
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

COMPUTATIONS WITH CLIFFORD
AND

GRASSMANN ALGEBRAS

RAFAL ABLAMOWICZ

MAY 2009

No. 2009-4

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Computations with Clifford and Grassmann
Algebras

Rafa l Ab lamowicz

Abstract. Various computations in Grassmann and Clifford algebras can be
performed with a Maple package CLIFFORD. It can solve algebraic equations
when searching for general elements satisfying certain conditions, solve an
eigenvalue problem for a Clifford number, and find its minimal polynomial. It
can compute with quaternions, octonions, and matrices with entries in C`(B)
- the Clifford algebra of a vector space V endowed with an arbitrary bilinear
form B. It uses standard (undotted) Grassmann basis in C`(Q) but when
the antisymmetric part of B is non zero, it can also compute in a dotted
Grassmann basis. Some examples of computations are discussed.

Mathematics Subject Classification (2000). 15A66, 68W30.

Keywords. Quantum Clifford algebra, conformal group, contraction, dotted
wedge product, grade involution, Grassmann algebra, Hopf algebra, multivec-
tor, octonions, quaternions, reversion, singular value decomposition, spinors,
Vahlen matrix, wedge product.

Contents

1. Introduction 2
2. Notation and Basic Computations 3
3. Clifford Product in C`(B) 9
4. Dotted and Undotted Grassmann Bases 12

4.1. The dotted wedge 12
4.2. Dotted and undotted wedge bases 13
4.3. Contraction and Clifford product in dotted and undotted bases 14

5. More on the Associativity of the Dotted Wedge 16
6. Reversion in Dotted and Undotted Bases 18
7. Spinor Representation of C`(Q) in Minimal Left Ideals 21

8. Two Scalar Products in Spinor Ideals 24
9. Continuous Families of Idempotents: Low Dimensional Examples 26

2 Rafa l Ab lamowicz

10. Vahlen Matrices 28
11. Singular Value Decomposition and Clifford Algebra 33
11.1. SVD of a 2 × 2 matrix of rank 2 34

11.2. Additional comments 41
12. Conclusions 42
Appendix A. Appendix: Code of cmulNUM 43
Appendix B. Appendix: Code of cmulRS 44
Appendix C. Appendix: Code of the Transposition Procedure tp 45
References 46

1. Introduction

Some twenty years ago, late Professor Pertti Lounesto together with his colleagues
at Helsinki University of Technology developed CLICAL, a first semi-symbolic “Clif-
ford algebra calculator”. [32] Along with it, Pertti brought to the world of Clifford
algebraists a concept of experimental mathematics, algorithmic understanding, and
counter examples. [33] One could say that he was a pioneer in bringing together
theoretical aspects and the computational part. His works, see for example [30],
abound in concrete examples, and counter examples.

This author also believes that learning how mathematical concepts can be
handled by a computer provides a combination of theory and practice that, as a
result, gives a better understanding of the theory of Clifford algebras and shows
how the theory can be applied. This computational approach also provides a fast
way to enter into the abstract field. We exemplify this approach by using a Maple
package CLIFFORD, a system for computations with Grassmann polynomials, that
was developed, like CLICAL, to support mathematical research in Grassmann and
Clifford algebras but using a full computer algebra system. [1, 8, 9]. More recently,
this system was vastly extended with BIGEBRA for computations with tensors in a
general setting of Hopf algebras and co-algebras. [9]

This approach of course is common to many other systems and fields that
became possible with the onset of fast computers capable of non-trivial symbolic
computations which had been intractable before by hand. For example, in the
area of commutative algebra one such system is provided by Singular [26] and
another by CoCoA [18]; in the area of algebraic geometry by Macaulay2 [36];
and in the area of general mathematics, a category theory based AXIOM which is
explicitly “dedicated to research and development of mathematical algorithms”.
[16] Finally, a review of existing software for Clifford algebras often developed with
a specific computation in mind, can be found in [13].

A vector space V endowed with a quadratic form Q is common to a vast
host of mathematical, physical and engineering problems. This leads naturally to
an algebra structure of the Clifford algebra C`(V,Q) and its generalization - a
quantum Clifford algebra C`(V, B) for any bilinear form B. [6] This formalism, as

Computations with Clifford and Grassmann Algebras 3

compared to a standard vector calculus, can now be applied to solving completely
new problems. CLIFFORD was developed as a basic tool for all investigations and
applications which can be carried in finite dimensional vector spaces equipped
with a quadratic form or, equivalently, with a symmetric bilinear form commonly
referred to as an inner or a scalar product. The intrinsic abilities of Maple even
allow one to use CLIFFORD in projective and affine geometries while visualizing
complicated incidence relations that is helpful, e.g., for image processing, visual
perception and robotics.

The authors of CLIFFORD and BIGEBRA have been interested in fundamen-
tal questions about q-deformed symmetries and quantum field theory. Just asking
questions like such as “What is the most general element fulfilling . . . ?” has led
to unexpected results and new insights. [4,6,7,11] Checking the consistency of the
software by testing theorems and known results has led them in the foot steps
of Pertti Lounesto to counter examples that have made a rethinking and a more
careful restatement of those theorems necessary. However, the most striking abil-
ity of CLIFFORD is that it is unique in being able to handle Clifford algebras of
an arbitrary bilinear form not restricted by symmetry and not directly related to
any quadratic form. Since it is now well known that such structures are related
to Hopf algebraic twists, later versions of CLIFFORD make an extensive use of a
process called Rota-Stein cliffordization described in [20,22–25]. This, in turn, has
necessitated introduction of a new algorithm based on this process for a more ef-
ficient computation of the Clifford product in C`(V, B). As much as Buchberger’s
celebrated algorithm is indispensable for computing Gröbner bases, this new algo-
rithm described in [9, 10] is indispensable for the Clifford product. Having devel-
oped this faster algorithm one was able to find the q-Young Clifford idempotents
[6] possessing a desired symmetry; explicitly describe the structure of the Spin(3)
group; discover continuous families of idempotents in C`(Q) [11]; or gain a better
understanding of the properties of the dotted wedge product. [9]

The present paper brings to the reader a few examples of computations and
results derived with CLIFFORD. It is assumed that the reader is already familiar
with Maple [44], a general purpose CAS; if not please consult e.g., [45]. The article
is intended as a quick computational introduction to the abstract field of the
Clifford algebras, and, especially, to the field of quantum Clifford algebras. For
computations with tensor and Hopf algebras we refer to [10] that describes the
supplementary package BIGEBRA intended for such computations.

2. Notation and Basic Computations

CLIFFORD uses as default a standard Grassmann basis (Grassmann multivectors)
in

∧

V where V = span {ei | 1 ≤ i ≤ n} for 1 ≤ n ≤ 9. Then

∧

V = span {ei ∧ ej ∧ . . . ∧ ek | 0 ≤ i < j < . . . < k ≤ n}.

4 Rafa l Ab lamowicz

In CLIFFORD these basis monomials are written as strings {Id, e1, . . . , e9, e1we2,
e1we3, . . . , e1we2we3, . . . } although they can be aliased to {Id, e1, . . . , e9,
e12, e13, . . . , e123, . . . } to shorten input. Here e1we2 is a string that denotes
e1 ∧ e2 and Id denotes the identity 1 in

∧

V. However, CLIFFORD can also use
one-character long symbolic indices as in eiwej which stands for ei ∧ ej. Thus, in
principle, it can compute with Clifford algebras in dimensions higher than 9. For
example, when n = 3, Grassmann basis monomials are:
> W=cbasis(3);

W = [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3]

but aliases can also be used to shorten input/output:
> eval(makealiases(3));

e12 , e21 , e13 , e31 , e23 , e32 , e123 , e132 , e213 , e231 , e312 , e321

In the above, eijk = eiwejwek is the wedge product of three 1-vectors: ei, ej, ek.
Thus, the most general element in the Grassmann algebra

∧

V is a Grassmann
polynomial which is just a linear combination of Grassmann basis monomials with
real coefficients. Notice that symbolic indices are allowed:
> p1:=Id+4.5*ei-alpha*e1we2we3;

p1 := Id + 4.5 ei − α e123

The wedge product ∧ is computed with a procedure wedge or its ampersand coun-
terpart &w:
> wedge(e1,e2),e1 &w e2; wedge(ea,eb,ec),ea &w eb &w ec; p1 &w p2;

e12 , e12

eawebwec, eawebwec

e123 − x0 Id − 4.500000000 x0 e1 + α x0 e123 − x12 e12

Following Chevalley’s recursive definition, a Clifford product can be intro-
duced in

∧

V by means of a left B (or right B) contraction dependent on an
arbitrary bilinear form B : V × V → R. This leads to elements of the Clifford
algebra C`(B) expanded into multivectors and makes the Clifford multiplication
implicitly dependent on B. The associative Clifford product is given by a procedure
cmul or its infix form &c.
> cmul(e1,e2),&c(e1,e2); cmul(ea,eb,ec);

e12 + B1, 2 Id , e12 + B1, 2 Id

eawebwec + Bb, c ea − Ba, c eb +Ba, b ec

Computations in C`(K) and C`(B) can be performed in the same worksheet since
the name of a bilinear form can be passed to cmul as a parameter. For example,
> cmul[K](e1,e2),&c[K](e1,e2); cmul[K](ei,ej,ek);

e12 +K1, 2 Id , e12 + K1,2 Id

Computations with Clifford and Grassmann Algebras 5

eiwejwek + Kj,k ei −Ki, k ej +Ki, j ek

The form B can be numeric or symbolic. For example, when
> B:=matrix(2,2,[1,a,a,1]);

B :=

2

4

1 a

a 1

3

5

then the Grassmann basis for C`(B) or
∧

V will be:
> cbas:=cbasis(2);

cbas := [Id , e1 , e2 , e12]

while the Clifford multiplication table of the basis Grassmann monomials will look
as follows:
> MultTable:=matrix(4,4,(i,j)->cmul(cbas[i],cbas[j]));

MultTable :=

2

6

6

6

6

6

6

4

Id e1 e2 e12

e1 Id e12 + a Id e2 − a e1

e2 −e12 + a Id Id a e2 − e1

e12 a e1 − e2 e1 − a e2 (−1 + a2) Id

3

7

7

7

7

7

7

5

Irrespective of the bilinear form chosen, the Grassmann multiplication table will
always remain as:
> wedgetable:=matrix(4,4,(i,j)->wedge(cbas[i],cbas[j]));

wedgetable :=

2

6

6

6

6

6

6

4

Id e1 e2 e12

e1 0 e12 0

e2 −e12 0 0

e12 0 0 0

3

7

7

7

7

7

7

5

Let B = g + F where g and F are, respectively, the symmetric and the antisym-
metric part of B:
> g,F:=matrix(2,2,[g11,g12,g12,g22]),matrix(2,2,[0,F12,-F12,0]);
> B:=evalm(g+F);

g, F :=

2

4

g11 g12

g12 g22

3

5 ,

2

4

0 F12

−F12 0

3

5

B :=

2

4

g11 g12 + F12

g12 − F12 g22

3

5

6 Rafa l Ab lamowicz

Then, the Clifford multiplication table of the basis monomials in C`(B) will be as
follows:
> MultTable:=matrix(4,4,(i,j)->cmul(cbas[i],cbas[j]));

MultTable := [Id , e1 , e2 , e12]

[e1 , g11 Id , e12 + (g12 + F12) Id , g11 e2 − (g12 + F12) e1]

[e2 , (g12 − F12) Id − e12 , g22 Id , (g12 − F12) e2 − g22 e1]

[e12 , (g12 − F12) e1 − g11 e2 , g22 e1 − (g12 + F12) e2 ,

(g122 − F122 − g22 g11) Id − 2 e12 F12]

Observe, that the “standard” anticommutation relations

eiej + ejei = (Bi,j +Bj,i)1 = 2gi,j1 (1)

are satisfied by the generators ei, i = 1, 2, . . . , n, irrespective of the presence of
the antisymmetric part F in B. For example,
> cmul[g](e1,e2)+cmul[g](e2,e1);
> cmul[B](e1,e2)+cmul[B](e2,e1);

2 Id g12

(g12 + F12) Id + (g12 − F12) Id = 2 g12 Id

It is well known [29, 35] that real Clifford algebras C`(V,Q) = C`p,q are
classified in terms of the signature (p, q) of Q and the dimension dimV = n = p+q.
Information about all Clifford algebras C`p,q, 1 ≤ n ≤ 9, for any signature (p, q)
has been pre-computed and stored in CLIFFORD, and it can be retrieved with a
procedure clidata. For example, for the Clifford algebra C`2,0 (also denoted as
C`2) of the Euclidean plane R2 we find:
> clidata([2,0]); #Clifford algebra of the Euclidean plane

[real , 2, simple,
1

2
Id +

1

2
e1 , [Id , e2], [Id], [Id , e2]]

The meaning of the first three entries in the above output list is that C`2 is a
simple algebra isomorphic to Mat(2,R). The 4th entry in the list gives a primitive
idempotent f that has been used to generate a minimal left spinor ideal S = C`2f
and, subsequently, the left spinor (lowest dimensional and faithful) representation
of C`2 in S. In general it is known that, depending on (p, q) and n = dimV, the
spinor ideal S = C`p,qf is a right K-module where K is either R,C, or H for simple
Clifford algebras when (p − q) 6= 1 mod 4, or R ⊕ R and H ⊕ H for semisimple
algebras when (p−q) = 1 mod 4. [27,30] Elements in the 5th entry (here [Id , e2])
generate a real basis in S with respect to f, that is, S = span {Id &c f, e2 &c f} =
span {f, e2 &c f}. Elements in the 6th entry span a subalgebra F of C`(Q) that
is isomorphic to K. In the case of C`2 we find that F = span {Id} ∼= R. The
last entry in the output gives 2k generators of S (with respect to f) viewed as a
right module over K where k = q − rq−p and r is the Radon-Hurwitz number.1

Number k is the number of factors 1
2 (1 + Ti), where {Ti}, i = 1, . . . , k, is a set of

commuting basis Grassmann monomials squaring in C`(Q) to 1, whose product
gives a primitive idempotent f in C`(Q). Spinor representation for all Clifford

1Type ?RHnumber in a Maple session when CLIFFORD is installed for more help.

Computations with Clifford and Grassmann Algebras 7

algebras C`(Q), 1 ≤ n = p + q ≤ 9, and for any signature (p, q) has been pre-
computed [3] and can be retrieved from CLIFFORD with a procedure matKrepr.
For example, 1-vectors e1 and e2 in C`2 have the following spinor representation
in the basis {f, e2 &c f} of S = C`2f :2

> matKrepr([2,0]);

[e1 =

2

4

1 0

0 −1

3

5 , e2 =

2

4

0 1

1 0

3

5]

In another example, Clifford algebra C`3 of R3 is isomorphic with Mat(2,C):
> B:=linalg[diag](1,1,1):clidata([3,0]);

[complex, 2, simple,
1

2
Id +

1

2
e1 , [Id, e2 , e3 , e23], [Id , e23], [Id , e2]]

and its spinor representation is given in terms of Pauli matrices:
> matKrepr([3,0]);

[e1 =

2

4

1 0

0 −1

3

5 , e2 =

2

4

0 1

1 0

3

5 , e3 =

2

4

0 −e23

e23 0

3

5]

Notice that F = span {Id , e23} (e23 = e2we3) is a subalgebra of C`3 isomorphic
to C. Since Pauli matrices belong to Mat(2, F), it is necessary for CLIFFORD to
compute with Clifford matrices, that is, matrices of a type ‘type/climatrix‘
with entries in a Clifford algebra.
> M1,M2,M3:=rhs(%[1]),rhs(%[2]),rhs(%[3]);

M1 , M2 , M3 :=

2

4

1 0

0 −1

3

5 ,

2

4

0 1

1 0

3

5 ,

2

4

0 −e23

e23 0

3

5 .

Of course Pauli matrices satisfy the same defining relations as the basis vectors
e1, e2, and e3:3 For example:
> ‘M1 &cm M2 + M2 &cm M1‘ = evalm(M1 &cm M2 + M2 &cm M1);
> ‘e1 &c e2 + e2 &c e1‘=e1 &c e2 + e2 &c e1;

M1 &cm M2 + M2 &cm M1 =

2

4

0 0

0 0

3

5

e1 &c e2 + e2 &c e1 = 0

2We use the sloppy notation 1 ≡ 1 in Clifford algebra valued matrices which produces a simpler
display.
3Here &cm is a matrix product where Clifford multiplication is applied to the matrix entries.

See ?&cm for more information.

8 Rafa l Ab lamowicz

> ‘M1 &cm M1‘ = evalm(M1 &cm M1),‘M2 &cm M2‘ = evalm(M2 &cm M2),
> ‘M3 &cm M3‘ = evalm(M3 &cm M3);
> ‘e1 &c e1‘ = e1 &c e1,‘e2 &c e2‘ = e2 &c e2,‘e3 &c e3‘ = e3 &c e3;

M1 &cm M1 =

2

4

1 0

0 1

3

5 ,M2 &cm M2 =

2

4

1 0

0 1

3

5 ,M3 &cm M3 =

2

4

1 0

0 1

3

5

e1 &c e1 = Id , e2 &c e2 = Id , e3 &c e3 = Id

The procedure matKrepr gives the linear isomorphism C`(Q) ' Mat(2,R), and,
in general, C`(Q) ' Mat(2k, K), where K = R,C,H, for simple algebras and
C`(Q) ' Mat(2k, K) ⊕ Mat(2k, K), where K = R,H, for semisimple algebras. In
this latter case, it is customary to represent an element in C`(Q) in terms of a
single matrix over a double field R⊕R or H⊕H rather than as pair of matrices.4

One can easily list signatures of the quadratic form Q for which C`(Q) is
simple or semisimple. For more information, type ?all sigs. For example, C`1,3

has a spinor representation given in terms of 2 by 2 quaternionic matrices whose
entries belong to a subalgebra F of C`1,3 spanned by {Id , e2 , e3 , e2we3}:
> B:=linalg[diag](1,-1,-1,-1):clidata([1,3]);

[quaternionic, 2, simple,
1

2
Id +

1

2
e1we4 , [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123],

[Id , e2 , e3 , e23], [Id , e1]]

> matKrepr([1,3]); #quaternionic matrices

[e1 =

2

4

0 1

1 0

3

5 , e2 =

2

4

e2 0

0 −e2

3

5 , e3 =

2

4

e3 0

0 −e3

3

5 , e4 =

2

4

0 −1

1 0

3

5]

CLIFFORD includes several special-purpose procedures to deal with quaternions
and octonions (type ?quaternion and ?octonion for help), and with quaternionic
and octonionic matrices. In particular, following [32], octonions are treated as para-
vectors in C`0,7 while their non-associative multiplication, defined via Fano triples,
is related to the Fano projective plane F2 (see ?omultable, or ?Fano triples for
more information). User can select different Fano triples and redefine the octo-
nionic multiplication table. Since the bilinear form B can be degenerate5 , one can
use CLIFFORD to perform computations in Clifford algebras C`p,q,d of a degenerate
quadratic form Q of signature (p, q) and the dimension d of its radical. For exam-
ple, the Clifford algebra C`0,3,1 of the quadratic form Q(x) = −x2

1−x2
2 −x2

3 where
x = x1e1 + x2e2 + x3e3 + x4e4 ∈ R4 is used in robotics to represent rigid motions
in R3 and screw motions in terms of dual quaternions. [4, 41]

Thus, CLIFFORD is a repository of mathematical knowledge about Clifford
algebras of a quadratic form in dimensions 1 through 9. Together with a sup-
plementary package BIGEBRA [8] it can be extended to graded tensor products of

4Procedures adfmatrix and mdfmatrix add and multiply matrices of type dfmatrix over such

double fields. For more information see ?matKrepr.
5When B ≡ 0 then C`(V,B) = C`0,0,n =

V

V and computations in the Grassmann algebra
V

V

can then be done with CLIFFORD.

Computations with Clifford and Grassmann Algebras 9

Clifford algebras in higher dimensions. The BIGEBRA package is described in [10].
For more information about any CLIFFORD or BIGEBRA procedure, type ?Clifford
or ?Bigebra to see its top level help page in the Maple browser. For a computation
of spinor representations with CLIFFORD we refer to [3].

3. Clifford Product in C`(B)

The Clifford product in a Clifford algebra C`(B) of an arbitrary bilinear form B is
introduced via the Chevalley deformation and the Clifford map. [35] The Clifford
map γx is defined on u ∈ ∧

V as

(i) γx(u) = LC(x, u, B) + wedge(x, u) = x B u+ x ∧ u
(ii) γxγy = γx∧y +B(x,y)γ1
(iii) γax+by = aγx + bγy

where x,y ∈ V (see, for example, [35]). One knows how to compute with the wedge
x∧u and the left contraction x B u of u by x with respect to the bilinear form B.6

Following Chevalley, the left contraction has the following properties:

(i) x B y = B(x,y)
(ii) x B (u ∧ v) = (x B u) ∧ v + û ∧ (x B v)
(iii) (u ∧ v) B w = u B (v B w)

where x ∈ V, u, v ∈ ∧

V and û is the Grassmann grade involution. Hence we
can use the Clifford map γx (Chevalley deformation of the Grassmann algebra) to
define a Clifford product of a one-vector x and a multivector u as

xu = x B u+ x ∧ u. (2)

Analogous formula can also be given for a right Clifford map using the right
contraction B implemented as the procedure RC.

The Clifford product cmul or its ampersand form &c of two Grassmann basis
monomials can now be defined as follows: A single element from the first factor of
the product is split off recursively and then the Chevalley’s Clifford map is applied.
Namely,

(ea ∧ . . .∧ eb ∧ ec)&c(ef ∧ . . . ∧ eg) =

(ea ∧ . . . ∧ eb)&c(ec B (ef ∧ . . .∧ eg) + ec ∧ ef ∧ . . .∧ eg)

− ((ea ∧ . . . ∧ eb) B ec)&c(ef ∧ . . . ∧ eg). (3)

Specifically, for (e1 ∧ e2)&c(e3 ∧ e4) we have

(e1 ∧ e2)&c(e3 ∧ e4) = (e1&ce2)&c(e3 ∧ e4) −B(e1, e2)1&c(e3 ∧ e4)

= e1&c(B(e2, e3)e4 −B(e2, e4)e3 + e2 ∧ e3 ∧ e4)

−B(e1, e2)1&c(e3 ∧ e4)

6In CLIFFORD, the left contraction B is given by the procedure LC(x, u, B), or, simply, by LC(x, u)
where B is assumed as default. The right contraction u B x of u by x is encoded as a procedure

RC(u, x, B), or simply RC(u, x).

10 Rafa l Ab lamowicz

and the second recursion of the process gives now

= B(e2, e3)B(e1 , e4) − B(e2, e4)B(e1, e3) + B(e2, e3)(e1 ∧ e4)

−B(e2 , e4)(e1 ∧ e3) + B(e1, e2)(e3 ∧ e4) − B(e1, e3)(e2 ∧ e4)

+B(e1 , e4)(e2 ∧ e3) + e1 ∧ e2 ∧ e3 ∧ e4 −B(e1, e2)(e3 ∧ e4)

with the bold terms canceling out. Note that the last term in the r.h.s. was super-
fluously generated in the first step of the recursion.

The Clifford product can then be derived from the above recursion by linear-
ity and associativity. The induction starts with a left factor of grade one or grade
zero which is trivial, i.e., 1 &c ea ∧ . . .∧eb = ea ∧ . . .∧eb. In the case when the left
factor is of grade one, we use the Clifford product expressed by the Clifford map
of Chevalley, i.e.,

ea &c eb ∧ . . .∧ ec = ea B (eb ∧ . . . ∧ ec) + ea ∧ eb ∧ . . . ∧ ec.

We make a complete induction in the following way: If the left factor is of higher
grade, say n, one application of the recursion yields Clifford products where the
new left factor is of grade either n− 1 or n− 2, hence the recursion stops after at
most n− 1 steps.

The above shows clearly that both the Clifford product and the contrac-
tion are explicitly dependent on B. Furthermore, the Clifford product algorithm
based on the Chevalley’s approach is recursive. It has been encoded in a procedure
cmulNUM (see Appendix A).

Since the Clifford product provides the main functionality of the CLIFFORD

package, care has been exercised to select the most appropriate and sound mathe-
matics. Two internal user-selectable functions cmulNUM and cmulRS, an algorithm
based on a combinatorial approach due to Rota and Stein, have been used to en-
code the Clifford product but the user normally does not use either one. Instead,
the user uses a wrapper function &c[K](arg1 , arg2 , . . .) or cmul[K](arg1 , arg2 , . . .)
that passes the name of a bilinear form K to either cmulRS or cmulNUM, whichever
one has been selected to act on the multivector basis monomials. This approach
allows the user to compute in the same worksheet simultaneously with different
Clifford algebras of different bilinear forms. The wrapper function can also act
on any number of arguments of type ‘type/clipolynom‘ as the Clifford product
is associative and on a much wider class of types including Clifford matrices of
type ‘type/climatrix‘. It can also accept Clifford polynomials in other bases
such as the Clifford basis {1, ei, ei &C ej,&C(ei, ej, ek), . . .} where &C denotes the
unevaluated Clifford product. Clifford basis differs from the Grassmann exterior
basis when B is not a diagonal matrix.7

7Procedures converting between Grassmann and Clifford bases belong to a supplementary
package Cliplus [8] while Clifford polynomials expressed in the Clifford basis are of type

‘type/cliprod‘. Type ?cliprod for more information.

Computations with Clifford and Grassmann Algebras 11

The procedure cmulRS is encoded a non-recursive Rota-Stein cliffordization.
See [10, 20, 22, 24, 40] and BIGEBRA help pages for additional references.8 The clif-
fordization process is based on the Hopf algebra theory. The Clifford product is
obtained from the Grassmann wedge product and its Grassmann co-product as
shown by the following tangle:

&c :=

∆∧ ∆∧
B∧

∧
(4)

Here ∧ is the Grassmann exterior wedge product and ∆∧ is the Grassmann exterior
co-product which is obtained from the wedge product by a categorial duality: To
every algebra over a linear space A with a product we find a co-algebra with a co-
product over the same space by reversing all arrows in all axiomatic commutative
diagrams. Note that the co-product splits each input ‘factor’ x into a sum of
tensor products of ordered pairs x(1)i, x(2)i. The main requirement is that every
such pair multiplies back to the input x when the dual operation of multiplication
is applied, i.e., x(1)i ∧ x(2)i = x for each i-th pair. The ‘cup’ like part of the tangle
decorated with B∧ is the bilinear form B on the generating space V extended to
the whole Grassmann algebra: It is a map B∧ :

∧

V ×∧

V → k with B : V ×V → k

evaluating to B(x,y) on vectors in V. Hence, cmulRS computes the Clifford product
on Grassmann basis monomials x and y for the given B, which is later extended
to Clifford polynomials by bilinearity, as follows:

cmulRS(x, y, B) =

n
∑

i=1

m
∑

j=1

(±)x(1)i ∧ y(2)jB(x(2)i, y(1)j) (5)

where n and m give the cardinalities of the required splits and the sign is due to
the parity of a permutation needed to arrange the factors.

After reviewing the code of cmulRS given in Appendix B it becomes clear
that in this algorithm only those terms are created which might be non-zero and
are likely to remain in the final result: If all Bi,j are non-zero and different so
that no cancellation takes place, only exactly those terms will be returned. Yet, no
superfluous terms are created like in the recursive procedure cmulNUM that later
are canceled in subsequent recursive steps. The combinatorial power of the Hopf
algebraic approach is clearly demonstrated with this algorithm and its superior
behavior shows up in benchmarks. [9, 10]

8BIGEBRA is an extension of CLIFFORD and was specifically developed to work with Hopf alge-

bras. [8]

12 Rafa l Ab lamowicz

The two internal Clifford multiplication procedures along with their advan-
tages and disadvantages are discussed in [9]. It should suffice to say here that
cmulNUM is fast on sparse numeric matrices and on numeric matrices in general
when dimV ≥ 5, while the procedure cmulRS was designed for high efficiency with
symbolic calculations.

4. Dotted and Undotted Grassmann Bases

4.1. The dotted wedge

The dotted wedge product was introduced by Lounesto. [35] Clifford algebras with
the dotted and the undotted wedge products are isomorphic. It turns out that in
various situations, i.e., in quantum field theory or in a representation theory, one is
interested in studying isomorphic but not identical algebras in which mathematical
objects can be expressed in different bases such as the dotted and the undotted
wedge bases. [9]

It was shown above that CLIFFORD uses the Grassmann algebra
∧

V as the
underlying vector space of the Clifford algebra C`(V, B). Thus, the Grassmann
wedge basis of monomials is the standard basis used in CLIFFORD. A general ele-
ment u in C`(V, B) can be therefore viewed as a Grassmann polynomial.

When the bilinear form B has an antisymmetric part F = −F T , it is conve-
nient to split it as B = g+F, where g is the symmetric part of B, and to introduce
the so called “dotted Grassmann basis” [12] and the dotted wedge product ∧̇. The
original Grassmann basis will be referred to here as the “undotted Grassmann
basis”. In CLIFFORD, the wedge product is given by the procedure wedge and &w
while the dotted wedge product is given by dwedge and &dw.

According to Chevalley’s definition of the Clifford product &c, we have

x &c u = x B u+ x &wu = LC(x, u, B) + wedge(x, u) (6)

for a 1-vector x and an arbitrary element u of C`(B). As before, LC(x, u, B) denotes
the left contraction of u by x with respect to the bilinear form B. However, when
B = g + F then the left contraction splits too:

x B u = LC(x, u, B) = x g u+ x F u = LC(x, u, g) + LC(x, u, F) (7)

and

x &cu = LC(x, u, B) + x &wu (8)

= LC(x, u, g) + LC(x, u, F) + x &w u (9)

= LC(x, u, g) + dwedge[F](x, u) = LC(x, u, g) + x &dw u (10)

where x &dwu = x &wu + LC(x, u, F). That is, the wedge and the dotted wedge
“differ” by the contraction term(s) with respect to the antisymmetric part F of B.
This dotted wedge &dw can be extended to elements of higher grades. Its properties
are discussed next.

Procedure dwedge (and its infix form &dw) requires an index which can be a
symbol or an antisymmetric matrix. That is, dwedge computes the dotted wedge

Computations with Clifford and Grassmann Algebras 13

product of two Grassmann polynomials and expresses its answer in the undotted
basis. Special procedures exist which convert polynomials between the undotted
and dotted bases. When no index is used, the default is F :
> dwedge[K](e1+2*e2we3,e4+3*e1we2);&dw(ei+2*ejwek,ei+2*ejwek);

−(−K1,4 + 6K2,3K1, 2) Id − 6K1, 2 e2we3 − 6K2,3 e1we2

−2K2, 4 e3 + 2K3, 4 e2 − 3K1, 2 e1 + e1we4 + 2 e2we3we4

4 eiwejwek − 4Fi, k ej + 4Fi, j ek − 8Fj, k ejwek − 4Fj, k
2 Id

Observe that conversion from the undotted wedge basis to the dotted wedge ba-
sis using antisymmetric form F and dwedge[F] are related through the following
convert function:

dwedge[F](e1, e2, ..., en) = convert(e1we2w ...wen, wedge to dwedge, F)

which can be shown as follows:
> F:=array(1..9,1..9,antisymmetric):
> dwedge[F](e1,e2)=convert(wedge(e1,e2),wedge_to_dwedge,F);

e1we2 + F1, 2 Id = e1we2 + F1,2 Id

> dwedge[F](e1,e2,e3)=convert(wedge(e1,e2,e3),wedge_to_dwedge,F);

e1we2we3 + F2, 3 e1 − F1,3 e2 + F1, 2 e3 = e1we2we3 + F2, 3 e1 − F1,3 e2 + F1, 2 e3

C`(B)∧ C`(B)∧̇

wedge to dwedge

dwedge to wedge

Diagram 1. Isomorphisms between C`(B)∧ and C`(B)∧̇.

For a more complete treatment see [9].

4.2. Dotted and undotted wedge bases

Symbolic capabilities of the computer algebra system allow for an investigation of
properties of the Clifford product, contraction, and the reversion in the dotted and
the undotted bases. In this way, the CAS allows for a better understanding of these
fundamental to any Clifford algebra C`(B) operations. Here we show only a few
facts and refer to [9,10]. For example, we expand the basis of the original wedge into
the dotted wedge, and back using the two conversion functions mentioned above.
For this purpose we choose dimV = 3 and consider C`(B) with the antisymmetric
part F. The undotted wedge basis for

∧

V is then:
> w_bas:=cbasis(dim_V); #the wedge basis

w bas := [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3]

14 Rafa l Ab lamowicz

Now we map the convert function onto this basis to get the dotted wedge basis:
> d_bas:=map(convert,w_bas,wedge_to_dwedge,F);
> test_wbas:=map(convert,d_bas,dwedge_to_wedge,-F);

d bas := [Id , e1 , e2 , e3 , e1we2 + F1,2 Id , e1we3 + F1, 3 Id , e2we3 + F2, 3 Id ,

e1we2we3 + F2,3 e1 − F1, 3 e2 + F1, 2 e3]

test wbas := [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3]

Notice that only the unity 1 and the one vector basis elements ei remain unaltered
and that the other basis elements of higher grades pick up additional terms of
lower grades (which preserves the filtration). It is possible to define aliases in
CLIFFORD for the dotted wedge basis “monomials” similar to the Grassmann basis
monomials. For example, we could denote the element e1we2 + F [1 , 2] ∗ Id by
e1We2 (= e1 ∧̇ e2) and similarly for other elements:
> alias(e1We2=e1we2 + F[1,2]*Id,e1We3=e1we3 + F[1,3]*Id,
> e2We3=e2we3 + F[2,3]*Id,
> e1We2We3=e1we2we3+F[2,3]*e1-F[1,3]*e2+F[1,2]*e3);

I, e1We2 , e1We3 , e2We3 , e1We2We3

and then Maple will automatically display dotted basis in terms of the aliases:
> d_bas;

[Id , e1 , e2 , e3 , e1We2 , e1We3 , e2We3 , e1We2We3]

That is, as linear spaces we find the isomorphism:

C`(B) ∼= 〈1, e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3〉
∼= 〈1, e1, e2, e3, e1 ∧̇ e2, e1 ∧̇ e3, e2 ∧̇ e3, e1 ∧̇ e2 ∧̇ e3〉

where e1 ∧̇ e2 = e1We2 , etc.

4.3. Contraction and Clifford product in dotted and undotted bases

For details we refer to [9]. The contraction B w.r.t. any bilinear form B works on
both undotted and dotted bases in a consistent and essentially the same manner as
can be see from the next diagram which utilizes the conversion functions between
the two bases. Let F be the antisymmetric part of B. To read more about the
left contraction LC in C`(B) check the help page for LC or see [12]. We have the
following identity for any two elements u and v in C`(B) expressed in the undotted
Grassmann basis:

v B u = (v B uF)−F (11)

As before, uF is the element u expressed in the dotted basis while (. . .)−F accom-
plishes conversion back to the undotted basis. To illustrate this fact, we first con-
tract from the left an arbitrary element u in C`(B) by 1, ei, ei∧ej, ei∧ej∧ek, 1 ≤
i, j, k ≤ 3 (here we limit our example to dimV = 3) and then we extend it to a
left contraction by an arbitrary element v in C`(B).
> u:=add(x.i*w_bas[i+1],i=0..7):uF:=convert(uw,wedge_to_dwedge,F):
> v:=add(y.i*w_bas[i+1],i=0..7):
Contraction with respect to 1:
> evalb(LC(Id,u,B)=convert(LC(Id,uF,B),dwedge_to_wedge,-F));

Computations with Clifford and Grassmann Algebras 15

C`(B)∧ ⊗ C`(B)∧ C`(B)∧ ⊗C`(B)∧̇

C`(B)∧ C`(B)∧̇

1⊗ (. . .)F

B B

(. . .)−F

Diagram 2. Contraction w.r.t. wedge and dotted wedge.

true

Contraction with respect to ei:
> evalb(LC(ei,u,B)=convert(LC(ei,uF,B),dwedge_to_wedge,-F));

true

Contraction with respect to ei ∧ ej:
> evalb(LC(eiwej,u,B)=convert(LC(eiwej,uF,B),dwedge_to_wedge,-F));

true

Contraction with respect to ei ∧ ej ∧ ek:
> evalb(LC(eiwejwek,u,B)=convert(LC(eiwejwek,uF,B),dwedge_to_wedge,-F));

true

Finally, contraction with respect to an arbitrary element v:
> evalb(LC(v,u,B)=convert(LC(v,uF,B),dwedge_to_wedge,-F));

true

Once we have the dotted and the undotted Grassmann bases, we can build a
Clifford algebra C`(B) over each basis set but with different bilinear forms: B = g
or B = g + F respectively (following notation from [12]). Let us compute various
Clifford products with respect to the symmetric form g and with respect to the
full form B using procedure cmul that takes a bilinear form as its index. As an
example, we will use two most general elements u and v in

∧

V when dimV = 3.
Most output will be eliminated.
> u:=add(x.k*w_bas[k+1],k=0..7):v:=add(y.k*w_bas[k+1],k=0..7):
We can then define in

∧

V a Clifford product cmul[g] with respect to the sym-
metric part g and another Clifford product cmul[B] with respect to the entire
form B:
> cmulg:=proc() return cmul[g](args) end proc:
> cmulB:=proc() return cmul[B](args) end proc:

We will illustrate relation between the two Clifford products by chasing the follow-
ing commutative diagram, however most output will be eliminated to save space.

First, we compute the Clifford product cmul[g](u, v) in C`(g) in undotted Grass-
mann basis.

16 Rafa l Ab lamowicz

C`(g)∧ ⊗C`(g)∧ C`(g)∧̇ ⊗ C`(g)∧̇

C`(g)∧ C`(g)∧̇

(. . .)F ⊗ (. . .)F

cmul[g] cmul[B]

(. . .)−F

Diagram 3. Clifford multiplications cmul[g] and cmul[B] w.r.t.
dotted and undotted basis.

> uv:=cmulg(u,v): #Clifford product w.r.t. g in Cl(g) in wedge basis
Now, we convert u and v to uF and vF , respectively, expressed in the dotted wedge
basis:
> uF:=convert(u,wedge_to_dwedge,F):vF:=convert(v,wedge_to_dwedge,F):
We now compute the Clifford product of uF and vF in C`(B) in the dotted wedge
basis,
> uFvF:=cmulB(uF,vF): #Clifford product in Cl(B) in dwedge basis
convert back the above result back to the undotted wedge basis:
> uv2:=convert(uFvF,dwedge_to_wedge,-F): #convert result dwedge->wedge
and verify that the results are the same:
> simplify(uv-uv2); #shows equality!

0

Thus, we have shown that the following identity involving cmul[g] and cmul[B]

is true (at least when dimV = 3).9 For a general result see, e.g., [14, 28].

(u v)g = u&cg v = (uF &cB vF)−F = ((uF vF)B)−F (12)

This shows that the Clifford algebra C`(g) of the symmetric part g of B using
the undotted exterior basis is isomorphic, as an associative algebra, to the Clifford
algebra C`(B) of the entire bilinear form B = g+F spanned by the dotted wedge
basis if the antisymmetric part F of B is exactly the same as F used to connect
the two bases.

(. . .)F ∈ HomAlg(C`(g), C`(B)), B = g + F

5. More on the Associativity of the Dotted Wedge

It was shown above that CLIFFORD uses Grassmann algebra
∧

V as the underlying
vector space of the Clifford algebra C`(V, B). Thus, the Grassmann wedge basis
of monomials is the standard basis used in the package. A general element u ∈
C`(V, B) can be therefore viewed as a Grassmann polynomial.

Operation dwedge introduced in Sect. 4.1 is associative with the unity 1 = Id
as its unit:

9Here, (u v)g is the Clifford product with respect to g while uF &cB vF and (uF vF)B are the

Clifford products with respect to B, that is, in C`(g) and C`(B), respectively.

Computations with Clifford and Grassmann Algebras 17

> evalb(dwedge[F](dwedge[F](e1,e2),e3)=dwedge[F](e1,dwedge[F](e2,e3)));

true

The associativity of the dotted wedge implies that the diagram 4 commutes. It
was checked with CLIFFORD up to dimension 5.

C`(B)∧̇ ⊗C`(B)∧̇ ⊗C`(B)∧̇ C`(B)∧̇ ⊗ C`(B)∧̇

C`(B)∧̇ ⊗ C`(B)∧̇ C`(B)∧̇

dwedge[F] ⊗ 1

1⊗ dwedge[F] dwedge[F]

dwedge[F]

Diagram 4. Associativity of dwedge[F] in C`(B)∧̇.

For some arbitrary random Clifford polynomials10 u, v, z expressed in Grassmann
undotted basis we can show associativity as follows:
> u:=2*Id+e1-3*e2we3:v:=3*Id-4*e1we3+e7:z:=4*Id-2*e3+e1we2we3:
> evalb(dwedge[F](Id,u)=u),evalb(dwedge[F](u,Id)=u);

true, true

> evalb(dwedge[F](dwedge[F](u,v),z)=dwedge[F](u,dwedge[F](v,z)));

true

We have, therefore, the following identity that expresses an isomorphism between
two Clifford algebras: dotted and undotted. For any two elements u and v in
C`(B), B = g+F, that are, by default, expressed in terms of the undotted Grass-
mann basis, we find:

u ∧ v = (uF ∧̇ vF)−F . (13)

Here uF and vF are the elements u and v expressed in the dotted basis with respect
to the form F while (. . .)−F denotes conversion back from the dotted basis to the
undotted basis w.r.t. −F = F T . C`(B)∧ and C`(B)∧̇ denote the modules w.r.t.
the two filtrations in use. This can be illustrated in CLIFFORD as follows:
> uu:=convert(u,wedge_to_dwedge,F); vv:=convert(v,wedge_to_dwedge,F);

uu := e1 − 3 e2we3 − 3F2,3 Id + 2 Id

vv := 3 Id − 4 e1we3 − 4F1,3 Id + e7

10In CLIFFORD ver. 6 and higher there are three procedures useful for testing that return a random
Grassmann basis monomial, a random monomial and a random polynomial, respectively. See

?rd clibasmon, ?rd climon, ?rd clipolynom.

18 Rafa l Ab lamowicz

C`(B)∧ ⊗ C`(B)∧ C`(B)∧̇ ⊗C`(B)∧̇

C`(B)∧ C`(B)∧̇

(. . .)F ⊗ (. . .)F

∧ ∧̇
(. . .)−F

Diagram 5. Relation between ∧ and ∧̇ products.

> out1:=dwedge[F](uu,vv): #dwedge computed w.r.t. F
> out2:=convert(out1,dwedge_to_wedge,-F); #back to undotted basis

out2 := 3 e1 − 9 e2we3 + 6 Id − 8 e1we3 + e1we7 − 3 e2we3we7 + 2 e7

> out3:=wedge(u,v); #direct computation of wedge product

out3 := 3 e1 − 9 e2we3 + 6 Id − 8 e1we3 + e1we7 − 3 e2we3we7 + 2 e7

and it can be seen that out2 = out3 establishing the relation (13).

The dotted and the undotted wedge bases are treated fully in [9]. One can
also find there a discussion of a dependence of contraction, the Clifford product,
and the reversion on the antisymmetric part F of B in the Clifford algebra C`(B).
In the following section we illustrate properties of the reversion in dotted and
undotted bases.

6. Reversion in Dotted and Undotted Bases

Following [9] we proceed to show that the expansion of the Clifford basis elements
into the dotted or undotted exterior products has also implications for other well
known operations such as the Clifford reversion anti-automorphism

˜ : C`(B) → C`(B), uv 7→ ṽũ,

which preserves the grades in ˙∧V [but not in
∧

V unless B is symmetric.] Only
when the bilinear form is symmetric, we find that the reversion is grade preserving,
otherwise it reflects only the filtration: That is, reversed elements are in general
sums of terms of the same and lower degrees.
> reversion(e1we2,B); #reversion with respect to B
> reversion(e1we2,g); #reversion with respect to g (classical result)

−e1we2 − 2F1,2 Id

−e1we2

Computations with Clifford and Grassmann Algebras 19

C`(B)∧ C`(B)∧̇

C`(B)∧

reversion[B](. . .)

reversion[g](. . .)

(. . .)2 F

Diagram 6. Relation between reversion[g] and reversion[B]

and the basis transformation (. . .)2F .

We illustrate how the various reversions are related in the following commutative
diagram:

The reader should note that the map, depicted by the diagonal arrow in
Diagram 6, involves a change of basis induced by the antisymmetric bilinear form
2F and not F. The factor 2 is crucial and appears due to an asymmetry between
the undotted and dotted bases. This suggests to introduce a symmetrically related
triple of bases w.r.t. −1

2F, F ≡ 0 and 1
2F. In such a setting, F (resp. −F) connects

the two dotted bases induced by ±1
2F.

Observe in the pre-last display above that only when B1,2 = B2,1, the re-
sult −e1 ∧ e2 known from the theory of classical Clifford algebras is obtained.
Likewise,
> cbas:=cbasis(3);

cbas := [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3]

> map(reversion,cbas,B);

[Id , e1 , e2 , e3 , −e1we2 − 2F1, 2 Id , −e1we3 − 2F1, 3 Id , −e2we3 − 2F2,3 Id ,

−2F2, 3 e1 + 2F1, 3 e2 − 2F1, 2 e3 − e1we2we3]
If instead of B we use a symmetric matrix g = gT (or the symmetric part of B),
then
> map(reversion,cbas,g);

[Id , e1 , e2 , e3 , −e1we2 , −e1we3 , −e2we3 , −e1we2we3]

Convert now e1 ∧ e2 to the dotted basis to get e1 ∧̇ e2 = e1We2 :
> convert(e1we2,wedge_to_dwedge,F);

e1We2

Applying reversion to e1We2 with respect to F one gets the reversed element in
the dotted basis:
> reversed_e1We2:=reversion(e1We2,F);

reversed e1We2 := −e1we2 − F1,2 Id

20 Rafa l Ab lamowicz

Observe, that the above element is equal to the negative of e1We2 just like re-
versing e1we2 with respect to the symmetric part g of B:
> reversed_e1We2+e1We2;

0

Finally, convert reversed e1We2 to the undotted standard Grassmann basis to get
−e1we2 :
> convert(reversed_e1We2,dwedge_to_wedge,-F);

−e1we2

The above, of course, can be obtained by applying reversion to e1we2 with respect
to the symmetric part g of B:
> reversion(e1we2,g); #reversion w.r.t. the symmetric part g

−e1we2

This shows that the dotted wedge basis is the particular basis which is stable
under the Clifford reversion computed with respect to F, the antisymmetric part
of the bilinear form B. This requirement allows one to distinguish Clifford algebras
C`(g) which have a symmetric bilinear form g from those which do not have such
symmetric bilinear form but a more general form B instead. We call the former
classical Clifford algebras while we use the term quantum Clifford algebras for the
general not necessarily symmetric case. [6]

C`(X)∧ ⊗C`(X)∧ C`(X)∧

C`(X)∧ ⊗C`(X)∧

C`(X)∧ ⊗C`(X)∧ C`(X)∧

cmul[X]

reversion[X] ⊗ reversion[X]

switch

reversion[X]

cmul[X]

Diagram 7. Relation between the reversion[X] of type X∈
{g,F,B} with the corresponding Clifford multiplication cmul[X].
The map called switch is the ungraded switch of tensor factors,
that is, switch(A ⊗B) = B ⊗ A.

Computations with Clifford and Grassmann Algebras 21

7. Spinor Representation of C`(Q) in Minimal Left Ideals

See [3] for a complete treatment of symbolic computation of spinor representations
of simple and semisimple Clifford algebras. Here we provide some basic facts and
a few examples. We will use a procedure spinorKrepr from CLIFFORD.

Procedure spinorKrepr finds a matrix spinor representation of any Clifford
polynomial in a minimal left ideal S = C`(Q)f or a minimal right ideal S = fC`(Q)
over the field K ' fC`(q)f. Depending on the signature of Q, the field K is
isomorphic to R when (p− q) mod 8 = 0, 1, 2; C when (p− q) mod 8 = 3, 7; or H

when (p − q) mod 8 = 4, 5, 6. In order to compute the spinor representation, one
needs (i) a Clifford polynomial p whose matrix of the field K needs to be found;
(ii) a list of basis elements of the type ‘type/clipolynom‘ which give a K-basis
for S over the field K. Among those elements there is the primitive idempotent f
used to generate S; (iii) a list of elements of the type ‘type/clibasmon‘ which
generate the field K, and (iv) a string ′left′ or ′right′ depending whether S is a
left or right minimal ideal.

Since the steps needed to compute spinor representations are rather involved,
the user may just want to use already pre-computed and stored matrices over K
representing 1-vectors. Procedure matKrepr uses stored data and can compute
matrices representing any Clifford polynomial. A few simple examples are shown
below.

Example 1. Clifford algebra C`2,0 of the Euclidean plane R2 is known to be iso-
morphic to R(2), the ring of 2 × 2 real matrices.
> dim:=2:B:=linalg[diag](1,1): #define the bilinear form B for Cl(2,0)
> clibasis:=cbasis(dim): #compute a Clifford basis for Cl(2,0)
> data:=clidata(B); #retrieve and display data about Cl(2,0)

data := [real , 2, simple,
Id

2
+

e1

2
, [Id , e2], [Id], [Id , e2]]

> f:=data[4]: #assign pre-stored idempotent to f or use your own here
> sbasis:=minimalideal(clibasis,f,’left’);#compute a real basis in Cl(2,0)f

sbasis := [[
Id

2
+

e1

2
,

e2

2
− e12

2
], [Id , e2], left]

> Kbasis:=Kfield(sbasis,f): #compute a basis for the field K
> SBgens:=sbasis[2]: #generators for a real basis in S
> FBgens:=Kbasis[2]; #generator for K is only one since K=R

FBgens := [Id]

> K_basis:=spinorKbasis(SBgens,f,FBgens,’left’); #K-basis for S

K basis := [[
Id

2
+

e1

2
,

e2

2
− e12

2
], [Id , e2], left]

22 Rafa l Ab lamowicz

Here are matrices representing basis monomials of C`2,0:
> M0,M1,M2,M3:=op(map(spinorKrepr,clibasis,K_basis[1],FBgens,’left’));

M0 , M1 , M2 , M3 :=

2

4

1 0

0 1

3

5 ,

2

4

1 0

0 −1

3

5 ,

2

4

0 1

1 0

3

5 ,

2

4

0 1

−1 0

3

5

Since the spinor representation of C`2,0 is an algebra isomorphism from C`2,0

to R(2), matrixM12 that represents e1e2 = e1∧e2 is a product of matrices M1 and
M2 with Clifford multiplication applied to their entries. Procedure which handles
multiplication of such matrices is called rmulm and it can also be entered in its
infix form &cm:
> M12:=M1 &cm M2;

M12 :=

2

4

0 1

−1 0

3

5

Notice that M1 and M2 have the same algebraic properties as the basis elements
they represent: e1e2 + e2e1 = 0:
> e1 &c e2 + e2 &c e1, evalm(M1 &cm M2 + M2 &cm M1);

0,

2

4

0 0

0 0

3

5

Let’s find a matrix representing an arbitrary Clifford polynomial p in C`2,0:

> p:=a0+a1*e1+a2*e2+a12*e12;

p := a0 + a1 e1 + a2 e2 + a12 e12

> spinorKrepr(p,K_basis[1],FBgens,’left’);#matrix of p in S

2

4

a0 + a1 a2 + a12

a2 − a12 a0 − a1

3

5

The simplest way to compute that matrix is to use procedure matKrepr that
uses pre-computed spinor representations of all Clifford algebras C`p,q, p+ q ≤ 9,
that are stored in CLIFFORD:
> matKrepr(p);

2

4

a0 + a1 a2 + a12

a2 − a12 a0 − a1

3

5

Example 2. In this example we consider the Clifford algebra C`3,0 ' C(2). In the
following we will see how matrices with entries in C`3,0, and more precisely, in
K = fC`3,0f ' C are handled.

Computations with Clifford and Grassmann Algebras 23

> dim:=3:B:=linalg[diag](1,1,1):#define the bilinear form B for Cl(3,0)
> clibasis:=cbasis(dim): #compute Clifford basis for Cl(3,0)
> data:=clidata(B); #retrieve and display data about Cl(3,0)

data := [complex , 2, simple,
Id

2
+

e1

2
, [Id , e2 , e3 , e23], [Id , e23], [Id , e2]]

> f:=data[4]: #assign pre-stored idempotent to f or use your own here
> sbasis:=minimalideal(clibasis,f,’left’):#compute a real basis in Cl(3,0)f
> Kbasis:=Kfield(sbasis,f); #compute a basis for the field K

Kbasis := [[
Id

2
+

e1

2
,

e23

2
+

e123

2
], [Id , e23]]

> SBgens:=sbasis[2]: #generators for a real basis in S
> FBgens:=Kbasis[2]; #generators for K are two since K=C

FBgens := [Id , e23]

> K_basis:=spinorKbasis(SBgens,f,FBgens,’left’);

K basis := [[
Id

2
+

e1

2
,

e2

2
− e12

2
], [Id , e2], left]

Here are the matrices representing 1-vector basis monomials of C`3,0. Matrices
sigma[1], sigma[2] and sigma[3] are the well-known Pauli matrices with entries in
the field K:
> sigma[1],sigma[2],sigma[3]:=
> op(map(spinorKrepr,[e1,e2,e3],K_basis[1],FBgens,’left’));

σ1, σ2, σ3 :=

2

4

1 0

0 −1

3

5 ,

2

4

0 1

1 0

3

5 ,

2

4

0 −e23

e23 0

3

5

Let’s find matrices representing the two basis elements in the spinor ideal
S = C`3,0f. As expected, these matrices over K have the following form:
> f1,f2:=K_basis[1][1],K_basis[1][2];

f1 , f2 :=
Id

2
+

e1

2
,

e2

2
− e12

2

> F1,F2:=op(map(spinorKrepr,[f1,f2],K_basis[1],FBgens,’left’));

F1 , F2 :=

2

4

1 0

0 0

3

5 ,

2

4

0 0

1 0

3

5

Thus, a spinor s is a complex vector written in terms of the basis {f1, f2}
and its one-column complex matrix with entries in K = {1, e2 ∧ e3} is:
> psi[1],psi[2]:=a*Id+b*e23,c*Id+d*e23;

ψ1, ψ2 := a Id + b e23 , c Id + d e23

24 Rafa l Ab lamowicz

> s:=f1 &c psi[1] + f2 &c psi[2];#remember that S is a right K-vector space

s :=
a Id

2
+
b e23

2
+
a e1

2
+
b e123

2
− c e12

2
− d e13

2
+
c e2

2
+
d e3

2

> sm:=matKrepr(s); #matrix of s

sm :=

2

4

a+ b e23 0

c+ d e23 0

3

5

Since CLIFFORD can handle computations with matrices in any Clifford alge-
bra11, it can also handle spinor representations in quaternionic spinor spaces and
in spinor spaces over dual numbers in the case of semisimple Clifford algebras. [3]

8. Two Scalar Products in Spinor Ideals

Scalar products β+ and β− in spinor ideals S = C`p,qf are discussed and clas-
sified in [30, 39]. In CLIFFORD there are corresponding procedures beta plus and
beta minus that compute scalar products β+(ψ, φ) and β−(ψ, φ), respectively, for
any two spinors ψ, φ ∈ S. Recall that β+ denotes the reversion in C`p,q while
β− denotes the conjugation, that is, a composition of the grade involution ˆ and
the reversion ˜ in C`p,q. Let β be either of the two anti involutions β+ or β− of
C`p,q. Following [39] Lounesto argues that when C`p,q is simple, for any spinor
ideal V = C`p,qf generated by a primitive idempotent f there exists an invertible
element u in C`p,q such that fu = uβ(f). Let F = fC`p,qf. Then V becomes a
right F -module. Define a map λ → λσ = uβ(λ)u−1 which is an automorphism of
the ring F. Then the map ψ → ψξ = uβ(ψ) right-to-left F -semilinear on V and,
therefore, the map V × V → F defined by

(ψ, φ) 7→ uψξβ(ψ)φ (14)

is a scalar product on V.12 It turns out that the element u can be chosen to be an
element eA of the Grassmann basis for C`p,q .

The first two arguments beta plus and beta minus are spinors ψ and φ

which are Clifford polynomials of ‘type/clipolynom‘. The third argument is a

primitive idempotent f (for simple Clifford algebras or f+f̂ for semisimple Clifford
algebras). The fourth optional argument ′s′ will be a placeholder for the invertible
element u described above.

Example 3. Let’s compute the two bilinear forms beta plus and beta minus on
S = C`3,0f, a spinor space of the Clifford algebra of the Euclidean space R

3. To
shorten output, procedure makealiases is used.

11When computing matrix products, one can apply the Clifford product, the wedge product, or

any product to the matrix entries. See help in CLIFFORD.
12Similar discussion is extended to semi-simple Clifford algebras C`p,q . In that case one considers

W = C`p,qe where e = f + f̂ .

Computations with Clifford and Grassmann Algebras 25

> B:=diag(1,1,1); #define B for Cl(3,0)

B :=

2

6

6

6

4

1 0 0

0 1 0

0 0 1

3

7

7

7

5

> dim:=coldim(B):eval(makealiases(dim)):
> data:=clidata(B); #retrieve and display data about Cl(B)

data := [complex , 2, simple,
Id

2
+

e1

2
, [Id , e2 , e3 , e23], [Id , e23], [Id , e2]]

> f:=data[4]: #assign pre-stored idempotent to f or use your own here
> for i from 1 to nops(data[7]) do f||i:=data[7][i] &c f od;

f1 :=
Id

2
+

e1

2
, f2 :=

e2

2
− e12

2

> Kbasis:=data[6]; #here K = C

Kbasis := [Id , e23]

Let’s define arbitrary (complex) spinor coefficients psi1, psi2, phi1 and phi2 for
two spinors ψ and φ in S = C`3,0f ' C2. Notice, that these coefficients belong to a
subalgebra K of C`3,0 spanned by {1, e23} that is isomorphic to C since e2

23 = −1.
Recall also that the left minimal ideal S = C`(Q)f is a right K-module. That’s
why the ’complex’ coefficients must be written on the right of the spinor basis
elements f1 and f2 in S:
> psi1:=psi11 * Id + psi12 * e23;psi2:=psi21 * Id + psi22 * e23;

ψ1 := ψ11 Id + ψ12 e23 , ψ2 := ψ21 Id + ψ22 e23

> phi1:=phi11 * Id + phi12 * e23;phi2:=phi21 * Id + phi22 * e23;

φ1 := φ11 Id + φ12 e23 , φ2 := φ21 Id + φ22 e23

Thus, ψ = f1ψ1 + f2ψ2 and φ = f1φ1 + f2φ2 which is shown in Maple with a help
of an unevaluated Clifford product climul as follows:
> psi:=’f1 &c psi1’ + ’f2 &c psi2’;phi:=’f1 &c phi1’ + ’f2 &c phi2’;

ψ := climul(f1 , ψ1) + climul(f2 , ψ2), φ := climul(f1 , φ1) + climul(f2 , φ2)

Now, we compute β+(ψ, φ) while we store the purespinor u under the name
purespinor1. Notice, that β+ is invariant under the unitary group U(2).
> beta_plus(psi,phi,f,’purespinor1’);purespinor1;

(ψ22φ22 + ψ21φ21 + ψ11φ11 + ψ12φ12) Id

+ (ψ21φ22 − ψ12φ11 + ψ11φ12 − ψ22φ21) e23

Id

26 Rafa l Ab lamowicz

Observe that β+(ψ, φ) = ψ∗
1φ1 + ψ∗

2φ2 where ∗ denotes complex conjugation,
whereas a pure spinor in this case is the identity element.13

Finally, we compute β−(ψ, φ) while we store the purespinor u under the
name purespinor2. Notice, that β− is invariant under the complex symplectic
group Sp(2,C).
> beta_minus(psi,phi,f,’purespinor2’);purespinor2;

(−ψ12φ22 + ψ22φ12 + ψ11φ21 − ψ21φ11) Id

+ (−ψ22φ11 + ψ12φ21 + ψ11 φ22 − ψ21φ12) e23

e2

Observe that β−(ψ, φ) = ψ1φ2 −ψ2φ1 whereas a pure spinor in this case is e2. We
can easily check now that pure spinors purespinor1 and purespinor2 have the
desired commuting properties with the idempotent f :
> u:=purespinor1: f &c u - u &c reversion(f);

0

> u:=purespinor2: f &c u - u &c conjugation(f);

0

For more information see [3] and [30].

9. Continuous Families of Idempotents: Low Dimensional Examples

In this section we will show how one can discover with CLIFFORD existence of
continuous families of idempotents. For a complete treatment of this topic we
refer to [11].

It is well known [30] that any primitive idempotent f in C`p,q is expressible
as a product

f =
1

2
(1 ± eT1)

1

2
(1 ± eT2) . . .

1

2
(1 ± eTk

) (15)

where eTi
, i = 1, . . . , k, are commuting basis monomials with square 1, and k =

q− rq−p, where ri is the Radon-Hurwitz number.14 Furthermore, C`p,q has a com-
plete set of 2k primitive mutually annihilating idempotents15 each with k factors
as shown in (15). In CLIFFORD procedure clidata displays one chosen primitive
idempotent to generate precomputed spinor representations of Clifford algebras in
dimensions up to 9.

13One should not confuse this complex conjugation with Maple’s symbol for multiplication as in

phi1:= phi11*Id+phi12*e23; above.
14The Radon-Hurwitz number is defined by recursion as ri+8 = ri + 4 and these initial values:
r0 = 0, r1 = 1, r2 = r3 = 2, r4 = r5 = r6 = r7 = 3. In CLIFFORD it is given by the procedure

RHnumber.
15There are 2k possible sign choices for the k factors in (15). Any two primitive idempotents f

and g obtained by selecting different signs in (15) are mutually annihilating, that is fg = gf = 0.

Computations with Clifford and Grassmann Algebras 27

We will show how to find continuous families of idempotents in a Clifford al-
gebra C`(Q) by finding a general solution to the equation f2 = f with a procedure
clisolve. As low dimensional examples, we will use C`2,0, C`1,1 and C`3,0.

Example 4. Families of idempotents in C`2,0 (see also [43]) can be discovered as
follows.
> dim_V:=2:B:=diag(1,1):bas:=cbasis(dim_V):clidata();

[real , 2, simple,
Id

2
+

e1

2
, [Id , e2], [Id], [Id, e2]]

As shown above, a standard primitive idempotent inC`2,0 is f1 = 1
2
+ 1

2
e1. We

will look, however, for the most general element f in C`2,0 that satisfies f2 = f.
> f:=add(x[i]*bas[i],i=1..2^dim_V);

f := x1 Id + x2 e1 + x3 e2 + x4 e12

There are four real solutions:
> sol:=map(allvalues,clisolve(cmul(f,f)-f,f)):sol_real:=remove(has,sol,I);

sol real := [0, Id ,
Id

2
+

1

2

√
1 + 4x4

2 e2 + x4 e12 ,
Id

2
− 1

2

√
1 + 4x4

2 e2 + x4 e12 ,

Id

2
+

1

2

√
1 − 4x3

2 + 4x4
2 e1 + x3 e2 + x4 e12 ,

Id

2
− 1

2

√
1 − 4x3

2 + 4x4
2 e1 + x3 e2 + x4 e12]

We verify that each solution is an idempotent (of course, 0 and Id are the trivial
ones):
> map(x -> is(simplify(cmul(x,x)=x)),sol_real);

[true, true, true, true, true, true]

Observe that all nontrivial idempotents found above are ungraded, i.e., they
are neither odd nor even. If we set x4 = x3 = 0 in the above two idempotents that
contain

√
1 − 4 x3

2 + 4 x4
2, we recover the default mutually annihilating primitive

pair. However,

1

2
± 1

2

√

1 + 4 x4
2 − 4 x3

2 e1 + x3 e2 + x4 e1 ∧ e2 (16)

gives a two-parameter family of idempotents inC`2,0 as long as 1+4 x4
2−4 x3

2 ≥ 0.
The classical (discrete) idempotents occupy the center (0, 0) of that parameterized
region in the real x3x4-plane. It can be easily checked that the above two idempo-
tents, in general, do not add up to 1 and do not annihilate each other unless both
parameters are zero.

Example 5. Let’s now change the signature from (2, 0) to (1, 1) and repeat the
above computations in the Clifford algebra C`1,1 of neutral signature.
> dim_V:=2:B:=diag(1,-1):bas:=cbasis(dim_V):clidata();

[real , 2, simple,
Id

2
+

e12

2
, [Id, e1], [Id], [Id , e1]]

28 Rafa l Ab lamowicz

> f:=add(x[i]*bas[i],i=1..2^dim_V);

f := x1 Id + x2 e1 + x3 e2 + x4 e12

> sol:=map(allvalues,clisolve(cmul(f,f)-f,f)):sol_real:=remove(has,sol,I);

sol real := [0, Id ,
Id

2
+

1

2

√
1 − 4x4

2 e2 + x4 e12 ,
Id

2
− 1

2

√
1 − 4x4

2 e2 + x4 e12 ,

Id

2
+

1

2

√
1 + 4x3

2 − 4x4
2 e1 + x3 e2 + x4 e12 ,

Id

2
− 1

2

√
1 + 4x3

2 − 4x4
2 e1 + x3 e2 + x4 e12]

> map(x -> is(simplify(cmul(x,x)=x)),sol_real);

[true, true, true, true, true, true]

Thus, like in the Euclidean case, we find that

1

2
± 1

2

√

1 + 4 x3
2 − 4 x4

2 e1 + x3 e2 + x4 e1 ∧ e2 (17)

gives a two parameter family of idempotents provided 1 + 4 x3
2 − 4 x4

2 ≥ 0. Like
in the Euclidean case we find that the idempotents in the pair (17) do not add
up to 1 and do not mutually annihilate unless x3 = x4 = 0. In that case we find
graded idempotents 1

2
± 1

2
e1 ∧ e2.

In the anti-Euclidean signature (0, 2) we only find, as expected, trivial idem-
potents in C`0,2 ' H. In higher dimensions, for example in C`3,0, one also finds
families parameterized by more than two parameters.

10. Vahlen Matrices

For the background material on Vahlen matrices and conformal transformations,
see [15, 31, 33,34,38]. Procedure isVahlenmatrix determines if a given 2 × 2 Clif-
ford matrix V ∈ Mat(2, C`(Q)) is a Vahlen matrix and it returns true or false

accordingly. Any matrix with entries in a Clifford algebra is of ‘type/climatrix‘.
A Vahlen matrix is a 2×2 matrix V =

(

a b
c d

)

with entries in a Clifford algebra
C`p,q such that the following conditions are met:

1. a, b, c, d are products of 1-vectors,
2. The pseudo-determinant16 of V computed as ad̃− bc̃ equals +1 or −1,
3. ab̃, b̃d, dc̃, and c̃a are all 1-vectors.17

Condition (i) above implies that a, b, c, and d are elements of the Lipschitz
group Lp,q of C`p,q. Recall [35] that this group is defined as follows:

Lp,q = {s ∈ C`p,q | xxŝ−1 ∈ R
p,q,x ∈ R

p,q}.

16In CLIFFORD it is computed with a procedure pseudodet.
17Here ˜ denotes the reversion anti-automorphism in C`p,q . In CLIFFORD it is the reversion

operation.

Computations with Clifford and Grassmann Algebras 29

Procedure isproduct is used to determine whether this condition is met. Recall
that in dimensions n ≥ 3 sense preserving conformal mappings are restrictions of
the Möbius transformations and are compositions of rotations, translations, dila-
tions and transversions (called also special conformal transformations). A Möbius
transformation in R

p,q can be written in the form

x → ax + b

cx + d
(18)

where x is a 1-vector that belongs to Rp,q , a, b, c, d belong to C`p,q, and the prod-
ucts and the inverse are taken in C`p,q. This transformation may be represented
by the Vahlen matrix V defined above. Rotations, translations, dilations, and
transversions will then be represented as follows:

• Rotations: x → axa−1 where a belongs to Spin
+(p, q), the identity compo-

nent of Spin(p, q), and V =

(

a 0
0 a

)

,

• Translations: x → x + b where b ∈ Rp,q and V =

(

1 b

0 1

)

,

• Dilations: x → sx where s > 0 and V =

(√
s 0

0 1√
s

)

,

• Transversions: x → (x + x2c)

(1 + 2x · c + x2c2)
where c ∈ Rp,q, x·c is the dot product

in Rp,q and V =

(

1 0
c 1

)

.

Let’s consider a few simple examples in the signature (3, 1). Our goal is to see
how CLIFFORD manipulates with Clifford matrices. At the same time we will verify
some results from [38]. We begin with a Vahlen matrix R that gives a rotation:
> B:=linalg[diag](1,1,1,-1); #bilinear form for the Minkowski space

B :=

2

6

6

6

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

3

7

7

7

7

7

7

5

> a:=e1we2; #an element of grade 2 in Spin+(3,1)
> R:=linalg[matrix](2,2,[a,0,0,a]); #Vahlen matrix that gives a rotation
> ’isVahlenmatrix(R)’=isVahlenmatrix(R);

a := e12 , R :=

2

4

e12 0

0 e12

3

5

′isVahlenmatrix (R)′ = true

30 Rafa l Ab lamowicz

Next, we consider a Vahlen matrix T that gives a translation:
> b:=e1+2*e3; #vector in R^(3,1)
> T:=linalg[matrix](2,2,[1,b,0,1]);
> ’isVahlenmatrix(T)’=isVahlenmatrix(T);

b := e1 + 2 e3 , T :=

2

4

1 e1 + 2 e3

0 1

3

5

′isVahlenmatrix(T)′ = true

A Vahlen matrix Dil that gives a dilation transformation:
> delta:=1/4: #a positive parameter
> Dil:=linalg[matrix](2,2,[sqrt(delta),0,0,1/sqrt(delta)]);
> ’isVahlenmatrix(Dil)’=isVahlenmatrix(Dil);

Dil :=

2

6

4

1

2
0

0 2

3

7

5

′isVahlenmatrix(Dil)′ = true

Finally, a Vahlen matrix Tv that gives a transversion transformation:
> c:=2*e1-e3; #a vector in R^(3,1)
> Tv:=linalg[matrix](2,2,[1,0,c,1]);
> ’isVahlenmatrix(Tv)’=isVahlenmatrix(Tv);

c := 2 e1 − e3 , Tv :=

2

4

1 0

2 e1 − e3 1

3

5

′isVahlenmatrix (Tv)′ = true

If we now take a product of these four matrices above,18 we will obtain an element
conf of the conformal group in R3,1:
> conf:=R &cm T &cm Dil &cm Tv;

conf :=

2

6

4

e12

2
+ 10 e23 4 e123 − 2 e2

−2 e123 − 4 e2 2 e12

3

7

5

Since in the product above each matrix appeared exactly once, the diagonal entries
of conf must be invertible. We find the inverses of each element with cinv:
> cinv(conf[1,1]); #inverse of conf[1,1]

−2 e12

401
− 40 e23

401

18&cm denotes a matrix multiplication in CLIFFORDwith the Clifford product applied to the matrix

entries.

Computations with Clifford and Grassmann Algebras 31

> cinv(conf[2,2]); #inverse of conf[2,2]

−e12

2

However, there are elements in the conformal group of R3,1 whose Vahlen matrices
do not have invertible elements at all. The following example of such matrix is
due to Johannes Maks. [38] Matrix W defined below represents an element in the
identity component of the conformal group of R

3,1:
> W:=evalm((1/2)*linalg[matrix](2,2,[1-e14,-e1+e4,e1+e4,1+e14]));

W :=

2

6

6

4

1

2
− e14

2
−e1

2
+

e4

2

e1

2
+

e4

2

1

2
+

e14

2

3

7

7

5

Notice that the diagonal elements of W are non-trivial idempotents in C`3,1 hence
as such they are not invertible:
> type(W[1,1],idempotent); #element (1,1) of W is an idempotent

true

> type(W[2,2],idempotent); #element (2,2) of W is an idempotent

true

Notice also that the off-diagonal elements of W are isotropic vectors in R
3,1, hence

they are also non-invertible. In C`3,1 such vectors have zero squares:
> cmul(W[1,2],W[1,2]),cmul(W[2,1],W[2,1]);

0, 0

Let’s now verify that matrix W defined above is a Vahlen matrix:
> ’isVahlenmatrix(W)’=isVahlenmatrix(W);

true

However, matrix W represents an element of the identity component of the con-
formal group in R3,1 since its pseudo-determinant is 1, and since it can be written
as a product of a transversion, a translation, and a transversion. Thus, in an-
other words, W is not a product of just one rotation, one translation, one dilation,

and/or one transversion:
> Tv:=linalg[matrix](2,2,[1,0,(e1+e4)/2,1]);

Tv :=

2

4

1 0
e4

2
+

e1

2
1

3

5

> T:=linalg[matrix](2,2,[1,(-e1+e4)/2,0,1]);

T :=

2

6

4

1
e4

2
− e1

2

0 1

3

7

5

32 Rafa l Ab lamowicz

> Tv &cm T &cm Tv = evalm(W); # W = Tv &cm T &cm Tv

2

6

6

4

1

2
− e14

2

e4

2
− e1

2

e4

2
+

e1

2

1

2
+

e14

2

3

7

7

5

=

2

6

6

4

1

2
− e14

2

e4

2
− e1

2

e4

2
+

e1

2

1

2
+

e14

2

3

7

7

5

> pseudodet(W); #computing pseudo-determinant of W

Id

Thus, the above computation confirms that W = Tv&cmT &cmTv and that the
pseudo-determinant of W is 1.

There is another variation of Johannes Maks’ example of a Vahlen matrix
W without any invertible entries. Matrix W represents an element in the identity
component of the conformal group of R3,1.
> W:=evalm((1/2)*linalg[matrix](2,2,[1-e24,-e2+e4,e2+e4,1+e24]));

W :=

2

6

6

4

1

2
− e24

2
−e2

2
+

e4

2

e2

2
+

e4

2

1

2
+

e24

2

3

7

7

5

Notice that the diagonal elements of W are non-trivial idempotents in C`3,1, hence
they are not invertible in C`3,1:
> type(W[1,1],idempotent); #element (1,1) of W is an idempotent
> type(W[2,2],idempotent); #element (2,2) of W is an idempotent

true , true

Notice also that the off-diagonal elements of W are isotropic vectors in R3,1, hence
they are also non-invertible:
> cmul(W[1,2],W[1,2]),cmul(W[2,1],W[2,1]);

0, 0

Finally, we verify that W is a Vahlen matrix:
> ’isVahlenmatrix(W)’=isVahlenmatrix(W);

′isVahlenmatrix (W)′ = true

However, W is an element of the identity component of the conformal group in
R3,1 since its pseudo-determinant is 1, and since it can be written as a product of
a transversion, a translation, and a transversion. As before, W is not a product of
just one rotation, one translation, one dilation, and/or one transversion:

> Tv:=linalg[matrix](2,2,[1,0,(e2+e4)/2,1]);

Tv :=

2

4

1 0
e4

2
+

e2

2
1

3

5

Computations with Clifford and Grassmann Algebras 33

> T:=linalg[matrix](2,2,[1,(-e2+e4)/2,0,1]);

T :=

2

6

4

1
e4

2
− e2

2

0 1

3

7

5

> Tv &cm T &cm Tv = evalm(W); #W = Tv &cm T &cm Tv

2

6

6

4

1

2
− e24

2

e4

2
− e2

2

e4

2
+

e2

2

1

2
+

e24

2

3

7

7

5

=

2

6

6

4

1

2
− e24

2

e4

2
− e2

2

e4

2
+

e2

2

1

2
+

e24

2

3

7

7

5

> pseudodet(W); #computing pseudo-determinant of W

Id

Thus, the above computation again confirms that W = Tv&cmT &cmTv and
that the pseudo-determinant of W is 1.

11. Singular Value Decomposition and Clifford Algebra

In this section we will show how the Singular Value Decomposition (SVD) of a
matrix can be translated into the Clifford algebra language. For the background
information on SVD we refer to [42]. There are many uses of SVD such as in image
processing, description of the so called principal gains in a multivariable system
[37], or in an automated data indexing known as Latent Semantic Indexing (or
LSI). LSI presents a very interesting and useful technique in information retrieval
models and it is based on the SVD. [19] While in these practical cases computations
are done numerically, it may be of interest to ask whether SVD of a matrix can
be performed in the framework of Clifford algebras. Likewise, whether SVD of a
Clifford number can be found without using matrices. That is, if any new insights,
theoretical or otherwise, into such decomposition could be gained when stated in
the Clifford algebra language.

We will explore a well-known fact that when p − q 6= 1 mod 4, the Clifford
algebra C`p,q is a simple algebra of dimension 2n, n = p + q, isomorphic to a

full matrix algebra Mat(2k,K) of 2k × 2k matrices19 with entries in the division
ring K. The ring K is a subalgebra of C`p,q isomorphic to R, C, or H depending on
the signature (p, q) and the dimension n (see [3]). Thus, any operation performed
on a matrix A ∈ Mat(2k,K) can be expressed as an operation on the uniquely
corresponding to it element p in C`p,q. The choice of the signature (p, q) depends
on the size of A and the division ring K. Of course, for computational reasons one
should find the smallest Clifford algebra C`p,q such that the given matrix A can be

19The value k is determined by the formula k = q−rq−p, where ri is the Radon-Hurwitz number.
The Radon-Hurwitz number is defined by a recursion as ri+8 = ri + 4 and these initial values:

r0 = 0, r1 = 1, r2 = r3 = 2, r4 = r5 = r6 = r7 = 3.

34 Rafa l Ab lamowicz

embedded into Mat(2k,K)
ϕ' C`p,q. In the following we will use the same approach

as in [2] where a technique for matrix exponentiation based on the isomorphism ϕ

was presented. In particular, we will use a faithful spinor representation of C`p,q in
a minimal left ideal S = C`p,qf generated by a primitive idempotent f. Symbolic
computations of such representations with CLIFFORD were shown in [3].

Following [42], let A be an m× n real matrix of rank r. Then the SVD of A
is defined a factorization of A into a product of three matrices U,Σ, V −1 where U
and V are orthogonal matrices m×m and n × n respectively, and Σ is a m × n

matrix containing singular values of A on its “diagonal”.

A = UΣV −1, UTU = I, V TV = I. (19)

The matrices V = [v1|v2| . . . |vn] and U = [u1|u2| . . . |um] contain orthonormal
bases for all four fundamental spaces of A. Namely, the first r columns v1, v2, . . . , vr

of V provide a basis for the row space R(AT) while the remaining n−r columns of V
provide a basis for the null space N (A). Likewise, the first r columns u1, u2, . . . , ur

of U provide a basis for the column space C(A) while the remaining m−r columns
of U provide a basis for the left-null space N (AT). Vectors vi are the normalized
eigenvectors of ATA while vectors ui are the normalized eigenvectors of AAT . For
i = 1, . . . , r, these vectors can be chosen to be related via the positive singular
values σi of A which are just the square roots of the eigenvalues of ATA (or of
AAT .) Namely,

Avi = σiui, i = 1, . . . , r. (20)

It is a little tricky to make sure that the above relation is satisfied: this is because
the choice of vectors ui is independent of the choice of vectors vi. However, it is al-
ways possible to do so as we will see below (see also [42]). In order to complete the
picture, the orthonormal set {v1, . . . , vr} needs to be completed to a full orthonor-
mal basis for Rn while {u1, . . . , ur} needs to be completed to a full orthonormal
basis for Rm. Since the additional vectors are being annihilated by A and AT re-
spectively, that is, they are eigenvectors of A and AT (or of ATA and AAT) that
correspond to the eigenvalue 0, care has to be exercised when finding them. For
example, while the eigenvectors of the symmetric matrix AAT are automatically
orthogonal provided they correspond to different eigenvalues, eigenvectors of AAT

that correspond to the 0 eigenvalue don’t need to be orthogonal: in this case the
Gram-Schmidt orthogonalization process is used to complete the two sets.

11.1. SVD of a 2 × 2 matrix of rank 2

In this section we present a simple example of SVD of a 2×2 real matrix of rank 2.
The purpose of this example is just to show step by step how finding the SVD of
a matrix can be done in the Clifford algebra language. Reader is encouraged to
perform these computations with CLIFFORD and an additional package asvd.20

> A:=matrix(2,2,[2,3,1,2]); #defining A

20Package asvd contains the following procedures used in the text: phi that provides an iso-

morphism between a matrix algebra and a Clifford algebra; radsimplify that simplifies radical
expressions in matrices and vectors; assignL that writes an output from a Maple procedure

eigenvects in a suitable form: it sorts eigenvectors according to the corresponding eigenvalues

Computations with Clifford and Grassmann Algebras 35

A :=

2

4

2 3

1 2

3

5

Since A ∈ Mat(2,R), we need to find (p, q) such that C`p,q

ϕ' Mat(2,R). Procedure
all sigs built into CLIFFORD displays two possible choices for the signature (p, q)
such that p+ q = 2, K ' R and C`p,q is a simple algebra:
> all_sigs(2..2,real,simple);

[[1, 1], [2, 0]]

Thus, we can pick either C`1,1 or C`2,0. Our choice is C`2,0. We define B as the
2×2 identity matrix and use CLIFFORD’s procedure clidata to display information
about C`2,0.
> dim:=2:B:=diag(1,1):eval(makealiases(dim)):data:=clidata();

data := [real , 2, simple,
1

2
Id +

1

2
e1 , [Id, e2], [Id], [Id , e2]]

The above output means that C`2,0 is a simple algebra isomorphic to Mat(2,R);
that the element 1

2
+1

2
e1 displayed by Maple as 1

2
Id+1

2
e1 is a primitive idempotent;

that the list [Id , e2] shown as the fifth entry displays generators of a minimal
left-ideal C`2,0f considered as vector space over R; that the division ring K =
fC`2,0f = 〈Id〉R ' R; and that the last list [Id , e2] gives generators of C`2,0f

over K, and, since K ' R, it is the same as the fifth entry.21In the following,
we define a Grassmann basis in C`2,0, assign the primitive idempotent to f, and
generate a spinor basis in C`2,0f.
> clibas:=cbasis(dim); #ordered basis in Cl(2,0)

clibas := [Id, e1 , e2 , e12]

> f:=data[4]:#a primitive idempotent in Cl(2,0)
> SBgens:=data[5]:#generators for a real basis in S
> FBgens:=data[6]:#generators for the division ring K
SBgens contains generators for a K-basis for S = C`2,0f = 〈f, e2f〉. Since in
the signature (2, 0) we have K ' R, S ' R2, and C`2,0 ' Mat(2,R), the output
from the procedure spinorKbasis shown below has two basis elements and their
generators modulo f :
> Kbasis:=spinorKbasis(SBgens,f,FBgens,’left’);

Kbasis := [[
1

2
Id +

1

2
e1 ,

1

2
e2 − 1

2
e12], [Id , e2], left]

Thus, the real spinor basis in S consists of the following two polynomials:
> for i to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od;

f1 :=
1

2
Id +

1

2
e1 , f2 :=

1

2
e2 − 1

2
e12 .

and it uses the Gram-Schmidt orthogonalization process, if necessary, to return a complete list
of orthogonal eigenvectors; makediag makes a “diagonal” Σ matrix consisting of singular values.
21For more information see [3] and help pages in CLIFFORD.

36 Rafa l Ab lamowicz

We are in position now to compute matrices M1,M2,M3,M4 representing each of
the four basis elements {1, e1, e2, e12} of C`2,0 in the basis {f1, f2}.22

> for i to nops(clibas) do M[i]:=subs(Id=1,matKrepr(clibas[i])) end do:

We will use a new procedure phi which realizes the isomorphism ϕ from Mat(2,R)
to C`2,0. This way we can find the image p = ϕ(A) in C`2,0 of any real 2 × 2
matrix A. Knowing image ϕ(Mi) of each matrix Mi, i = 1, . . . , 4, in terms of some
Clifford polynomial in C`2,0 we can easily find p = ϕ(A) as follows:23

> p:=phi(A,M); #finding image of A in Cl(2,0)

p := 2 Id + 2 e2 + e12

> pT:=phi(t(A),M); #finding image of t(A) in Cl(2,0)

pT := 2 Id + 2 e2 − e12

Next, we compute a symmetric matrix ATA (denoted in Maple as ATA),
its characteristic polynomial, eigenvalues, and its orthonormal eigenvectors v1, v2.
Vectors v1 and v2 will become columns of an orthogonal matrix V needed for the
SVD of A:
> ATA:=evalm(t(A) &* A); #finding matrix ATA

ATA :=

2

4

5 8

8 13

3

5

> pTp:=phi(ATA,M); #finding image of ATA in Cl(2,0)

pTp := 9 Id − 4 e1 + 8 e2

which is the same as
> ’pTp’=cmul(pT,p);

pTp = 9 Id − 4 e1 + 8 e2

The minimal polynomial of ATA, whose image in C`2,0 is called pTp, is computed
with climinpoly:
> climinpoly(pTp);

x
2 − 18 x+ 1

and it is the same as the characteristic polynomial of ATA:
> pol:=charpoly(ATA,x);#characteristic polynomial of ATA

pol := x
2 − 18 x+ 1

22Since a similar computation was done in [2, 3], we won’t display the matrices.
23From now on, we use Maple’s alias(t = transpose), that is, t(A) denotes matrix transpo-
sition in Maple. The second argument to the procedure phi is a table M containing matrices

M1, M2, M3, M4 as its entries.

Computations with Clifford and Grassmann Algebras 37

In order to find eigenvalues and eigenvectors of ATA, we will use Maple’s
procedure eigenvects modified by our own sorting via a new procedure assignL.
The latter displays a list containing two lists: one has the eigenvalues while the
second has the eigenvectors.24 In the following, we assign the eigenvalues of ATA
to λ1, λ2 and the not-yet-normalized but orthogonal eigenvectors of ATA we assign
to v1, v2.

> P:=assignL(sort([eigenvects(ATA)],byeigenvals));N:=P[1]:

P := [2, [9 + 4
√

5, 9 − 4
√

5], [

»

1,
1

2
+

1

2

√
5

–

,

»

1,
1

2
− 1

2

√
5

–

]]

> for i to N do lambda.i:=P[2][i]; v.i:=map(simplify,normalize(P[3][i]))
> end do:

We can now verify that vectors v1, v2 are eigenvectors of ATA with the eigenvalues
λ1, λ2.

> for i to N do map(simplify,evalm(ATA &* v.i - lambda.i*v.i)) od;

[0, 0], [0, 0]

Similar verification can be done in C`2,0 since one can view the 1-column eigen-
vectors v1, v2 as one-column spinors in S = C`2,0f. We simply convert the two
vectors v1, v2 to spinors sv1 = ϕ(v1), sv2 = ϕ(v2) which we express in the previ-
ously computed spinor basis f1, f2.
> spinorbasis:=[’’f1’’,’’f2’’]:
> for i to N do sv.i:=convert(v.i,spinor,spinorbasis) od;

sv1 := 2
f1

p

10 + 2
√

5
+

(1 +
√

5) f2
p

10 + 2
√

5
, sv2 := 2

f1
p

10 − 2
√

5
− (−1 +

√
5) f2

p

10 − 2
√

5
.

Since v1, v2 are the eigenvectors of ATA, spinors sv1, sv2 must be the eigenspinors
of pTp = ϕ(ATA). This fact can be verified as follows:
> for i to N do simplify((pTp - lambda.i) &c sv.i) od;

0, 0

We define now the orthogonal matrix V = [v1|v2] whose entries we will simply
with the procedure radsimplify.

> V:=radsimplify(augment(v.(1..N))); #defining matrix V

V :=

2

6

6

6

4

2
1

p

10 + 2
√

5
2

1
p

10 − 2
√

5

1 +
√

5
p

10 + 2
√

5

−
√

5 + 1
p

10 − 2
√

5

3

7

7

7

5

24The first entry 2 in the output is just the number of eigenvectors.

38 Rafa l Ab lamowicz

Since later we will need images of V and V T under ϕ in C`2,0, we compute them
now and store them under the variables pV and pVt respectively.
> pV:=phi(V,M); #finding image of V in Cl(2,0)
> pVt:=phi(t(V),M): #finding image of t(V) in Cl(2,0)

pV :=

(− 1

20
%1

√
5 − 1

40
%2

√
5 +

1

8
%2) Id + (

1

20
%1

√
5 − 1

40
%2

√
5 +

1

8
%2) e1

+ (
1

20
%2

√
5 +

1

40
%1

√
5 +

1

8
%1) e2 + (− 1

20
%2

√
5 +

1

40
%1

√
5 +

1

8
%1) e12

%1 :=
p

10 − 2
√

5

%2 :=
p

10 + 2
√

5
The fact that V is orthogonal can be easily verified in the matrix language; in
C`2,0 it can be done as follows:
> simplify(cmul(pVt,pV));

Id

We repeat the above steps and apply them to AAT . In the process, we will find its
eigenvectors u1, u2. We must make sure that Avi = σiui where σi =

√
λi, i = 1, 2.

This will require extra checking and possibly redefining of the u’s.
> AAT:=evalm(A &* transpose(A)); #computing AAT

AAT :=

2

4

13 8

8 5

3

5

The image of AAT under ϕ in C`2,0 we denote as ppT.
> ppT:=phi(AAT,M); #finding image of AAT in Cl(2,0)

ppT := 9 Id + 4 e1 + 8 e2

In this case, the minimal polynomial of ppT and the characteristic polynomial of
AAT are, of course, the same.
> pol2:=charpoly(AAT,lambda); #characteristic polynomial of AAT

pol2 := λ
2 − 18λ+ 1

> ’ppT’=climinpoly(ppT);

ppT = x
2 − 18 x+ 1

Since matrices ATA and AAT have the same characteristic polynomials, their
eigenvalues λ1, λ2 will be the same. We define therefore the singular values σ1 and
σ2 of A as the square roots of λ1 and λ2.
> for i to N do sigma.i:=sqrt(lambda.i) od;

σ1 :=
√

5 + 2, σ2 :=
√

5 − 2

Computations with Clifford and Grassmann Algebras 39

When we compute the eigenvectors u1, u2 of AAT , we will not necessarily have
Avi = σiui, i = 1, 2. This is because the choice of u1, u2 is not consistent with the
choice of v1, v2.
> P:=assignL(sort([eigenvects(AAT)],byeigenvals)):
> for i to N do lambda.i:=P[2][i];
> u.i:=map(simplify,normalize(P[3][i])) end do:

Notice that Av1 = σ1u1 while Av2 = −σ2u2:
> radsimplify(evalm(A &* v1-sigma1*u1)); #this checks out

[0, 0]

> radsimplify(evalm(A &* v2-sigma2*u2)); #this does not
> radsimplify(evalm(A &* v2+sigma2*u2)); #this checks out

"

14 − 6
√

5
p

10 − 2
√

5
,

8 − 4
√

5
p

10 − 2
√

5

#

[0, 0]

Let’s re-define u2 as −u2 and call it u22, and let’s also rename u1 as u11:
> u11:=evalm(u1):u22:=evalm(-u2):

Then we will have Avii = σuii, i = 1, 2.
In the Clifford algebra C`2,0 we need to perform similar computations with

v1, v2. The elements su1 = ϕ(u11), su2 = ϕ(u22) contained in the spinor ideal
S = C`2,0f need to be found first.
> for i to N do su.i:=convert(u.i.i,spinor,spinorbasis) od;

su1 :=
(1 +

√
5) f1

p

10 + 2
√

5
+ 2

f2
p

10 + 2
√

5
, su2 :=

(−1 +
√

5) f1
p

10 − 2
√

5
− 2

f2
p

10 − 2
√

5
.

The verification of the condition (20) in C`2,0 looks as follows:
> for i to N do simplify(p &c sv.i-sigma.i*su.i) od;

0, 0

Now we may define the orthogonal matrix U = [u11|u22] and its image ϕ(U) in
C`2,0 which we assign to pU:25

> U:=radsimplify(augment(u11,u22)); #defining matrix U

U :=

2

6

6

6

4

1 +
√

5
p

10 + 2
√

5

−1 +
√

5
p

10 − 2
√

5

2
1

p

10 + 2
√

5
−2

1
p

10 − 2
√

5

3

7

7

7

5

25Expressions %1 and %2 showing up in the Maple output for pU are just place holders for
p

10 + 2
√

5 and
p

10 − 2
√

5 respectively and are as shown at the end of the display.

40 Rafa l Ab lamowicz

> pU:=phi(U,M);#finding image of U in Cl(2,0)
> pUt:=phi(t(U),M):#finding image of t(U) in Cl(2,0)

pU := (
1

20
%1

√
5 − 1

8
%2 − 1

40
%2

√
5) Id + (

1

20
%1

√
5 +

1

8
%2 +

1

40
%2

√
5) e1

+ (
1

20
%2

√
5 +

1

8
%1 − 1

40
%1

√
5) e2 + (

1

20
%2

√
5 − 1

8
%1 +

1

40
%1

√
5) e12

%1 :=
p

10 + 2
√

5

%2 :=
p

10 − 2
√

5
The fact that U is an orthogonal matrix can be easily now checked both in the
matrix language and in the Clifford language:
> radsimplify(evalm(t(U) &* U));#U is an orthogonal matrix

2

4

1 0

0 1

3

5

> simplify(pUt &c pU);

Id

Finally, we define matrix Σ using a procedure makediag. Recall from [42] that
Σ has the same dimensions as the original matrix A and that ΣT Σ,ΣΣT are the
diagonal forms of ATA and AAT respectively. In this example matrices ΣT Σ and
ΣΣT are the same since Σ is a square diagonal matrix. Normally these matrices
are different although their nonzero “diagonal” entries are the same. Therefore we
have

ATA = VΣT ΣV T , AAT = UΣΣTUT , Σ =

[

σ1 0
0 σ2

]

,

ΣT Σ = ΣΣT =

[

σ2
1 0

0 σ2
2

]

.

(21)

Matrices Σ, ΣT Σ and ΣΣT we assign to Maple variables Sigma, STS and SST re-
spectively:
> Sigma:=makediag(m,n,[seq(sigma.i,i=1..N)]);
> STS,SST:=evalm(t(Sigma) &* Sigma),evalm(Sigma &* t(Sigma));

Σ :=

2

4

√
5 + 2 0

0
√

5 − 2

3

5

STS , SST :=

2

4

(
√

5 + 2)2 0

0 (
√

5 − 2)2

3

5 ,

2

4

(
√

5 + 2)2 0

0 (
√

5 − 2)2

3

5

The corresponding images ϕ(Σ), ϕ(ΣT Σ) and ϕ(ΣΣT) and C`2,0 will be assigned
to the Maple variables pSigma, pSTS and pSST respectively:
> pSigma,pSTS,pSST:=phi(Sigma,M),phi(STS,M,FBgens),phi(SST,M);

pSigma, pSTS , pSST :=
√

5 Id + 2 e1 , 9 Id + 4
√

5 e1 , 9 Id + 4
√

5 e1

Computations with Clifford and Grassmann Algebras 41

We should be able to verify in C`2,0 the following two factorizations of AAT and
ATA:

ATA = V ΣT ΣV T (22)

AAT = UΣΣTUT (23)

like this:
> evalb(pTp=simplify(pV &c pSTS &c pVt)),
> evalb(ppT=simplify(pU &c pSST &c pUt));

true, true

Finally, we check the SVD of A, which is A = UΣV T ,26 in the Clifford algebra
language:
> evalb(p=simplify(pU &c pSigma &c pVt));

true

11.2. Additional comments

In the previous section we have shown that it is possible to translate the ma-
trix algebra picture of the Singular Value Decomposition of a matrix A into the
Clifford algebra language. Although we have not abandoned entirely the linear
algebra formalism in our example, e.g., we have computed the eigenvalues and
the eigenvectors of ATA and AAT , and only then we have found images of their
eigenvectors in the spinor space C`2,0f, these computations including solving the
eigenvalue problem can be done entirely in the Clifford algebra language. In the
following we show how this can be accomplished.

The first comment is that it is also possible to compute the eigenvalues λ1, λ2

and the eigenspinors sv1 = ϕ(v1), sv2 = ϕ(v2) of the Clifford number pTp =
ϕ(ATA) directly inC`2,0 using the procedure clisolve capable of solving algebraic
equations.
> eigenspinor:=x1*f1+x2*f2;
> eigeneq:=clicollect(expand(cmul(pTp,eigenspinor)-lambda*eigenspinor));

eigenspinor := x1 (
Id

2
+

e1

2
) + x2 (

e2

2
− e12

2
)

eigeneq := − (−5 x1 − 8 x2 + λ x1) e1

2
− (−5 x1 − 8 x2 + λ x1) Id

2

+
(λ x2 − 13 x2 − 8 x1) e12

2
− (λ x2 − 13 x2 − 8 x1) e2

2

26The SVD of A is not unique: For example, A = (−U)Σ(−V T) is another such factorization.

42 Rafa l Ab lamowicz

> sol:=remove(has,map(allvalues,clisolve(eigeneq,[lambda,x1,x2])),
> lambda=lambda);

sol := [{λ = 9 + 4
√

5, x2 = x2 , x1 =
(9 + 4

√
5) x2

8
− 13 x2

8
},

{λ = 9 − 4
√

5, x2 = x2 , x1 =
(9 − 4

√
5) x2

8
− 13 x2

8
}]

> for i from 1 to nops(sol) do;
> lambda||i:=subs(sol[1],lambda);
> eigenspinor||i:=clicollect(subs({x1=1,x2=1},subs(sol[1],eigenspinor)));
> end do;

λ1 := 9 + 4
√

5

eigenspinor1 :=
(−1 +

√
5) e1

4
+

(−1 +
√

5) Id

4
− e12

2
+

e2

2

λ2 := 9 + 4
√

5

eigenspinor2 :=
(−1 +

√
5) e1

4
+

(−1 +
√

5) Id

4
− e12

2
+

e2

2

The second comment is that it is possible to realize an anti-automorphism
tp : C`(Q) → C`(Q) that acts on homogeneous basis multivectors as follows:

ei1 ∧ ei2 ∧ · · · ∧ ein
7→ Qi1i1Qi2i2 · · ·Qinin

(ei1 ∧ ei2 ∧ · · · ∧ ein
)˜ (24)

where (ei1∧ei2∧· · ·∧ein
)˜= (−1)

n(n−1)
2 ei1∧ei2∧· · ·∧ein

is the reversed multivector
while Qi1i1 , Qi2i2 , . . . , Qinin

are the diagonal entries of the quadratic form Q (to
be precise, Qii = e2

i , i = 1, . . . , n), extended by linearity to the whole algebra.
Then, tp gives the transposition of the corresponding spinor representation.27 For
a thorough treatment of the singular value decomposition for Grassmann and
Clifford algebras in the Hopf algebraic language see [23].

12. Conclusions

The aim of this note was to present a few examples of computations with Clifford
algebras where symbolic capabilities of Maple and the CLIFFORD, BIGEBRA pack-
ages were utilized. In some, a better understanding of the Clifford algebra structure
and its properties, especially of the Clifford algebras C`(B) of an arbitrary bilin-
ear form B, was achieved (see also [6]). Gaining a computational proficiency with
Clifford algebras of a quadratic form notwithstanding, such as their spinor rep-
resentations or computation of bilinear forms on spinor spaces, properties of the
contraction, the reversion, the wedge, the dotted wedge, and the Clifford products,
all curiously dependent on the antisymmetric form of B have been successfully for-
mulated. In others, a discovery of specific elements was accomplished like finding,

27This has been verified by brute force with CLIFFORD in dimensions up to 9 for simple C`p,q and
such that (p−q) ≡ 0, 1,2 (mod 8). That is, for the Clifford algebras whose spinor representations

are real. A Maple code for a procedure tp is shown in Appendix C.

Computations with Clifford and Grassmann Algebras 43

unexpectedly continuous, families of idempotents or a computation of eigenvalues
and eigenvectors of a Clifford number, or its singular values. In the process, a
connection between a transposition and the reversion in C`(Q) was discovered.

Some other computational and theoretical results facilitated with the pack-
ages and already reported include

• Finding generators for Hecke algebras realized as even elements in a Clifford
algebra of a suitable, non symmetric, bilinear form. [7]

• Finding q-Young idempotents in some Hecke algebras of mixed symmetry
that generate a representation space for these algebras. [7]

• Finding necessary and sufficient condition that a Clifford biconvolution, that
is, a Clifford Hopf gebra for a two-dimensional real space posses an antipode.
[25]

• Investigation of Wick normal ordering [21]
• Verification of Helmstetter formula [28] that expresses an isomorphism be-

tween two Clifford algebras C`(B) and C`(B′) where the bilinear forms share
the symmetric part. [4]

• Explicit description of all elements in Pin(3) and Spin(3) in [4]
• Description of space singularities of a robotic platform [5, 17]

For a complete discussion of the mathematical capabilities of CLIFFORD and
BIGEBRA packages we refer to [9] and [10].

Appendix A. Appendix: Code of cmulNUM

Here is a pseudocode of the recursive procedure cmulNUM.

cmulNUM(a1,a2,B) [a1, a2 - two Grassmann monomials, B - name of bilinear form]
begin
if nargs <>3 then error ”exactly three arguments are needed” end if
if has(0,map(simplify,[a1,a2])) then return 0 end if
if a2=‘Id‘ then return a1 end if
if a1=‘Id‘ then return a2 end if

L <- indices from a1
N <- length of L
coB,nameB <- coefficient of B, B [to handle -B]
if N=0 then return coeff(a1,Id)*a2 elif N=1 then

L2 <- list of indices from a2
return reorder(simplify(makeclibasmon([L[1],op(L2)])

+add((-1)ˆ(i-1)*coB*nameB[L[1],L2[i]]*makeclibasmon(subs(L2[i]=NULL,L2)),
i=1..nops(L2))))

elif N=2 then
x1 <- substring(a1,1..2)
x2 <- substring(a1,4..5)
p2 <- procname(x2,a2,B)
S <- clibilinear(x1,p2,procname,B)
return simplify(S-coB*nameB[op(L)]*a2)

end if;

44 Rafa l Ab lamowicz

x <- cat(e,L[-1])
p1 <- substring(a1,1..(3*N-4))
p2 <- procname(x,a2,B)
S <- clibilinear(p1,p2,procname,B)

-add((-1)ˆ(i)*coB*nameB[L[-i],L[-1]]*
procname(makeclibasmon(subs(L[-i]=NULL,L[1..-2])),a2,B),i=2..N)

return reorder(simplify(S))
end cmulNUM

Appendix B. Appendix: Code of cmulRS

Here is a pseudocode of the procedure cmulRS based on the combinatorial process
of Rota-Stein:

cmulRS(x,y,B) [x, y two Grassmann monomials, B - bilinear form]
begin

lstx <- list of indices from x
lsty <- list of indices from y
NX <- length of lstx
NY <- length of lsty
funx <- function maps integers 1..NX onto elements of lstx keeping their order
funy <- function maps integers 1..NY onto elements of lsty keeping their order

(this is to calculate with arbitrary indices and to compute necessary signs)
psetx <- power set of 1..NX (actually a list in a certain order)

(the i-th and (2ˆNX+1-i)-th element are disjoint adding up to the set {1..NX})
psety <- power set of 1..NY (actually a list in a certain order)

(the i-th and (2ˆNY+1-i)-th element are disjoint adding up to the set {1..NY})
(for faster computation we sort this power sets by grade)
(we compute the sign for any term in the power set)

psetx <- sort psetx by grade
psety <- sort psety by grade
pSgnx <- sum (i in psetx) (-1)ˆsum (j in psetx[i]) (psetx[i][j]-j)
pSgny <- sum (i in psety) (-1)ˆsum (j in psety[i]) (psety[i][j]-j)
(we need a subroutine for cup tangle computing the bilinear form cup(x,y,B))
begin cup
if |x| <> |y| then return 0 end if
if |x| = 0 then return 1 end if
if |x| = 1 then return B[x[1],y[1]] end if
return sum (j in 1..|x|)(-1)ˆ(j-1)*B(x[1],y[j])*cup(x[2..-1],y/y[j],B)

end cup
(now we compute the double sum, to gain efficiency we do this grade wise)
(note that there are r over NX r-vectors in psetx, analogously for psety)
max grade - |lstx <- convert_to_set union lsty <- convert_to_set|

res <- 0, pos1 <- 0

for j from 0 to NX (iterate over all j-vectors of psetx)
begin

F1 <- N1!/((N1-j)!*j!) (number of terms (N1 over j))

Computations with Clifford and Grassmann Algebras 45

pos2 <- 0

for i from 0 to min(N2,max grade-j)
(iterate over all i-vectors of psety not exceeding max grade while others are zero)
begin
F2 <- N2!/((N2-i)!*i!) (number of terms (N2 over i))

for n from 1 to F1 (for all j-vectors)
begin
for m from 1 to F2 (for all i-vectors)
begin
res <- res + pSgnx[pos1+n]*pSgny[pos2+m]*

cup(fun1(psetx[PN1-pos1-n]),fun2(psety[pos2+m]),lname)*
makeclibasmon -> ([fun1 -> psetx[pos1+n],fun2 -> psety[PN2-pos2-m])])

end
end
pos2 <- pos2F2

end
pos1 <- pos1F1

end
reorder -> res (reorder basis elements in res into standard order)
end cmulRS

Appendix C. Appendix: Code of the Transposition Procedure tp

Here is a code of the procedure tp that accomplishes the ‘transposition’ anti-
automorphism in C`p,q.

tp:=proc(xx) local x,L,p,co,u:
x:=displayid(xx):
if type(x,clibasmon) then
if x=Id then Id else

p:=op(cliterms(x));
L:=extract(p,’integers’): #list L of indices
L:=[seq(L[nops(L)-i+1],i=1..nops(L))]; #reversed list L
u:=cmul(seq(B[L[i],L[i]]*cat(e,L[i]),i=1..nops(L)));
reorder(u)

end if:
elif type(x,climon) then

p:=op(cliterms(x)):
co,p:=coeff(x,p),p;
co*procname(p);

elif type(x,clipolynom) then
u:=clilinear(x,procname);

end if:
end tp:

46 Rafa l Ab lamowicz

References

[1] R. Ab lamowicz, Clifford algebra computations with Maple. In Clifford (Geometric)
Algebras with Applications in Physics, Mathematics, and Engineering, W. E. Baylis,
ed. (Birkhäuser, Boston, 1996) 463–502

[2] R. Ab lamowicz, Matrix exponential via Clifford algebras. J. of Nonlinear Math. Phys.,
5, 3 (1998) 294–313

[3] R. Ab lamowicz, Spinor Representations of Clifford Algebras: A Symbolic Approach.
CPC Thematic Issue - Computer Algebra in Physics Research, Phys. Comm. 115
(1998) 510–535

[4] R. Ab lamowicz, Helmstetter formula and rigid motions with CLIFFORD. In Advances
in Geometric Algebra with Applications in Science and Engineering – Automatic
Theorem proving, Computer Vision, Quantum and Neural Computing, and Robotics,
E. Bayro-Corrochano and G. Sobczyk, eds., (Birkhäuser, Boston, 2001) 512–534

[5] R. Ab lamowicz, J. Anderson and M. Baswell, Clifford algebra space singularities of
inline planar platforms. In Applications of Geometric Algebra in Computer Science
and Engineering, L. Dorst, ed., Chapter 36 (Birkhäuser, Boston, 2002) 463–502

[6] R. Ab lamowicz and B. Fauser, On the Decomposition of Clifford Algebras of Arbitrary
Bilinear Form. In Clifford Algebras and their Applications in Mathematical Physics,
R. Ab lamowicz and B. Fauser, eds. (Birkhäuser, Boston, 2000) 341–366

[7] R. Ab lamowicz and B. Fauser, Hecke algebra representations in ideals generated by
q-Young Clifford idempotents. In Clifford Algebras and their Applications in Math-
ematical Physics, R. Ab lamowicz and B. Fauser, eds., Vol. 1: Algebra and Physics,
(Birkhäuser, Boston, 2000) 245–268

[8] R. Ab lamowicz and B. Fauser, CLIFFORD and BIGEBRA for Maple,
http://math.tntech.edu/rafal/ (2009)

[9] R. Ab lamowicz and B. Fauser, Mathematics of CLIFFORD - A Maple Package for
Clifford and Grassmann Algebras. Advances in Applied Clifford Algebras, Vol. 15,
No. 2 (2005), 157–181

[10] R. Ab lamowicz and B. Fauser, Clifford and Grassmann Hopf algebras via the BIGEBRA
package for Maple. Computer Physics Communications 170 (2005) 115–130

[11] R. Ab lamowicz, B. Fauser, K. Podlaski and J. Rembieliński, Idempotents of Clifford
algebras. Czech. J. Phys. 53, 11 (2003) 949–955

[12] R. Ab lamowicz and P. Lounesto, On Clifford algebras of a bilinear form with an
antisymmetric part. In Clifford Algebras with Numeric and Symbolic Computations,
R. Ab lamowicz, P. Lounesto, and J. Parra, eds. (Birkhäuser, Boston, 1996) 167–188

[13] R. Ab lamowicz and G. Sobczyk, Software for Clifford (geometric) algebras. Appendix
in Lectures on Clifford (Geometric) Algebras and Applications, R. Ab lamowicz and
G. Sobczyk, eds. (Birkhäuser, Boston, 2004) 189–209

[14] J.L. Anderson, Green’s functions in quantum electrodynamics, Phys. Rev. 171, 94
(1954) 703–11

[15] P. Angles, Construction de revêtements du groupe conforme d’un espace vectoriel
muni d’uni métrique de type (p, q). Ann. Inst. Henri Poincareé XXXIII, 1 (10980)
33–51

[16] Axiom Computer Algebra System, http://en.wikipedia.org/wiki/AXIOM (2009)

Computations with Clifford and Grassmann Algebras 47

[17] M. Baswell, Clifford Algebra Space Singularities of a Redundant Variable Geometry
Truss Manipulator. M.S. Thesis, Tennessee Technological University, 2000

[18] CoCoA System for computations in commutative algebra,
http://cocoa.dima.unige.it/ (2009)

[19] M. Berry and J. Dongarra, Atlanta Organizers Put Mathematics to Work for the
Math Sciences Community, SIAM News, Vol. 32, 6 (1999), and references therein.

[20] Ch. Brouder, B. Fauser, A. Frabetti and R. Oeckl, Quantum field theory and Hopf
algebra cohomology [formerly ‘Let’s twist again’]. J. Phys. A: Math. Gen: 37, 22
(2004) 5895–5927

[21] B. Fauser, Clifford geometric parameterization of Wick normal-ordering. J. Phys. A:
Math. Gen. 34 (2001) 105–115

[22] B. Fauser, A Treatise on Quantum Clifford Algebras (Habilitationsschrift, Univer-
sität Konstanz, Konstanz, 2002)

[23] B. Fauser, Products, coproducts and singular value decomposition. Int. J. Theor.
Phys. Vol. 45, No. 9 (2006) 1731–1755

[24] B. Fauser and P.D. Jarvis, A Hopf laboratory for symmetric functions. J. Phys. A:
Math. Gen. 37 (2004) 1633–1663

[25] B. Fauser, and Z. Oziewicz, Clifford Hopf gebra for two-dimensional space. Miscel-
lanea Algebraica 2, 1 (2001) 31–42

[26] G.-M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra.
(Springer, New York, 2000)

[27] J. Helmstetter, Algèbres de Clifford et algèbres de Weyl. Cahiers Math 25 (1982)

[28] J. Helmstetter, Monöıdes de Clifford et déformations d’algèbres de Clifford. J. of Alg.
111, 1 (1987) 14–48

[29] T.Y. Lam, The Algebraic Theory of Quadratic Forms. (The Benjamin Cummings
Publishing Company, Reading, 1973)

[30] P. Lounesto, Scalar products of spinors and an extension of Brauer-Wall groups.
Found. Phys. 11 (1981) 721–740

[31] P. Lounesto and E. Latvamaa, Conformal transformations and Clifford algebras.
Proceedings of the American Mathematical Society, 79, 4 (1980) 533–538

[32] P. Lounesto, R. Mikkola and V. Vierros, CLICAL User Manual. Helsinki University
of Technology, Institute of Mathematics, Research Reports A248 (1987)

[33] P. Lounesto, CLICAL and counter-examples. In Clifford Algebras with Symbolic and
Numeric Computations, R. Ab lamowicz, P. Lounesto and J. Parra (Birkhäuser,
Boston, 1996) 3–30

[34] P. Lounesto and A. Springer, Möbius transformations and Clifford algebras of
Euclidean and anti-Euclidean spaces. In Deformations of Mathematical Physics,
J. Lawrynowicz (Kluwer Academic Publishers, 1989) 79–90

[35] P. Lounesto, Clifford Algebras and Spinors. 2nd ed. (Cambridge University Press,
Cambridge, 2001)

[36] Macaulay 2: A software system for research in algebraic geometry and commutative
algebra, http://www.math.uiuc.edu/Macaulay2/ (2009)

[37] J.M. Maciejowski; Multivariable Feedback Design (Addison-Wesley, Wokingham,
England, 1989)

48 Rafa l Ab lamowicz

[38] J. Maks, Modulo (1,1) periodicity of Clifford algebras and the generalized (anti-)
Möbius transformations. Thesis, Technische Universiteit Delft, 1989

[39] I. Porteous, Topological Geometry (Van Nostrand-Reinhold, London, 1969)

[40] G.-C. Rota and J.A. Stein, Plethystic Hopf algebras. Proc. Natl. Acad. Sci. USA 91
(1994) 13057–13061

[41] J.M. Selig, Geometrical Methods in Robotics (Springer Verlag, New York, 1996)

[42] G. Strang, Introduction to Linear Algebra (Wellesley-Cambridge Press, Wellesley,
1998)

[43] S. Tunney, On the Continuous Families of Idempotents in the Clifford Algebra of the
Euclidean Plane. M.S. Thesis, Tennessee Technological University, 2003

[44] Waterloo Maple Incorporated, Maple, a general purpose computer algebra system.
Waterloo, http://www.maplesoft.com (2009)

[45] F. Wright, Computing with Maple (Chapman & Hall/CRC, Boca Raton, 2002)

Rafa l Ab lamowicz
Department of Mathematics, Box 5054
Tennessee Technological University
Cookeville, TN 38505, USA
e-mail: rablamowicz@tntech.edu

