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Higher Dimensional Clifford Algebras

Rafał Abłamowicz and Bertfried Fauser

Abstract We present different methods for symbolic computer algebra computa-

tions in higher dimensional (≥ 9) Clifford algebras usingCLIFFORD and Bigebra

packages for Maple R©. This is achieved using graded tensor decompositions, peri-

odicity theorems and matrix spinor representations over Clifford numbers. We show

how to code the graded algebra isomorphisms and the main involutions, and we

provide some benchmarks.

1 Introduction

Clifford algebras are used in several areas of mathematics, physics, and engineering.

Since computing power has increased tremendously, in terms of available memory

and actual processing speed, practical symbolic computations, say on a laptop fin-

ishing within minutes, are now possible for Clifford algebras over vectors spaces of

dimensions higher than 8. When CLIFFORD was designed, way back in the early

90’s [1], such computations were impossible. However, the design of CLIFFORD,

restricting the vector space dimension to less than or equal to 9, incorporated from

the beginning the idea that using mod-8 and other periodicity isomorphisms of real

Clifford algebras allows nevertheless computations in higher dimensional algebras

as well. Using periodicity theorems also ‘groups’ Clifford algebras as in a periodic

table, the spinorial chess board [14]. Hence, implementing the periodicity in sym-

bolic computations –as described in this paper– makes use of these intrinsic algebra

features. Recent applications in engineering, for example when modeling geometric
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transformations in robotics, rely on real Clifford algebras in higher dimensions, for

example, in C`8,2 as demonstrated by [11], and thus enforce the need for using the

periodicity in higher dimensions when computing with CLIFFORD.

In this note, we will describe three ways showing how CLIFFORD deals with

(real) Clifford algebras of higher dimensions (≥ 9). One way is to use Bigebra,

an extension of CLIFFORD, to utilize graded tensor products of Clifford algebras.

Another method utilizes ungraded tensor products and periodicity isomorphisms

without a need for introducing spinorial bases. The third method uses, on top of

the periodicity theorems, a spinor representation of one factor of the tensor de-

composition, hence computing in Clifford algebra valued matrix rings. For exam-

ple, from C`p+1,q+1 ' C`p,q ⊗C`1,1 ' Mat(2,C`p,q) we see that computing say in

C`8,2 –as needed in robotics [11]– can be done with the 2× 2 matrices over C`7,1.

CLIFFORD supports computing with matrices having Clifford entries. Similar com-

putations still make sense, e.g., for conformal symmetries using Vahlen matrices

Mat(2,C`3,1) 'C`4,2.

After recalling our basic notations and the periodicity theorems, we start explain-

ing how we use Bigebra to compute with graded and ungraded tensor products

of Clifford algebras. Then we proceed to the third matrix-based method indicated

above. As this method relies on spinor representations of real Clifford algebras, one

encounters not only real, but also complex, quaternionic, double real, and double

quaternionic spinor representations. For the sake of simplicity and space, we will

just deal with real representations of simple Clifford algebras. The periodicity theo-

rems single out the signature cases where a graded algebra isomorphism is available

onto an ungraded tensor decomposition and hence, by introducing spinor bases, ma-

trix tensor products can be employed.

2 Tensor product decompositions and periodicity for C`-algebras

We study Clifford algebras over finite-dimensional (real) vector spaces. While these

algebras can be defined by a universal property, for actual computations in a CAS

(Computer Algebra System) we use generators and relations.

2.1 Basic notations, quadratic and bilinear forms

Let V be a finite dimensional real (or complex) vector space with scalar multipli-

cation R×V → V :: (λ ,v) 7→ λ v. A quadratic form is a map Q : V → R such that

Q(λ v) = λ 2Q(v), with associated polar bilinear form B : V ×V → R derived from

Q and defined as 2B(v,w) = Q(v+w)−Q(v)−Q(w) (hence Q(v) = B(v,v)). Q is

called non-degenerate if Q(v) = 0 implies v = 0 (v ∈V,∀w ∈V,B(w,v) = 0 implies

v = 0). An isomorphismV 'Rn =⊕nR defines a set of generators for V from the in-

jections of the direct sum ik : R→Rn :: 1 7→ ek ' vk , that is a basis for V . Sylvester’s
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theorem states that there exists a basis for V such that the quadratic form Q is di-

agonal with entries ±1,0 in the real case (0 only when Q is degenerate; just +1’s

in the non-degenerate complex case). Under these isomorphisms, the real quadratic

space (Q,V) with a non-degenerate Q is isomorphic to a space Rp,q = (Rn,δp,q)
with a diagonal quadratic (polarized) form δp,q with p ones and q minus ones. (p,q)
is called the signature of Q and p+q = n = dimV . Furthermore we have generators

ek of Rp,q such that Q(ek) = +1 for 1 ≤ k ≤ p and Q(ek) = −1 for p < k ≤ p +q.

2.2 Grassmann algebra, Z- and Z2-gradings, main involutions

We can associate functorially to any (say finite, real) vector space V the Grassmann

algebra of antisymmetric tensors,
∧

: V →
∧

V = ⊕n
i=0

∧iV . Using the linearly or-

dered basis {ek} of V (ek < el if k < l), we get a basis

{eI} = {ei1 ∧ ei2 ∧ · · ·∧ eil | I = (i1, i2, . . ., il), i1 < i2 < · · ·< il, is ∈ {1, . . .,n}}

for the space
∧

V of antisymmetric tensors. We can extend the order on V to the

inverse lexicographic order on
∧

V . We associate to eI a degree |I| (number of gen-

erators ek in eI) and a grade (or parity) as |I|mod 2. The Grassmann algebra is

Z-graded w.r.t. the degree, that is
∧iV

∧ jV ⊆
∧i+ jV . This can be restricted to a

Z2-grading
∧

V =
∧

0 V ⊕
∧

1 V w.r.t. the grade, hence decomposing into even and

odd parts (
∧

0 V is a subalgebra,
∧

1 V is a
∧

0 V -module). The subspaces
∧iV have(

n
i

)
many basis elements and hence

∧
V has dimension 2n = ∑i

(
n
i

)
. Homogeneous

elements v1 ∧ · · ·∧ vi of
∧iV are called extensors (or blades). A general element

X ∈
∧

V is an aggregate X = ∑xI eI with real coefficients xI . A presentation using

generators and relations is given as

∧
V := 〈ek | ekei = −eiek, i,k ∈ {1, . . .,n}〉. (1)

The Grassmann algebra comes with two main involutions. The grade involution

extends the map − : V → V :: v 7→ −v (additive inverse in V ) to ˆ on
∧

V . On

generators this reads as êI = (−1)|I|eI and it extends by linearity. For example, ê1 =
−e1, ê1,2,3 := ê1 ∧ ê2 ∧ ê3 = (−1)3e1,2,3 = −e1,2,3 while ê1,2 := ê1 ∧ ê2 = e1,2.

A second involution makes use of the opposite algebra. Let (A,mA) with

mA : A×A → A :: (a,b) 7→ ab (2)

be an algebra. The opposite algebra Aop = (A,m
op
A ) is the same vector space A with

the multiplication

m
op
A : A×A → A :: (a,b) 7→ ba. (3)

The opposite wedge product ∧op is given as u∧op v = v∧ u (no signs), producing

the opposite Grassmann algebra
∧op V . The reversion involution on

∧
V extends the
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identity map 1 : V →V to
∧

V in such a way that rev◦∧op =∧◦ (rev⊗ rev). In other

words, rev :
∧

V →
∧

V op is a Grassmann algebra isomorphism. As rev is invertible,

this can be used to define ∧op. On basis elements we have ẽI = (−1)|I|(|I|−1)/2eI

with the usual notation rev(u) = ũ.

Let V ∗ = [V,R] be the dual vector space (linear forms). One finds that
∧

V ∗ '
(
∧

V )∗ is the dual Grassmann algebra, and we can define a pairing

〈− | −〉 :
∧

V ∗×
∧

V → R :: (e∗I ,eK) 7→

{
det(e∗i (ek)), when |I| = |J|;

0, when |I| 6= |J|.
(4)

The interior product is defined as the adjoint w.r.t. the duality pairing of multipli-

cation in
∧

V ∗, that is 〈u | v w〉 := 〈ṽ∗∧u |w〉, v∗ ∈V ∗. Let x,y∈V and u,v,w∈
∧

V

then is defined operationally by the rules (Chevalley construction)

x y = 〈x | y〉, x (u∧ v) = (x u)∧ v+ û∧ (x v), (u∧ v) w = u (v w) . (5)

Using a nondegenerate bilinear form B as duality, one obtains x y = B(x,y).

2.3 (Real) Clifford algebras

Given a quadratic space (V,Q) with a non-degenerate Q we can functorially as-

sociate to it the universal Clifford algebra C`(V,Q) [19]. Given the isomorphism

(V,Q) ' Rp,q this provides the Clifford algebra C`(Rn,δp,q) (n = p +q) also often

denoted as Rp,q. As vector spaces one has Rp,q =
∧

Rn, hence we have a Grassmann

basis {eI} spanning the vector space underlying the Clifford algebra. The Clifford

product can be implemented in various ways. A Clifford algebra presentation reads

C`p,q := 〈ei | eie j + e jei = 0, i 6= j; e2
i = 1 if 1 ≤ i ≤ p, otherwise e2

i = −1〉 (6)

where the Clifford multiplication is juxtaposition and i, j ∈ {1, . . .,n}. Another way

to define the Clifford multiplication uses the interior multiplication and the Clifford

map γ. Let x ∈V , u∈
∧

V then γxu = xu = x u+x∧u and extend by (5) with x y =
B(x,y) and linearity. Defining C`≡C`(V,Q) as a quotient of the tensor algebra it can

be seen that it is not Z-graded, but only Z2-graded, C` = C`0⊕C`1 with C`0 the even

sub-Clifford algebra and C`1 a C`0-module. In terms of the Grassmann Z-degrees, it

is a filtered algebra C`iC` j ⊆⊕
i+ j

r=|i− j|C`r.1

Suppose the quadratic space (V,Q) with a non-degenerate Q decomposes as

(V,Q) = (V1 +V2,Q1 ⊥ Q2) with restricted quadratic forms Q1 = Q|V1
on V1 and

Q2 = Q|V2
on V2. The Grassmann algebra functor is exponential, that is,

∧
(V1 +V2) =

∧
V1 ⊗̂

∧
V2 (7)

1 Here, we identifyC`i(V )≡
∧iV as vector spaces.
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(the graded tensor product ⊗̂ is defined below and we use equality for categorical

isomorphisms). Similarly we get for Clifford algebras

C`(V1 +V2,Q1 ⊥ Q2) = C`(V1,Q1) ⊗̂C`(V2,Q2), (8)

and it is this decomposition which will be used below to compute in CLIFFORD

in dimensions ≥ 9. For Clifford algebras with non-symmetric bilinear forms such a

decomposition is in general not direct, see [18].

2.4 Tensor products of (graded) algebras

Let (A,mA) and (B,mB) be K-algebras. That is, we have right and left scalar multi-

plications ρ : A×K →A and λ : K×B →B. This allows to define the tensor product

A⊗K B as a universal object via a co-equalizer2 c of two arrows ρ ◦ 1 and 1 ◦λ

A×K×B
ρ◦1

//

1◦λ
// A×B

c
// A⊗K B , (9)

which produces the common relations such as aλ ⊗b = a⊗λ b, multilinearity etc.

We have (vector space) injections iA : A → A⊗B and iB : B → A⊗B, and want to

transport the algebra structure too. We define the product algebra on A⊗B from the

algebra structures on A and B as follows:

mA⊗B := (mA ⊗mB)(1⊗σ ⊗1), (10)

where σ : A⊗B → B⊗A :: (a,b) 7→ (b,a) is the switch of tensor factors. On ele-

ments:

(a⊗b)(a′⊗b′) = aa′⊗bb′ . (11)

Note that we had to switch a′ and b, assuming they commute. As we work in a

Z2-graded setting A = A0 +A1, B = B0 +B1, this switch has to be replaced with a

graded switch

σ̂ : A ⊗̂ B → B ⊗̂ A :: (a,b) 7→ (−1)|a||b|(b,a), (12)

(on homogeneous elements and extended by linearity). The graded multiplication

mA ⊗̂ B is then given by

mA ⊗̂ B := (mA ⊗̂ mB)(1 ⊗̂ σ̂ ⊗̂ 1). (13)

Using this setup, the injections above become algebra isomorphisms iA : a 7→ (a ⊗̂ 1)
and iB : b 7→ (1 ⊗̂ b).

2 See [22].
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In the Grassmann algebra case, splitting the space V = V1 +V2 with n basis vec-

tors ei into two sets with, respectively, p (1 ≤ i ≤ p) and q (p < i ≤ n) vectors, we

get the maps ei 7→ ei ⊗̂ 1 (i ≤ p) and e j 7→ 1 ⊗̂ e j (p < j ≤ n). In the CAS compu-

tations below we will standardize the indices, that is, we will reindex j 7→ j− p so

that i ∈ {1, . . ., p} and j− p ∈ {1, . . .n− p}. The graded tensor product ensures that

we still have the desired anti-commutation relations

(ei ⊗̂ 1)(1 ⊗̂ e j) = (ei ⊗̂ e j) and (1 ⊗̂ e j)(ei ⊗̂ 1) = (−1)1·1(ei ⊗̂ e j) . (14)

In this way we can form graded tensor products of Clifford algebras C`p,q ⊗̂C`r,s

too, and that is what we aim for.

Tensor products for matrix algebras are usually called Kronecker products, and

are taken without the grading. Let A ' Mat(n,R) and B ' Mat(m,R) be matrix

algebras. Recall that matrices need a choice of basis giving matrices [ai j] and [bi j].
The definition of the matrix tensor algebra A⊗B ' Mat(n ·m,R) includes a choice

of how to form a basis for A⊗B, which consists of elements En,m = ei, j ⊗ ek,l , that

is, a reindexing function [(i, j), (k, l)] 7→ (n,m). One way is to define a tensor

[ai, j]⊗ [bk,l] = [ai, j · [bk,l]] (15)

by inserting the matrix [bk,l] as blocks into the matrix [ai, j]; another obvious choice

would exchange the role of [a] and [b]. Category theory shows that the definition of

the tensor algebra is unique up to a unique isomorphism depending on the particular

choices. However, actual computations in a CAS need to be consistent and explicit

in the choice of these isomorphisms.

2.5 Periodicity of Clifford algebras

We have seen in the previous Section that we can tensor Clifford algebras of any

signature provided we employ the graded tensor product.

Theorem 1. Let C`p,q, C`r,s be two real Clifford algebras, then

C`p+r,q+s 'C`p,q ⊗̂C`r,s (16)

(which does not even need nondegeneracy, or even symmetry, of the involved forms).

This result will be used in Section 3 to describe a general method usingBigebra to

do practical symbolic CA computations in higher dimensional real Clifford algebras

of any signature.

The isomorphism in (16) is given by the procedures bas2GTbas (from left to

right) and its inverse GTbas2bas (from right to left). We show both procedures in

Maple worksheets posted at [7].

Using matrices over Clifford numbers, like Mat(2,C`p,q), needs considering un-

graded tensors, as the matrix algebra tensor products are ungraded. Doing so em-
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ploys (graded) algebra isomorphisms described on the generators of the factor Clif-

ford algebras inside the ambient Clifford algebra. This leads to the well-known pe-

riodicity relations which are summarized in the following3.

Theorem 2. For real Clifford algebras we have the following periodicity theorems

and isomorphisms:

1) C`q+1,p−1 'C`p,q if p ≥ 1 (see [21]),

2) C`p,q+1 'C`q,p+1 (see [24],

3) C`p,q 'C`p−4,q+4 if p ≥ 4 (see [15,21]),

4) C`p+4,q 'C`p,q ⊗C`4,0 'C`p,q ⊗Mat(2,H) (see [24]),

5) C`p,q+4 'C`p,q ⊗C`4,0 'C`p,q ⊗Mat(2,H) (see [24]),

6) C`p+1,q+1 'C`p,q ⊗C`1,1 'C`p,q ⊗Mat(2,R) ' Mat(2,C`p,q) (see [21]),

7) C`p,q+8 ' C`p,q ⊗Mat(16,R) ' Mat(16,C`p,q) with Mat(2,H)⊗ Mat(2,H) '
Mat(8,R) (see [15,21,24]),

8) C`p+8,q ' C`p,q ⊗Mat(16,R) ' Mat(16,C`p,q) with Mat(2,H)⊗ Mat(2,H) '
Mat(8,R) (see [15,21,24]).

Note that here all tensor products are ungraded and these structure results charac-

terize the cases (signatures) where a graded isomorphism from the graded case to

the ungraded case exists. The isomorphisms with matrix rings need spinor represen-

tations and will be discussed briefly in Subsection 2.6.

By way of example we show a typical isomorphism on generators for the iso-

morphism 6).

Example 1. Let {ei} be the set of orthonormal generators for C`p,q with e2
i = 1 for

i ∈ {1, . . ., p} and e2
i = −1 for i ∈ {p +1, . . ., p +q}, and let f 2

1 = 1 = − f 2
2 be the

orthogonal generators for C`1,1. Then, tensors ei ⊗ f1 f2, 1⊗ f1, 1⊗ f2 are generators

for C`p+1,q+1. Indeed, since f1 f2 = − f2 f1 and ( f1 f2)
2 = 1, for i, j ∈ {1, . . ., p +q}

and i 6= j, we find the following familiar relations in C`p,q ⊗C`1,1:

(ei ⊗ f1 f2)
2 = (ei ⊗ f1 f2)(ei ⊗ f1 f2) = e2

i ⊗ ( f1 f2)
2 =

{
1⊗1, if 1 ≤ i ≤ p;

−1⊗1, otherwise,

and further:

(1⊗ f1)
2 = 1⊗ f 2

1 = 1⊗1 = −1⊗ f 2
2 = −(1⊗ f2)

2,

(ei ⊗ f1 f2)(e j ⊗ f1 f2)+(e j ⊗ f1 f2)(ei ⊗ f1 f2) = (eie j + e jei)⊗ ( f1 f2)
2 = 0,

(ei ⊗ f1 f2)(1⊗ f1)+(1⊗ f1)(ei ⊗ f1 f2) = ei ⊗ (− f 2
1 f2)+ ei ⊗ ( f 2

1 f2) = 0,

(ei ⊗ f1 f2)(1⊗ f2)+(1⊗ f2)(ei ⊗ f1 f2) = ei ⊗ ( f1 f 2
2 )+ ei ⊗ (− f1 f 2

2 ) = 0,

(1⊗ f1)(1⊗ f2)+(1⊗ f2)(1⊗ f1) = 1⊗ ( f1 f2 + f2 f1) = 0.

For more details see, e.g., [14,23].

3 For additional references on the periodicity theorems see [12, 13, 16,20].
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Theorem 3 ([14], Theorem 5.8). With the notation as above, let V2 have dimen-

sion 2k and let ω be the volume element in C`(V2,Q2) with ω2 = λ 6= 0. There exists

a vector space isomorphism between the module C`(V1 ⊕V2,Q1 ⊥Q2) and the mod-

ule C`(V1,
1
λ Q1)⊗C`(V2,Q2) given on generators as (x,y) 7→ x⊗ω + 1 ⊗ y, and

there is a graded algebra isomorphism

C`(V1 ⊕V2,Q1 ⊥ Q2) 'C`(V1,
1

λ
Q1)⊗C`(V2,Q2). (17)

The involutions extend as (x̂⊗ y) ' x̂⊗ ŷ and rev(x⊗ y) ' rev(x)⊗ rev(y) if |x| ≡
0 mod 2 even and rev(x⊗ y) ' rev(x)⊗ rev(ŷ) otherwise. Then all periodicity iso-

morphisms in Theorem 2 are special cases of this one.4

To exemplify this, let (x,y) be any pair of generators with x ∈ V1 and y ∈ V2 which

upon the embedding V1 ⊕V2 ↪→ C`(V1 ⊕V2,Q1 ⊥ Q2) we write as the sum x + y.

Then,

(x+ y)2 = x2 +(xy+ yx)+ y2 = (Q1(x)+Q2(y))1 = (Q1 ⊥ Q2)(x,y) (18)

due to the orthogonality of x and y. On the other hand, in the (ungraded) tensor

product algebra in the right-hand-side of (17) we find, as expected,

(x⊗ω +1⊗ y)2

= (x⊗ω)(x⊗ω)+(x⊗ω)(1⊗ y)+(1⊗ y)(x⊗ω)+(1⊗ y)(1⊗ y)

= x2 ⊗ω2 + x⊗ωy+ x⊗ yω +1⊗ y2

=
1

λ
Q1(x)1⊗λ 1 +1⊗Q2(y) = Q1(x)⊗1 +1⊗Q2(y)

= (Q1(x)+Q2(y))(1⊗1) (19)

due to the anti-commutativity yω = −ωy for every y ∈ V2 assured by the even di-

mension of V2 (that is ω is even). Furthermore, this last computation shows that

the assumption ω2 = λ 6= 0 and the appearance of the factor 1
λ modifying Q1 in

C`(V1,
1
λ Q1), are both necessary.

Since we are using Grassmann bases in all Clifford algebras, it is interesting to

calculate the image of a Grassmann basis monomial, say of degree 2, in the product

algebra on the right of (17). Let x1,x2 be orthogonal generators in V1 and let y1,y2

be orthogonal generators in V2. Then, the wedge product in the Clifford algebra

C`(V1 ⊕V2,Q1 ⊥ Q2) is computed as expected

(x1 + y1)∧ (x2 + y2) = x1 ∧ x2 + x1 ∧ y2 + y1 ∧ x2 + y1 ∧ y2. (20)

On the other hand, since (x1 + y1)∧ (x2 + y2) = (x1 + y1)(x2 + y2), its image in

C`(V1,
1
λ Q1)⊗C`(V2 ,Q2) under the isomorphism (17) is the following rather com-

plicated element:

4 The requirement ω2 = λ 6= 0 is equivalent to Q2 being non-degenerate. See also [21, p. 218].
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(x1x2)⊗ω2 +(x1 ∧ 1)⊗ωy2 +(1∧ x2)⊗ y1ω +(1∧ 1)⊗ (y1y2) =

(x1 ∧ x2)⊗λ 1 + x1 ⊗ωy2 + x2 ⊗ y1ω +1⊗ (y1 ∧ y2). (21)

The isomorphism in (17) is given by the procedures bas2Tbas (from left to right)

and its inverse Tbas2bas (from right to left). In the worksheets [7] we show both

procedures as well as we verify the assertions regarding the involutions.

2.6 Spinor representations, Clifford valued matrix representations

A Clifford algebra is an abstract algebra, but we may want to realize it as a con-

crete matrix algebra. It is, however, well known that matrix representations may

be very inefficient for CAS purposes. The simplest representation is the (left) reg-

ular representation, sending a ∈ A 7→ λa = mA(a,−) ∈ End(A), the left multipli-

cation operator by a. This representation is usually highly reducible. The small-

est faithful representations of a Clifford algebra are given by spinor representa-

tions.5 Algebraically, a spinor representation is given by a minimal left ideal which

can be generated by left multiplication from a primitive idempotent fi = f 2
i with

6 ∃ fk, fl 6= 0 idempotents such that fi = fk + fl and fk fl = fl fk = 0. The vector space

Si := C`p,q fi is a spinor space, and it carries a faithful irreducible representation of

C`p,q for simple algebras.6 However, when C`p,q is not simple, and in several signa-

tures (p,q) this space is not really a vector space, but a module over K = fiC`p,q fi

with K isomorphic to R, C, H, 2R = R⊕R, or 2H = H⊕H depending on the

signature (p,q). The spinor bi-module C̀ SK carries a left C`p,q and right K action

(scalar product). Looking up tables of spinor representations [21, 24] yields that

C`p,q is simple and has a real representation if p− q ≡ 0,2 mod 8, distinguished

by the fact that a normalized volume element ω squares to ω2 = +1 if p − q ≡
0,1 mod 4 and ω2 = −1 if p−q ≡ 2,3 mod 4. Avoiding non real K’s, we find the

isomorphisms C`0,0 ' R ' Mat(1,R), {C`2,0,C`1,1} ' Mat(2,R), {C`3,1,C`2,2} '
Mat(4,R), {C`4,2,C`3,3,C`0,6} ' Mat(8,R), and {C`8,0,C`5,3,C`4,4,C`1,7,C`0,8} '
Mat(16,R), which can be looked up using the command clidata in CLIFFORD.

The main reason for using these isomorphisms is that R⊗C`p,q 'C`p,q, so we don’t

have to worry about K tensor products of spinor spaces and use only S ⊗R S∗ '
Mat(2k,R).7

Example 2. A spinor basis { f
j

i } for C`1,1 ' Mat(2,R) needed in the isomorphism 6)

of Theorem 2, given the orthogonal generators e2
1 = 1 =−e2

2 for C`1,1 and a primitive

idempotent fi, may be chosen as

5 For a complete treatment of spinor representations, see for example [2,6,8,9,14,16,17,19,21,24].
6 For semi-simple Clifford algebras, we realize the spinor representation in S⊕ Ŝ where Ŝ =C`p,q f̂i

(see, e.g., [21]).
7 Here, S∗ denotes the dual spinor space, see e.g., [8, 9, 17, 21].
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S1 = C`1,1 f1 = spanR{ f 1
1 := f1 =

1

2
(1 + e1,2), f 2

1 := e1 f1 =
1

2
(e1 + e2)}. (22)

In this basis, the following matrices represent the basis elements in C`1,1:

[1] =

(
1 0

0 1

)
, [e1] =

(
0 1

1 0

)
, [e2] =

(
0 −1

1 0

)
, [e1e2] =

(
1 0

0 −1

)
. (23)

In general there exists a transversal {mi} ({1,e1} in the previous case) which pro-

vides a basis { f i
k := mi fk} for the spinor module Sk.8 Note that the idempotent f1 is

even, but one could choose also the idempotent f = 1
2
(1+e1) which has no definite

grade.

In general, the images of the additional generators ei ⊗ e1e2 needed to generate

C`p,q ⊗C`1,1 ' Mat(2,C`p,q) are given by ei ⊗ [e1e2] with entries from C`p,q, and

read ei ⊗ e1e2 '

(
ei 0

0 −ei

)
. The isomorphism 6) of Theorem 2 gives, via iteration,

C`p,q 'C`p−q,0 ⊗Mat(2q,R) if p ≥ q and C`p,q 'C`0,q−p ⊗Mat(2p,R) if q ≥ p.

2.7 Involutions in the tensor product and representation cases

In Section 2.2 we discussed briefly the main and reversion involutions for the Grass-

mann algebra case, and how the later is related to the opposite algebra, while The-

orem 3 provides the involutions for the ungraded tensor case. Describing a Clifford

algebra C`p,q as a graded or ungraded tensor product, or using the Clifford val-

ued matrix representation Mat(2,C`p,q), we want to describe in this Section how

to construct the involutions and how they are implemented on these structures, see

also [23].

The main (grade) involution of the Grassmann algebra
∧

V induces the Z2-

grading
∧

V =
∧

0 V +
∧

1 V . The ideal Ig generating the Clifford algebra C`(V,g)=∧
V/Ig as a factor algebra is Z2-graded (even). Therefore, the Z2-grading is pre-

served without any change in the Clifford algebra. Hence, we can describe the main

involution on the Grassmann basis

V∧,[ = ∪k∈{0,...,n}{ei1 ∧ · · ·∧ eik | I ∈ {1, . . .,n}, il ∈ I, |I|= k} (24)

or the Clifford basis

V &c,[ = ∪k∈{0,...,n}{ei1&c · · ·&ceik | I ∈ {1, . . .,n}, il ∈ I, |I|= k} (25)

8 The transversal {mi} is a set of Grassmann monomials in the basis of C`p,q which provide coset

representatives of the quotient group Gp,q/Gp,q( f ) where Gp,q( f ) is the stabilizer group of a prim-

itive idempotent f . Gp,q( f ) is a normal subgroup of the Salingaros vee group Gp,q ⊂ C`p,q. For

more, see [8].
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underlying a Clifford algebra using the Grassmann Z2-grading.9 That is, mapping

the generators ei 7→ −ei in both cases. From the property of the Grassmann func-

tor (7), by replacing (formally) ˆ : V 7→ −V under the grade involution ˆ, we derive

∧
(−V −W ) =

∧
(−V ) ⊗̂

∧
(−W ).

This amounts to saying that ˆ |V+W = ˆ|V ⊗ ˆ|W , and the same is true for the Clifford

functorC`. The grade involution on graded and ungraded tensor products of Clifford

algebras reads then:

ˆ : C`p,q ⊗̂C`r,s →C`p,q ⊗̂C`r,s :: v ⊗̂ w 7→ v̂ ⊗̂ ŵ,

ˆ : C`p,q ⊗C`r,s →C`p,q ⊗C`r,s :: v ⊗̂ w 7→ v̂ ⊗̂ ŵ. (26)

The ungraded tensor behaves as the graded one since no generators need to be

switched. The matrix case needs to implement the grade involution on the spinor

representation and depends hence on the choice of the transversal {m j} and the

idempotent fi, see (23) and text afterwards. As the space V2 in the decomposition

in Theorem 3 is even, the grade involution can be obtained in an basis-invariant

way by [X ] 7→ [ω][X̂ ][ω]−1 removing the dependency on a chosen basis. (X̂ is the

grade involution of X ∈C`p,q and conjugating with [ω] is the grade involution in the

spinor representation of C`1,1.) For the basis (23) of Example 2 we get for the grade

involution

ˆ : Mat(2,C`p,q) → Mat(2,C`p,q) ::

[
x11 x12

x21 x22

]
7→

[
1 0

0 −1

][
x̂11 x̂12

x̂21 x̂22

][
1 0

0 −1

]

[
x11 x12

x21 x22

]
7→

[
x̂11 −x̂12

−x̂21 x̂22

]
. (27)

We conclude that the three ways to describe product Clifford algebras, graded tensor

product, ungraded tensor products from Theorem 2, and their Clifford valued matrix

versions provide (grade) involutive Clifford algebra isomorphisms. The code for

these maps is shown in Appendix 5.1.

The reversion involution interacts in a more involved way with the product al-

gebras. We have seen in Section 2.2 that the reversion involution rev∧ relates the

Grassmann algebra
∧

V and its opposite algebra
∧op V . The same is true for Clifford

algebras (of arbitrary bilinear forms B), rev&c : C`(V,B)→C`op(V,B). However, the

reversion ‘reverses’ Clifford generators of the Clifford basis (25) and not that of

the Grassmann basis (24). The interaction between reversion and Clifford product

was presented in [6], in a categorical basis-free way. As one works for geometric

reasons mostly with the Grassmann basis, we need to establish the reversion on this

basis. Moreover, in case of a bilinear form B having a nontrivial nonsymmetric part,

the reversion will depend on the antisymmetric part of the bilinear form B. As the

reversion preserves the grade, it commutes with the grade involution.

9 In (25), &c denotes the Clifford product in C`(B) as an ampersand operator in CLIFFORD.
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We start with the graded tensor product case. Let B=B1+B2 be a direct decomposi-

tion of the bilinear form on the linear space V = V1 +V2, hence B|V = B|V1
+B|V2

=
B1 + B2 (off diagonal entries need to be zero) and let revB, revB1, revB2 be the re-

spective reversions on C`p+r,q+s, C`p,q and C`r,s. The reversion map reads then

revB : C`p,q ⊗̂C`r,s →C`op
p,q ⊗̂C`op

r,s :: x ⊗̂ y 7→ (σ̂ ◦σ)(revB1
(x) ⊗̂ revB2

(y)) (28)

with σ̂ being the graded switch and σ being the ungraded switch [8,9].

The ungraded tensor product cases from Theorem 2 have to cope with the fact

that a switch of the tensor factors does not imply a sign factor. However, the map

(x,y) 7→ x⊗ω +1⊗ y from Theorem 3 has to be taken into account. The reversion

map has to be defined, for the decomposition B = B1 + B2, Bp+r,q+s = Bp,q + Br,s

(for suitable r, s), as

revB : (C`0
p,q ⊕C`1

p,q)⊗ C`r,s → (C`0,op
p,q ⊗C`op

r,s )⊕ (C`1,op
p,q ⊗ Ĉ`

op

r,s )

:: x ⊗̂ y 7→ (revB1
(x0)⊗ revB2

(y))+(revB1
(x1)⊗ revB2

(ŷ)). (29)

Here x = x0 + x1 ∈C`0
p,q ⊕C`1

p,q is the decomposition into even and odd parts, and

Ĉ`p,q is the grade involution of C`p,q.

In the matrix case Mat(2,C`p,q) we need to investigate how the spinor representa-

tion implements the reversion on C`1,1. Picking a basis, e.g., as in (23), picks a non

natural isomorphism defining the spinor basis. However, we want to describe the

reversion, if possible, without dependency on such choices. The matrix elements of

an element x in a spinor basis for the idempotent fs and transversal {mi} with basis

{ f i
s = mi fs} are given as xi j = tr( f

∗,i
s x f

j
s ). Here, f 1

s , f 2
s are the spinor basis elements

of (22), and f
∗,1
s = f 1

s , f
∗,2
s = e1 f 2

s is the dual basis with respect to the trace form.

One can show that there is no element r in C`1,1 such that rev1,1(x)= rxr−1 due to the

different action on even and odd elements. Using the transposition automorphism

tp, which implements the matrix transposition as the transposition anti-involution

Tε˜ in C`p,q and which was discussed extensively in [8–10], we can use an invertible

element a = tp(a) (represented by a matrix [A] and we have [tp(a)] = [A]t) to model

the reversion as follows

[rev1,1(X)] = [a tp(X) a−1] = [A][X ]t[A]−1, (30)

where [X ]t is the matrix transpose of [X ] in Mat(2,C`p,q). For the basis of (23), we

have a = e1.

Concretely, for the basis in (22) based on an even idempotent f̂1 = f1, we get the

reversion map

revMat : Mat(2,C`p,q) → Mat(2,C`p,q)

::

[
x11 x12

x21 x22

]
7→

[
revp,q(x̂22) revp,q(x̂12)
revp,q(x̂21) revp,q(x̂22)

]
(31)
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where revMat = revB is the reversion on Mat(2,C`p,q) ∼= C`p+1,q+1
∼= C`p,q ⊗C`1,1

and revp,q is the reversion on C`p,q. For a general spinor basis, one gets

revB([X ]) = revB([X ]0 +[X ]1) = [a][revB1
(X)]0[a−1]+ [revB1

(X)]1 (32)

with an invertible a satisfying tp(a) = a. The code of all these grade and reversion

involutions is displayed in Appendix 5.1 and is further discussed in the worksheets

posted at [7].

3 Computing with CLIFFORD and Bigebra in tensor algebras

We provide examples of Maple code how to set up tensor products of Clifford alge-

bras in CLIFFORD and Bigebra. For the usage of these packages see [1,5,6], the

help pages which come with the package, and the package website [4]. The Maple

worksheets with code for the described methods are posted at [7].

Loading the package using >with(Clifford);with(Bigebra); exposes the

exported functions. To set up a Clifford algebra, say C`2,2, one needs to define the di-

mension >dim V:=2+2; and the bilinear form >B:=linalg[diag](1$2,-1$2);.10

Basis elements eI are written as strings, e.g., e1we4 stands for e1 ∧ e4, etc., whereas

Id stands for the identity of the Clifford algebra. Bigebra exports also the

(graded) tensor product &t, which is multilinear and associative. Then, a tensor

product e1,2⊗e1 reads &t(e1we2,e1), and permutations of tensors are implemented

by maps >switch(&t(e1,e2),1) = &t(e2,e1) (the ungraded switch) or, in the

graded case, >gswitch(&t(e1,e2),1) = -&t(e2,e1) (the graded switch). The

extra index i in either switch (here we have used 1 in each) tells [g]switch to

swap the i-th and the (i+1)st elements. Again, you get help by typing >?switch and

>?gswitch at the Maple prompt.

The Clifford product cmul by default implicitly uses the bilinear form B as in,

for example, >cmul(e1,e2)=e1we2+B[1,2]*Id. However, it can also use B or any

other Maple name explicitly as an optional argument, e.g., >cmul[K](e1,e2) =

e1we2+K[1,2]*Id, allowing to compute in different Clifford algebras in the same

worksheet.

Let B, B1, B2 hold the bilinear forms11 for C`p+r,q+s,C`p,q and C`r,s, and let

bas2GTbas be the graded algebra isomorphism (16) given by eI ∈C`p,q 7→&t(eI,Id)

(I ⊆ {1, . . ., p +q}) and eJ ∈C`r,s 7→&t(Id,eJ) (J ⊆ {1, . . .r + s}), then the proce-

dure cmulGTensor implements the Clifford algebra product in the graded tensor

product of Clifford algebras in the r.h.s. of (16) as explained in Section 2.4.

10 The default name of the bilinear form in CLIFFORD and Bigebra is B, however other names

can also be used. So, when the bilinear form B is left undefined (unassigned), computations are

performed in a Clifford algebraC`(B) for an arbitrary bilinear form B (see, e.g., [6, 18]).
11 Computations in the worksheetcmulGTensor.mw are performed for arbitrary not necessarily

symmetric or diagonal bilinear forms.
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cmulGTensor:=proc(x,y,B1,B2) l o c a l f4;

f4:=(a,b,x,y)->cmul[B1](a,b),cmul[B2](x,y):

e v a l(subs(‘&t‘=f4,gswi tch(&t(x,y),2)));

end proc:

We prove in the worksheet cmulGTensor.mw [7] that

GTbas2bas(cmulGTensor(X,Y,B1,B2))=

cmul[B](GTbas2bas(X),GTbas2bas(Y))

is the graded algebra isomorphism (16) with the inverse bas2GTbas. The grade and

reversion involutions work as expected. The limit B → 0 implements the wedge

product on
∧

V =
∧

V1 ⊗̂
∧

V2.

We discuss in more detail the ungraded tensor product for

C`p+1,q+1 'C`p,q ⊗C`1,1,

the isomorphism 6) of Theorem 2, which we call bas2Tbas while its inverse is

Tbas2bas. We have in C`1,1, with generators e2
1 = 1 = −e2

2 , the volume element

ω = e1e2 with ω2 = λ = 1, as we have to use the bilinear form 1
λ Q1 of Theorem 3,

so we can still use 1
λ B1 = B1. The isomorphism 6) reads eI ∈ C`p,q 7→&t(eI,w)

(I ⊆ {1, . . ., p +q}) and eJ ∈C`1,1 7→&t(Id,eJ)(J ⊆ {1,2}).12 The tensor Clifford

product is graded isomorphic to the Clifford product on C`p+1,q+1. For a proof see

the worksheet cmulTensor11.mw [7]. The following procedure implements the un-

graded tensor product algebra as explained in Section 2.5.

cmulTensor:=proc(x,y,lB1,B2) l o c a l f4;

f4:=(a,b,x,y)->cmul[lB1](a,b),cmul[B2](x,y):

e v a l(subs(‘&t‘=f4, swi tch(&t(x,y),2))); # ordinary swi tch

end proc:

The isomorphism bas2Tbas with its inverse Tbas2bas this time is more involved,

as are the grade and reversion involutions. We still get the isomorphism

Tbas2bas(cmulTensor(X,Y,B1,B2))=

cmul[B](Tbas2bas(X),Tbas2bas(Y))

proved by direct computation explicitly. Further details are provided in the work-

sheet. Note that we do not have the limit B → 0, as Q2 ' B2 needs to be nonde-

generate, and the naive limit replacing cmul by wedge gives false results. In the

worksheet we show how to produce the Grassmann basis for the tensor algebra, and

how the isomorphism and the involutions work.

In each worksheet we have benchmarked computations using the generic cmul

routine for the Clifford product from CLIFFORD (in dimV ≤ 9) versus Bigebra

tensor routines cmul[G]Tensor. For orthonormal bases we roughly get equal run-

times. The more complicated data structures of the tensor algebras is compensated

by not computing some of the off-diagonal terms.

We add to this brief discussion that it is easily possible to iterate this morphism,

and to provide CLIFFORD code for computations in Clifford algebras

12 Here, w in &t(eI,w) stands for the volume element ω . Then, in the code of cmulTensor,

the form 1
λ B1 is denoted as lB1.
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C`p+k,q+k 'C`p,q ⊗C`1,1 ⊗· · ·⊗C`1,1︸ ︷︷ ︸
k factors

, (33)

or use the mod 8 periodicity.

4 Computations using matrix algebras over Clifford numbers

The isomorphism 6) from Theorem 2 was explicitly defined by Lounesto in [21,

Sect. 16.3]. We will use this matrix approach to perform computations in C`8,2 '
Mat(2,C`7,1) [11]. Let {e1, . . .,e8} be an orthonormal basis of R7,1 generating the

Clifford algebra C`7,1 such that e2
i = 1 for 1 ≤ i ≤ 7, e2

8 = −1, and eie j = −e jei for

≤ i, j ≤ 8 and i 6= j. The following 2×2 matrices (compare with (23))

Ei =

(
ei 0

0 −ei

)
for i = 1, . . .,8, E9 =

(
0 1

1 0

)
, E10 =

(
0 −1

1 0

)
(34)

anti-commute and generate C`8,2.
13 In order to effectively compute in C`8,2, we

define the isomorphism ϕ : Mat(2,C`7,1)→C`8,2 as a Maple procedure phi from the

asvd package.14 Its inverse is given by the Maple procedure evalm. In the first step,

we compute 1,024 2×2 matrices EI with entries in C`7,1 which represent the basis

monomials eI = ei1 ei2 · · ·eik , i1 < i2 < · · ·< ik, 0 ≤ k ≤ 8. We store these matrices

in a list B.

For example, for the basis Bk of k-vectors in CLIFFORD we compute all
(

8
k

)

products Ei1 &cm Ei2 &cm · · · &cm Eik where &cm is a CLIFFORD procedure to com-

pute a product of Clifford algebra-valued matrices with the Clifford product applied

to the matrix entries. Once the matrix representation (34) has been chosen,15 the list

B =
⋃

k Bk can be saved and read into a next Maple session thus avoiding the need

to repeat this step.

Having computed the basis matrices B, we are now ready to compute in C`8,2.
For example,16 let x = 2ID + 4E1,2,3 − 10E1,5,7,8,10 and y = −ID + 4E1,2,3,7 +
E1,5,6,8−3E1,4,6,7. We can find the Clifford product x &CM y of x and y in C`8,2 using

the following procedure:

‘&CM‘:=proc(x::algebraic,y::algebraic) l o c a l xy; g l o b a l phi,BBB;

i f not type(evalm(x),climatrix) then error

‘evalm(x) must be of type climatrix‘ end i f :

13 Notice that E2
i = E2

9 = 1 for 1 ≤ i ≤ 7 and E2
8 = E2

10 = −1 in this explicit representation. Also,

C`1,1 ' Mat(2,R) is such that the matrices e1 =

(
0 1

1 0

)
and e2 =

(
0 −1

1 0

)
generateC`1,1.

14 The asvd package is part of the CLIFFORD library. It was introduced in [3].
15 Note that other representations are possible. See [21, Sect.16.3].

16 In the following, we let ID denote the identity matrix in Mat(2,C`7,1) namely ID =

(
Id 0

0 Id

)

where Id, as before, denotes the identity element in C`7,1.
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i f not type(evalm(y),climatrix) then error

‘evalm(y) must be of type climatrix‘ end i f :

xy:=d i s p l a y i d(evalm(x) &cm evalm(y));

re turn ph i(xy,BBB);

end proc:

Once the basis B is stored in Maple as a list BBB, the procedure &CM treats it as a

global variable and it returns17

−40E2,3,5,8,10 +2E1,5,6,8 −16E7 −4E1,2,3 +10E1,5,7,8,10 −10E6,7,10

+8E1,2,3,7 +4E2,3,5,6,8 −12E2,3,4,6,7−30E4,5,6,8,10 −6E1,4,6,7 −2ID . (35)

Details of the above computations can be found in the worksheet G82.mws [7]. In

the worksheet we also define the respective grade and reversion involutions, and the

graded algebra isomorphisms C`8,2 ↔ Mat(2,C`7,1) are given by phi and evalm.

5 Appendix

5.1 Code for the involutions for product and matrix Clifford

algebras

The grade involutions are coded as follows:

Listing 1 Graded main involution

# GTgradeinv : grade involution on CL_p,q (x) CL_r,s

GTgradeinv:=proc(x) l o c a l f2;

f2:=(a,b)->&t(grade inv(a),grade inv(b));

e v a l(subs(‘&t‘=f2,x));

end proc:

The local function f2 maps the grade involution to the tensor arguments, and the

eval(subs...) line applies the tensor (triggering multilinearity). This simple code

reflects the simple definition of the main involution as discussed in Section 2.7. The

ungraded case works out exactly the same way:

Listing 2 Ungraded main involution

# Tgradeinv : grade involution on CL_p,q (x) CL_r,s

Tgradeinv:=proc(x) l o c a l f2;

f2:=(a,b)->&t(grade inv(a),grade inv(b));

e v a l(subs(‘&t‘=f2,x));

end proc:

17 On a laptop running Intel(R) Core(TM) 2 Duo CPU T6670 @ 2.20 GHz it takes 6.5 sec to obtain

this result. The computation time can be shortened using parallel processing available in Maple 15

and later.
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The Mat(2,C`p,q) case is different. Due to the choice of a spinor basis for C`1,1,

the grade involution depends on this choice. Using the basis defined in Section 2.6

equation (23), we code the graded involution as

Listing 3 Mat(2,C`p,q) main involution

# Mgradeinv : grade involution on Mat(2,CL_p,q)

Mgradeinv:=proc(x)

l i n a l g [matrix](2,2, [ grade inv(x[1,1]),- grade inv(x[1,2]),

-grade inv(x[2,1]), grade inv(x[2,2])]);

end proc:

This reflects the fact that in this spinor basis the non zero diagonal terms (ei) of

generators are odd, while the non zero off diagonal terms are even (±1) and need an

additional minus sign.

The reversion is more complicated as it involves swapping of generators between

the two factors of the product representations or involves the chosen spinor basis.

The graded tensor case just needs an additional sign due to the swapping of the two

factors of the product:

Listing 4 Graded reversion

# GTreversion : r e v e r s i o n involution on CL_p,q (x) CL_r,s

# !! works for general bilinear forms B1 & B2 !!

GTreversion:=proc(x,B1,B2) l o c a l f2;

f2:=(a,b)->&t( r e v e r s i o n(b,B1), r e v e r s i o n(a,B2)); # note order

# of a,b

e v a l(subs(‘&t‘=f2,gswi tch(x,1))); # gswi tch for correct sign

end proc:

The reversion in the ungraded case is done by identifying two cases. If the first case,

the tensor factor is even, the reversion is an (ungraded) tensor product morphism. In

the odd case, one needs to apply additionally the grade involution to the first factor.

This is done in the local function f2, which is then applied to all tensor monomials

(using the eval(subs(‘&t‘=...)) evaluation of the tensor).

Listing 5 Ungraded reversion

# T revers ion : r e v e r s i o n involution on CL_p,q (x) CL_r,s

# !! works for general bilinear forms B1 & B2 !!

T revers ion:=proc(x,B1,B2) l o c a l f2;

f2:=proc(a,b)

i f nops(Clifford:-extract(a)) mod 2 = 0 then

re turn &t( r e v e r s i o n(a,B1), r e v e r s i o n(b,B2));

e l s e

re turn &t(grade inv( r e v e r s i o n(a,B1)),( r e v e r s i o n(b,B2)));

end i f;

end proc:

e v a l(subs(‘&t‘=f2,x));

end proc:
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The reversion in the Mat(2,C`p,q) case depends on the basis chosen in (23). It swaps

the diagonal entries and has to apply the grade involution to the second column.18

Listing 6 Mat(2,C`p,q) reversion

# Mreversion : r e v e r s i o n on Mat(2,CL_p,q)

# NOTE: depends on spinor basis for CL_1,1

Mreversion:=proc(x,B)

l i n a l g [matrix](2,2,

[grade inv( r e v e r s i o n(x[2,2],B)),grade inv( r e v e r s i o n(x[1,2],B)),

grade inv( r e v e r s i o n(x[2,1],B)),grade inv( r e v e r s i o n(x[1,1],B))]);

end proc:
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