt→t+s
gy2i(t), i = 1,2,3. Likewise for the other side:

Gx2i(t) =

{

gx2i(t), t < ts

gx1i(t), t ≥ ts
, Gy2i(t) =







gy2i(t), t < ts

y2i, t = ts

gy1i(t), t > ts,

(21)

where y2i = limt→t−s
gy2i(t) = limt→t+s

gy1i(t), i = 1,2,3.

0

0.5

1

1.5

2 2.5 3 3.5

Fig. 9 Bézier cubic with parametric equidistant curves, nodes, points of max/min curvature, and

switch points where t = ts
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3.2.3 Third application of Gröbner bases to Bézier cubics

In this section we will find a general polynomial g ∈ R[x,y, r] so that the polynomial

equation g = 0 will give equidistant curves to a Bézier cubic at an arbitrary offset r.
We first find a reduced Gröbner basis for a suitable ideal in the elimination order

lexdeg([t,X ,Y], [x,y, r]).
Let the control points be (2,0), (3,3),(4,1),(3,0), then define

f1 = X −2−3t +2t3, f2 = Y −9t +15t2−6t3, (22)

and consider an ideal I = 〈 f1, f2, f3, f4〉 ⊂ R[t,X ,Y,x,y, r] where f3 as in (18) gives

equation of a circle of radius r at (X(t),Y(t)) on the cubic while f4 gives equation

of a normal at (X(t),Y(t)) to the cubic

f4 = −x+2xt2 +X −2Xt2 −3y+10yt −6yt2 +3Y (23)

for an arbitrary (non-negative) offset r.
The reduced Gröbner basis for I contains twenty seven polynomials, of which

only one belongs to R[x,y, r]. That is,

I3 = I ∩R[x,y, r]= 〈g〉

where g is of total degree ten in x,y, r and it has 161 terms (but only sixty six terms

for any specific value of r.)
In Fig. 10 we plot a few equidistant curves for various offsets with growing sin-

gularities of which one is again of the dove-tail type and it appears across the point

of maximum curvature.

0

1

2

y

2 2.5 3 3.5
x

Fig. 10 Bézier cubic with implicit equidistant curves showing growing singularities as the offset r

increases.
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By analyzing solutions to ∇(g)= 0 on g = 0 for a general offset r, one can search

for singularities, if any, of equidistant curves to this specific Bézier cubic.

As an another example, let’s define an S-shaped Bézier cubic

X = 2−6t +21t2− 29

2
t3, Y = 4− 21

2
t +18t2− 23

2
t3. (24)

Its graph along with a few equidistant offset curves is shown in Figure 11.

0

2

4

2 4

Fig. 11 Bézier cubic with implicit equidistant curves showing growing singularities as the offset r

increases.

Let us summarize advantages and disadvantages of this approach.

• Advantages:

– Equidistant curves to any Bézier cubic are given globally as one single poly-

nomial of total degree ten in x,y, r for any offset r.
– This permits their analytic analysis, including analysis of their singularities,

if any, as well as finding the critical value of the offset rcrit.
– Ease of graphing.

– Ease of finding nodes for finite elements (to any desired accuracy).

• Disadvantages:

– Computational complexity although computation of g for the given cubic, i.e.,

for the chosen control points, takes only a few seconds.

– Computation of g for a general Bézier cubic when

I = 〈 f1, f2, f3, f4〉 ⊂ R[X ,Y,x,y,t, r,xi,yi], i = 1,2,3,4,

is beyond the computational ability of present-day PC.

Example 4 (Distance to ellipse) In this example we find a point (or points) on el-

lipse f1 = x2

a2 + y2

b2 − 1 that minimizes distance from the ellipse to a given point
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P = (x0,y0) not on the ellipse and such that x0 6= 0.8 Thus, one needs first to find

points Q on the ellipse such that a line T tangent to the ellipse at Q is orthogonal

to the vector
−→
QP. Let f2 = a2y(x− x0)− b2x(y − y0). Then, the condition f2 = 0

assures that the vector
−→
QP⊥T. We will use values x0 = 4,y0 = 3

2
,a = 2,b = 1. Thus,

we must to solve a system of equations

f1 = 4y2 + x2 −4 = 0 and f2 = 6yx−32y+3x = 0 (25)

for x and y. We will find the reduced Gröbner basis for the ideal I = 〈 f1, f2〉 that

defines V = V( f1, f2) for lex(x,y) order. The basis contains two polynomials

g1 = −18y3 +9−9y2 +12x−110y,

g2 = −9−36y+229y2 +36y3 +36y4 (26)

Observe that g2 belongs to I2 = I ∩ R[y]. Observe also that the leading coeffi-

cient in g1 w.r.t. lex(x,y) is 12, hence by the Extension Theorem [10], every par-

tial solution to the system {g1 = 0,g2 = 0} on the variety V(g2) can be extended

to a complete solution of (25) on the variety V. Since polynomial g2 is of de-

gree 4, it’s solutions are expressible in radicals. When approximated, two real

values of y are y1 = 0.2811025120 and y2 = −0.1354474035. Each of the ex-

act values of y, when substituted into equation g1 = 0 yields exact value of x.
Thus, we have two points Q on the ellipse whose approximate coordinates are

Q1 = (1.919355494,0.2811025085) and Q2 = (−1.981569077,−0.1354473991).

Checking the distances, one finds ||−−→Q1P||= 2.411388118< ||−−→Q2P||= 6.201117385,
or, that the point Q1 is closest to the given point P.

Repeating this example in the purely symbolic case when a,b,x0,y0 remain unas-

signed, returns again a two-polynomial reduced Gröbner basis for I :

G = [a4y4 −a4y2b2 +2a2y2b4 −2a2b2y4 +a2y2x2
0b2 +2a2b2y3y0−

2a2yb4y0 −b6y2
0 −2y3y0b4 − y2b6 +2yb6y0 + y4b4 + y2y2

0b4,

a2b4y0 −b6y0 −a2b2y2y0 +b4y2y0 +a4yb2 −2a2yb4 + yb6−
a2x2

0yb2 −a4y3 +2a2b2y3 −b4y3 + x0b4xy0] (27)

where the first polynomial is of degree 4 in y and is, in principle, solvable with

radicals. The second polynomial is again of degree 1 in the variable x. Thus, in

general, this problem is solvable in radicals.

In [4] a similar problem is studied: It consists of finding distance between a point P

on the Earth’s topographic surface and the closest to it point p on the international

reference ellipsoid E
2
a,a,b. This is another example of a constrained minimization

problem which is set up with the help of a constrained Lagrangian while the result-

ing system of four polynomial equations is solved with Gröbner basis.

8 When x0 = 0 then the solution is obvious.
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Example 5 (Rodrigues matrix) Recall that the trigonometric form of a quaternion

a = a0 +a ∈ H is a = ‖a‖(cosα +u sinα), where u = a/|a|, |a|2 = a1
2 +a2

2 +a3
2

and α is determined by cosα = a0/‖a‖, sinα = |a|/‖a‖, 0 ≤ α < π. Then, any

quaternion can be written as

a = ‖a‖(cosα + |a|−1(a1i +a2j +a3k) sinα). (28)

The following theorem can be found in [21,22].

Theorem 4. Let a and r be quaternions with non-zero vector parts where ‖a‖ = 1,
so a = cosα +u sinα where u is a unit vector. Then, the norm and the scalar part of

the quaternion r′ = ara−1 equal those of r, that is, ‖r′‖ = ‖r‖ and Re(r′) = Re(r).
The vector component r′ = Im(r′) gives a vector r′ ∈ R

3 resulting from a finite

rotation of the vector r = Im(r) by the angle 2α counter-clockwise about the axis u

determined by a.

Let a = a0 +a, b = b0 +b ∈ H. Let va, vb, and vab be vectors in R
4 whose coordi-

nates equal those of a,b,ab∈ H.
Then, the vector representation of the product ab is

ab 7→ vab = G1(a)vb = G2(b)va (29)

where

G1(a) =

[
a0 −aT

a a0I +K(a)

]

, G2(b) =

[
b0 −bT

b a0I −K(b)

]

, (30)

and

K(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 , K(b) =





0 −b3 b2

b3 0 −b1

−b2 b1 0



 , (31)

are skew-symmetric matrices determined by the vector parts a and b of the quater-

nions a and b, respectively. For properties of matrices G1(a) and G2(b) see [21,22].

Theorem 4 implies that mapping r 7→ r′ = ara−1, ‖a‖= 1, gives the rotation r 7→ r′

in R
3. Using 4×4 matrices, it can be written as:

vr 7→ v′r = G1(a)G2(a
−1)vr = G1(a)G2

T (a)vr (32)

where

G1(a)G2
T (a) =






1 0

0 (2a0
2 −1)I +2aaT +2a0K(a)

︸ ︷︷ ︸

R(a)




 (33)

The 3×3 matrix R(a) in the product G1(a)G2
T (a) is the well-known Rodrigues ma-

trix of rotation. [13] The Rodrigues matrix has this form in terms of the components

of a :
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R(a) =





a2
0 +a2

1 −a2
2 −a2

3 2a1a2 −2a0a3 2a1a3 +2a0a2

2a1a2 +2a0a3 a2
0 −a2

1 +a2
2 −a2

3 2a2a3 −2a0a1

2a1a3 −2a0a2 2a2a3 +2a0a1 a2
0 −a2

1 −a2
2 +a2

3



 (34)

Entries of R(a) are homogeneous polynomials of degree 2 in R[a0,a1,a2,a3]. Sepa-

rating the scalar and the vector parts of the quaternion r in the 4D representation

(32), we get

Re(r′) = Re(r), Im(r′) = r′ = R(a)r = R(a) Im(r) (35)

The first relation shows that the scalar part of r remains unchanged, while the

vector part r′ of r′ is a result of rotation of the vector part r of r about the

axis a = a1i + a2j + a3k and the angle of counter-clockwise rotation is 2α. Ob-

serve that det R(a) = ‖a‖6 and R(a)T R(a) = ‖a‖4I. Since detR(a) = ‖a‖6 and

R(a)T R(a) = ‖a‖4I, the Rodrigues matrix R(a) gives a rotation if and only if

‖a‖= 1. We intend to find the rotation axis a and the rotation angle 2α by express-

ing the quaternionic entries (a0,a1,a2,a3) in terms of the entries of an orthogonal

matrix M of determinant 1. For that purpose we will use a technique of Gröbner

basis and the theory of elimination. [10] Let M = (mi j) be an orthogonal 3×3 ma-

trix, that is, MT M = I. Since MT M is symmetric, this one constraint gives us six

polynomial constraints on the entries of M :

c1 = m2
11 +m2

21 +m2
31 −1, c2 = m2

12 +m2
22 +m2

32 −1, c3 = m2
13 +m2

23 +m2
33 −1,

c4 = m11m12 +m21m22 +m31m32, c5 = m11m13 +m21m23 +m31m33,

c6 = m12m13 +m22m23 +m32m33

We add one more constraint, namely, that detM = 1 :

c7 = m11m22m33 −m11m23m32 −m21m12m33+

m21m13m32 +m31m12m23 −m31m13m22 −1

A Gröbner basis GJ for the syzygy ideal J = 〈c1,c2, . . .,c7〉 with respect to the or-

der lex(m11,m12, . . .,m33) contains twenty polynomials including five polynomials

from the original set. This means that the seven constraint polynomials are not al-

gebraically independent. Define nine polynomials fk ∈ R[a0,a1,a2,a3,mi j]

[ f1, f2, f3, f4, f5, f6, f7, f8, f9] = [mi j −R(a)i j] (36)

Our goal is to express the four parameters a0,a1,a2,a3 in terms of the nine matrix

entries mi j that are subject to the seven constraint (syzygy) relations cs = 0, 1 ≤
s ≤ 7. This should be possible up to a sign since for any rotation in R

3 given by an

orthogonal matrix M, detM = 1, there are two unit quaternions a and −a such that

R(a) = R(−a) = M.
We compute a Gröbner basis GI for the ideal I = 〈 f1, . . ., f9,c1, . . .,c7〉 for

lex(a0,a1,a2,a3,m11,m12, . . .,m33) order. GI contains fifty polynomials of which
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twenty polynomials are in R[mi j] : thus they provide a basis GJ for the syzygy ideal J.
We need to solve the remaining thirty polynomial equations for a0,a1,a2,a3, so we

divide them into a set Sl of twenty linear polynomials in a0,a1,a2,a3, and a set Snl

of ten non linear polynomials in a0,a1,a2,a3. The first four polynomials in Snl are:

a0
2 =

1

4
(1 +m11 +m22 +m33), a1

2 =
1

4
(1 +m11 −m22 −m33),

a2
2 =

1

4
(1−m11 +m22 −m33), a3

2 =
1

4
(1−m11 −m22 +m33), (37)

which easily shows that ‖a‖ = 1, the quaternion a defined by the orthogonal ma-

trix M is a unit quaternion.

The remaining six polynomials in Snl are:

a0a1 =
1

4
(m32 −m23), a0a2 =

1

4
(m13 −m31), a1a2 =

1

4
(m12 +m21),

a0a3 =
1

4
(m21 −m12), a1a3 =

1

4
(m13 +m31), a2a3 =

1

4
(m23 +m32), (38)

The remaining twenty polynomials from Sl are linear in a0,a1,a2,a3. Let A be the

coefficient matrix of that linear homogeneous system. Matrix A is 20×4 but it can

be easily reduced to 14×4 by analyzing its submatrices and normal forms of their

determinants modulo the Gröbner basis GJ. It can be shown that this symbolic ma-

trix is of rank 3. That is, there is always a one-parameter family of solutions. Once

that one-parameter family of solutions is found, two unit quaternions ±a such that

R(±a) = M can be found from remaining ten nonlinear equations.

For example, let

M =





1 0 0

0 0 −1

0 1 0



 .

Then, the linear system A(a0,a1,a2,a3)
T = 0 has the one-parameter solution a0 =

a0,a1 = a0,a2 = 0,a3 = 0. The system of nonlinear equations reduces to just 4a0
2 =

2 which gives a0 = ± 1
2

√
2, and one unit quaternion is: a = 1

2

√
2 + 1

2

√
2i = a0 +

a, cosα = 1
2

√
2, sinα = |a|= 1

2

√
2. The Rodrigues matrix gives R(±a) = M, α =

1
4
π, so the rotation angle is 2α = 1

2
π, and the rotation axis u is just i, as expected.

For another example, consider the following orthogonal matrix:

M =







0
√

210−5
√

14
35

−2
√

35−5
√

21
35√

210+5
√

14
35

11
35

−7
√

6+5
√

10
35

−2
√

35+5
√

21
35

−7
√

6−5
√

10
35

4
35







with detM = 1. Then, solution to the linear system is a0 = a0, a1 = −
√

10
5

a0, a2 =
−
√

21
5

a0, a3 =
√

14
5

a0. Upon substitution into the non-linear equations we find a0 =
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±
√

70
14

which eventually gives a =
√

70
14

+(−
√

7
7

i−
√

30
10

j+
√

5
5

k), cosα =
√

70
14

, sinα =

|a|= 3
√

14
14

. It can be verified again that R(±a) = M and α ≈ 0.9302740142 rad.

For our last example, we need the following result from [10][Proposition 3, p.

339] on the so called ideal of relations IF for a set of polynomials F = ( f1, . . ., fm).
It is usually used to derive the syzygy relations among homogeneous invariants of

finite groups. We will use it to show how one can systematically derive relations

among interpolation functions used in finite element theory. Although these rela-

tions are well known [24], their systematic derivation with the help of Gröbner basis

is less known.

Consider the system of equations

y1 = f1(x1, ...,xn), . . ., ym = fm(x1, ...,xn).

Then, the syzygy relations among the polynomials f1, . . ., fm can be obtained by

eliminating x1, ...,xn from these equations. Let k[x1, . . .,xn]
G denote the ring of in-

variants of a finite group G ⊂ GL(n,k). The following result is proven in [10].

Proposition 1 If k[x1, . . .,xn]
G = k[ f1, . . ., fm], consider the ideal

JF = 〈 f1 − y1, . . ., fm− ym, 〉 ⊂ k[x1, . . .,xn,y1, . . .,ym].

(i) IF is the nth elimination ideal of JF . Thus, IF = JF ∩ k[y1, . . .,ym]. (ii) Fix a

monomial order in k[x1, . . .,xn,y1, . . .,ym], where any monomial involving one of

x1, . . .,xn is greater than all monomials in k[y1, . . .,ym] and let GB be a Gröbner

basis of JF . Then GB∩k[y1, . . .,ym] is a Gröbner basis for IF in the monomial order

induced on k[y1, . . .,ym].

The ideal IF is known to be a prime ideal of k[y1, . . .,ym].9 Furthermore, the

Gröbner basis for IF may not be minimal: This is because the original list F of

polynomials may contain polynomials which are algebraically dependent. Thus, in

order to obtain a minimal Groebner basis for IF , or, the smallest number of syzygy

relations, one needs to assure first that the list F is independent. [10]

We will use this proposition encoded in a procedure SyzygyIdeal from the SP

package [1] to compute syzygy relations among interpolation functions for orders

k = 2 and k = 3 for triangular elements in finite element method. These elements

are referred to as quadratic and cubic as their interpolation functions are, respec-

tively, quadratic and cubic polynomials, and they contain, respectively, three and

four equally spaced nodes per side. For all definitions see [24, Chapter 9].

Example 6 We derive relations between the interpolation functions for the higher-

order Lagrange family of triangular elements with the help of the so called area

coordinates Li. For triangular elements there are three non-dimensional coordi-

nates Li, i = 1,2,3 such that

9 An ideal I ⊂ k[x1, . . . ,xn] is prime if whenever f ,g ∈ k[x1, . . . ,xn] and f g ∈ k[x1, . . . ,xn], then

either f ∈ I or g ∈ I.
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Li = Ai/A, A = A1 +A2 +A3, L1 +L2 +L3 = 1 (39)

(see [24, Fig 9.3, p. 408]). Here, Ai is the area of a triangle formed by the nodes j

and k (i.e., i 6= j, i 6= k) and an arbitrary point P in the element, and A is the total

area of the element. Each Li is a function of the position of the point P. For example,

if point P is positioned on a line joining nodes 2 and 3 (or, at the nodes 2 or 3) then

L1 = 0 and L1 = 1 when P is at the node 1. Thus, L1 is the interpolation function ψ1

associated with the node 1 and likewise for L2 and L3, that is,

ψ1 = L1, ψ2 = L2, ψ3 = L3

for any triangular element. Functions (polynomials) Li are used to construct inter-

polation functions for higher-order triangular elements with k nodes per side.

For k = 3 we have three equally spaced nodes per side of a triangular element

and the total number of nodes in the element is n = 1
2

k(k+1) = 6. Then, the degree

d of the interpolation functions (polynomials) Li is d = k− 1 = 2. The triangular

elements are then called quadratic.

We define six interpolation functions ψs, s = 1, . . .,6, in terms of Li as in formulas

(9.16a), (9.16b), and (9.16c) in [24, p. 410]:

ψ1 = 2L2
1 −L1, ψ2 = 4L1L2, ψ3 = 2L2

2 −L2,

ψ4 = −4L1L2 −4L2
2 +4L2,

ψ5 = 2L2
1 +4L1L2 −3L1 +2L2

2 −3L2 +1,

ψ6 = −4L2
1 −4L1L2 +4L1. (40)

The procedure SyzygyIdeal yields seven polynomial relations between the func-

tions ψs :

r1 = ψ2
4 +4ψ4ψ5 +4ψ2

5 +2ψ4ψ6 +4ψ5ψ6 +ψ2
6 −ψ4 −4ψ5 −ψ6,

r2 = 2ψ2ψ5 +ψ2ψ6 +2ψ3ψ6,

r3 = 4ψ3ψ5 +4ψ4ψ5 +4ψ2
5 −ψ2ψ6 −2ψ3ψ6 +ψ4ψ6 +4ψ5ψ6

+ψ2
6 −4ψ5 −ψ6,

r4 = ψ1 −1 +ψ2 +ψ3 +ψ4 +ψ5 +ψ6,

r5 = ψ2ψ4 −ψ2ψ6 −4ψ3ψ6 −ψ4ψ6,

r6 = 2ψ3ψ4 −6ψ4ψ5 −8ψ2
5 +2ψ2ψ6 +6ψ3ψ6 −ψ4ψ6 −8ψ5ψ6 −2ψ2

6

+8ψ5 +2ψ6,

r7 = ψ2
2 +4ψ2ψ3 +4ψ2

3 +8ψ4ψ5 +12ψ2
5 −2ψ2ψ6 −4ψ3ψ6 +2ψ4ψ6

+12ψ5ψ6 +3ψ2
6 −ψ2 −4ψ3 −12ψ5 −3ψ6. (41)

It can be verified by direct substitution of (40) into (41) that the latter well-known

relations [24] are satisfied.
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When there are k = 4 equally spaced nodes per side of a triangular element, then

the total number of nodes per element is n = 10 and the degree d of the interpolation

functions (polynomials) is d = k− 1 = 3. In a similar manner as above one can

derive twenty-nine relations among the ten interpolation polynomials.

4 Conclusions

Our goal was to show a few applications of Gröbner basis technique to engineering

problems extending from robotics through curve theory to finite-element method.

While applications to the inverse kinematics are well known, formulation of the

problem of finding the circle of two intersecting spheres, that is, the plane of the

circle, a normal to the plane, and then the radius and the center of the circle in

the language of Clifford (geometric) algebra, gave another opportunity to apply the

Gröbner basis technique. Since the method is fast and efficient, it can be employed

when solving the elbow problem of the robot arm also when formulated in that

language.
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8. B. Buchberger, F. Winkler, Gröbner Bases and Applications, eds. (Cambridge University

Press, 1998)
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