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Square Roots of −1 in Real Clifford Algebras

Eckhard Hitzer, Jacques Helmstetter and Rafa l Ab lamowicz

Abstract. It is well known that Clifford (geometric) algebra offers a geo-
metric interpretation for square roots of −1 in the form of blades that
square to minus 1. This extends to a geometric interpretation of quater-
nions as the side face bivectors of a unit cube. Systematic research has
been done [32] on the biquaternion roots of −1, abandoning the restric-
tion to blades. Biquaternions are isomorphic to the Clifford (geometric)
algebra C`(3, 0) of R

3. Further research on general algebras C`(p, q) has
explicitly derived the geometric roots of −1 for p + q ≤ 4 [17]. The cur-
rent research abandons this dimension limit and uses the Clifford algebra
to matrix algebra isomorphisms in order to algebraically characterize the
continuous manifolds of square roots of −1 found in the different types
of Clifford algebras, depending on the type of associated ring (R, H, R

2,
H

2, or C). At the end of the paper explicit computer generated tables of
representative square roots of −1 are given for all Clifford algebras with
n = 5, 7, and s = 3 (mod 4) with the associated ring C. This includes,
e.g., C`(0, 5) important in Clifford analysis, and C`(4, 1) which in ap-
plications is at the foundation of conformal geometric algebra. All these
roots of −1 are immediately useful in the construction of new types of
geometric Clifford Fourier transformations.
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1. Introduction

The young London Goldsmid professor of applied mathematics W. K. Clifford
created his geometric algebras1 in 1878 inspired by the works of Hamilton on
quaternions and by Grassmann’s exterior algebra. Grassmann invented the
antisymmetric outer product of vectors, that regards the oriented parallelo-
gram area spanned by two vectors as a new type of number, commonly called
bivector. The bivector represents its own plane, because outer products with
vectors in the plane vanish. In three dimensions the outer product of three
linearly independent vectors defines a so-called trivector with the magnitude
of the volume of the parallelepiped spanned by the vectors. Its orientation
(sign) depends on the handedness of the three vectors.

In the Clifford algebra [13] of R3 the three bivector side faces of a
unit cube {e1e2, e2e3, e3e1} oriented along the three coordinate directions
{e1, e2, e3} correspond to the three quaternion units i, j, and k. Like quater-
nions, these three bivectors square to minus one and generate the rotations
in their respective planes.

Beyond that Clifford algebra allows to extend complex numbers to
higher dimensions [4,14] and systematically generalize our knowledge of com-
plex numbers, holomorphic functions and quaternions into the realm of Clif-
ford analysis. It has found rich applications in symbolic computation, physics,
robotics, computer graphics, etc. [5, 6, 9, 11, 23]. Since bivectors and trivec-
tors in the Clifford algebras of Euclidean vector spaces square to minus one,
we can use them to create new geometric kernels for Fourier transformations.
This leads to a large variety of new Fourier transformations, which all deserve
to be studied in their own right [6, 10, 15, 16, 19,20, 22,25–29,31].

In our current research we will treat square roots of −1 in Clifford alge-
bras C`(p, q) of both Euclidean (positive definite metric) and non-Euclidean
(indefinite metric) non-degenerate vector spaces, Rn = Rn,0 and Rp,q , re-
spectively. We know from Einstein’s special theory of relativity that non-
Euclidean vector spaces are of fundamental importance in nature [12]. They
are further, e.g., used in computer vision and robotics [9] and for general
algebraic solutions to contact problems [23]. Therefore this chapter is about
characterizing square roots of −1 in all Clifford algebras C`(p, q), extending
previous limited research on C`(3, 0) in [32] and C`(p, q), n = p+q ≤ 4 in [17].
The manifolds of square roots of −1 in C`(p, q), n = p+q = 2, compare Table
1 of [17], are visualized in Fig. 1.

First, we introduce necessary background knowledge of Clifford algebras
and matrix ring isomorphisms and explain in more detail how we will char-
acterize and classify the square roots of −1 in Clifford algebras in Section 2.
Next, we treat section by section (in Sections 3 to 7) the square roots of −1
in Clifford algebras which are isomorphic to matrix algebras with associated

1In his original publication [8] Clifford first used the term geometric algebras. Subsequently

in mathematics the new term Clifford algebras [24] has become the proper mathematical
term. For emphasizing the geometric nature of the algebra, some researchers continue [6,

13, 14] to use the original term geometric algebra(s).
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Figure 1. Manifolds of square roots f of −1 in C`(2, 0)
(left), C`(1, 1) (center), and C`(0, 2) ∼= H (right). The square
roots are f = α + b1e1 + b2e2 + βe12, with α, b1, b2, β ∈ R,
α = 0, and β2 = b2

1e
2
2 + b2

2e
2
1 + e2

1e
2
2 .

rings R, H, R2, H2 , and C, respectively. The term associated means that the
isomorphic matrices will only have matrix elements from the associated ring.
The square roots of −1 in Section 7 with associated ring C are of particular
interest, because of the existence of classes of exceptional square roots of −1,
which all include a nontrivial term in the central element of the respective
algebra different from the identity. Section 7 therefore includes a detailed
discussion of all classes of square roots of −1 in the algebras C`(4, 1), the iso-
morphic C`(0, 5), and in C`(7, 0). Finally, we add appendix A with tables of
square roots of −1 for all Clifford algebras with n = 5, 7, and s = 3 (mod 4).
The square roots of −1 in Section 7 and in Appendix A were all computed
with the Maple package CLIFFORD [3], as explained in Appendix B.

2. Background and problem formulation

Let C`(p, q) be the algebra (associative with unit 1) generated over R by
p+ q elements ek (with k = 1, 2, . . . , p+ q) with the relations e2

k = 1 if k ≤ p,
e2
k = −1 if k > p and ehek + ekeh = 0 whenever h 6= k, see [24]. We set the

vector space dimension n = p + q and the signature s = p − q . This algebra
has dimension 2n, and its even subalgebra C`0(p, q) has dimension 2n−1 (if
n > 0). We are concerned with square roots of −1 contained in C`(p, q) or
C`0(p, q). If the dimension of C`(p, q) or, C`0(p, q) is ≤ 2, it is isomorphic
to R ∼= C`(0, 0), R2 ∼= C`(1, 0), or C ∼= C`(0, 1), and it is clear that there is
no square root of −1 in R and R2 = R × R, and that there are two squares
roots i and −i in C. Therefore we only consider algebras of dimension ≥ 4.
Square roots of −1 have been computed explicitly in [32] for C`(3, 0), and in
[17] for algebras of dimensions 2n ≤ 16.
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An algebra C`(p, q) or C`0(p, q) of dimension ≥ 4 is isomorphic to one
of the five matrix algebras: M(2d, R), M(d, H), M(2d, R2), M(d, H2) or
M(2d, C). The integer d depends on n. According to the parity of n, it is

either 2(n−2)/2 or 2(n−3)/2 for C`(p, q), and, either 2(n−4)/2 or 2(n−3)/2 for
C`0(p, q). The associated ring (either R, H, R2, H2 , or C) depends on s in
this way2:

s mod 8 0 1 2 3 4 5 6 7

associated ring for C`(p, q) R R2 R C H H2 H C

associated ring for C`0(p, q) R2 R C H H2 H C R

Therefore we shall answer this question: What can we say about the square
roots of −1 in an algebra A that is isomorphic to M(2d, R), M(d, H),
M(2d, R2), M(d, H2), or, M(2d, C)? They constitute an algebraic subman-
ifold in A; how many connected components3 (for the usual topology) does
it contain? Which are their dimensions? This submanifold is invariant by
the action of the group Inn(A) of inner automorphisms4 of A, i.e. for ev-
ery r ∈ A, r2 = −1 ⇒ f(r)2 = −1 ∀f ∈ Inn(A). The orbits of Inn(A) are
called conjugacy classes5 ; how many conjugacy classes are there in this sub-
manifold? If the associated ring is R2 or H2 or C, the group Aut(A) of all
automorphisms of A is larger than Inn(A), and the action of Aut(A) in this
submanifold shall also be described.

We recall some properties of A that do not depend on the associated
ring. The group Inn(A) contains as many connected components as the group

G(A) of invertible elements in A. We recall that this assertion is true for
M(2d, R) but not for M(2d + 1, R) which is not one of the relevant ma-
trix algebras. If f is an element of A, let Cent(f) be the centralizer of f ,
that is, the subalgebra of all g ∈ A such that fg = gf . The conjugacy
class of f contains as many connected components6 as G(A) if (and only if)

2Compare chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on
p. 217 of [24].
3Two points are in the same connected component of a manifold, if they can be joined by

a continuous path inside the manifold under consideration. (This applies to all topological
spaces satisfying the property that each neighborhoodof any point contains a neighborhood

in which every pair of points can always be joined by a continuous path.)
4An inner automorphism f of A is defined as f : A → A, f(x) = a−1xa, ∀x ∈ A, with

given fixed a ∈ A. The composition of two inner automorphisms g(f(x)) = b−1a−1xab =
(ab)−1x(ab) is again an inner automorphism. With this operation the inner automorphisms

form the group Inn(A), compare [35].
5The conjugacy class (similarity class) of a given r ∈ A, r2 = −1 is {f(r) : f ∈ Inn(A)},
compare [34]. Conjugation is transitive, because the composition of inner automorphisms

is again an inner automorphism.
6According to the general theory of groups acting on sets, the conjugacy class (as a topo-

logical space) of a square root f of −1 is isomorphic to the quotient of G(A) and Cent(f)
(the subgroup of stability of f ). Quotient means here the set of left handed classes modulo

the subgroup. If the subgroup is contained in the neutral connected component of G(A),
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Cent(f)
⋂

G(A) is contained in the neutral7 connected component of G(A),
and the dimension of its conjugacy class is

dim(A) − dim(Cent(f)). (2.1)

Note that for invertible g ∈ Cent(f) we have g−1fg = f .
Besides, let Z(A) be the center of A, and let [A,A] be the subspace

spanned by all [f, g] = fg − gf . In all cases A is the direct sum of Z(A)
and [A,A]. For example,8 Z(M(2d, R)) = {a1 | a ∈ R} and Z(M(2d, C)) =
{c1 | c ∈ C}. If the associated ring is R or H (that is for even n), then
Z(A) is canonically isomorphic to R, and from the projection A → Z(A) we
derive a linear form Scal : A → R. When the associated ring9 is R2 or H2

or C, then Z(A) is spanned by 1 (the unit matrix10) and some element ω
such that ω2 = ±1. Thus, we get two linear forms Scal and Spec such that
Scal(f)1 + Spec(f)ω is the projection of f in Z(A) for every f ∈ A. Instead
of ω we may use −ω and replace Spec with −Spec. The following assertion
holds for every f ∈ A: The trace of each multiplication11 g 7→ fg or g 7→ gf
is equal to the product

tr(f) = dim(A) Scal(f). (2.2)

The word “trace” (when nothing more is specified) means a matrix trace
in R, which is the sum of its diagonal elements. For example, the matrix
M ∈ M(2d, R) with elements mkl ∈ R, 1 ≤ k, l ≤ 2d has the trace tr(M) =
∑2d

k=1 mkk [21].
We shall prove that in all cases Scal(f) = 0 for every square root of −1

in A. Then, we may distinguish ordinary square roots of −1, and exceptional

ones. In all cases the ordinary square roots of −1 constitute a unique12 conju-
gacy class of dimension dim(A)/2 which has as many connected components
as G(A), and they satisfy the equality Spec(f) = 0 if the associated ring is R2

or H2 or C. The exceptional square roots of −1 only exist13 if A ∼= M(2d, C).
In M(2d, C) there are 2d conjugacy classes of exceptional square roots of −1,
each one characterized by an equality Spec(f) = k/d with ±k ∈ {1, 2, . . . , d}
[see Section 7], and their dimensions are < dim(A)/2 [see eqn. (7.5)]. For

then the number of connected components is the same in the quotient as in G(A). See also
[7].
7Neutral means to be connected to the identity element of A.
8A matrix algebra based proof is e.g., given in [33].
9This is the case for n (and s) odd. Then the pseudoscalar ω ∈ C`(p, q) is also in Z(C`(p, q)).
10The number 1 denotes the unit of the Clifford algebra A, whereas the bold face 1 denotes

the unit of the isomorphic matrix algebra M.
11These multiplications are bilinear over the center of A.
12Let A be an algebra M(m, K) where K is a division ring. Thus two elements f and g of

A induce K-linear endomorphisms f ′ and g′ on Km ; if K is not commutative, K operates
on Km on the right side. The matrices f and g are conjugate (or similar) if and only if

there are two K-bases B1 and B2 of Km such that f ′ operates on B1 in the same way as
g′ operates on B2. This theorem allows us to recognize that in all cases but the last one

(with exceptional square roots of −1), two square roots of −1 are always conjugate.
13The pseudoscalars of Clifford algebras whose isomorphic matrix algebra has ring R2 or

H2 square to ω2 = +1.
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instance, ω (mentioned above) and −ω are central square roots of −1 in
M(2d, C) which constitute two conjugacy classes of dimension 0. Obviously,
Spec(ω) = 1.

For symbolic computer algebra systems (CAS), like MAPLE, there exist
Clifford algebra packages, e.g., CLIFFORD [3], which can compute idempo-
tents [2] and square roots of −1. This will be of especial interest for the
exceptional square roots of −1 in M(2d, C).

Regarding a square root r of −1, a Clifford algebra is the direct sum
of the subspaces Cent(r) (all elements that commute with r) and the skew-
centralizer SCent(r) (all elements that anticommute with r). Every Clifford
algebra multivector has a unique split by this Lemma.

Lemma 2.1. Every multivector A ∈ C`(p, q) has, with respect to a square root

r ∈ C`(p, q) of −1, i.e., r−1 = −r, the unique decomposition

A± =
1

2
(A±r−1Ar), A = A++A−, A+r = rA+, A−r = −rA−. (2.3)

Proof. For A ∈ C`(p, q) and a square root r ∈ C`(p, q) of −1, we compute

A±r =
1

2
(A ± r−1Ar)r =

1

2
(Ar ± r−1A(−1))

r−1=−r
=

1

2
(rr−1Ar ± rA)

= ±r
1

2
(A ± r−1Ar).

For example, in Clifford algebras C`(n, 0) [20] of dimensions n = 2 mod 4,
Cent(r) is the even subalgebra C`0(n, 0) for the unit pseudoscalar r, and the
subspace C`1(n, 0) spanned by all k-vectors of odd degree k, is SCent(r). The
most interesting case is M(2d, C), where a whole range of conjugacy classes
becomes available. These results will therefore be particularly relevant for
constructing Clifford Fourier transformations using the square roots of −1.

3. Square roots of −1 in M(2d, R)

Here A = M(2d, R), whence dim(A) = (2d)2 = 4d2. The group G(A) has
two connected components determined by the inequalities det(g) > 0 and
det(g) < 0.

For the case d = 1 we have, e.g., the algebra C`(2, 0) isomorphic to
M(2, R). The basis {1, e1, e2, e12} of C`(2, 0) is mapped to

{(
1 0
0 1

)

,

(
0 1
1 0

)

,

(
1 0
0 −1

)

,

(
0 −1
1 0

)}

.

The general element α + b1e1 + b2e2 + βe12 ∈ C`(2, 0) is thus mapped to
(

α + b2 −β + b1

β + b1 α − b2

)

(3.1)

in M(2, R). Every element f of A = M(2d, R) is treated as an R-linear
endomorphism of V = R

2d. Thus, its scalar component and its trace (2.2)
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are related as follows: tr(f) = 2dScal(f). If f is a square root of −1, it turns
V into a vector space over C (if the complex number i operates like f on V ).
If (e1, e2, . . . , ed) is a C-basis of V , then (e1, f(e1), e2, f(e2), . . . , ed, f(ed)) is
a R-basis of V , and the 2d × 2d matrix of f in this basis is

diag

( (
0 −1
1 0

)

, . . . ,

(
0 −1
1 0

)

︸ ︷︷ ︸

d

)

(3.2)

Consequently all square roots of −1 in A are conjugate. The centralizer of a
square root f of −1 is the algebra of all C-linear endomorphisms g of V (since
i operates like f on V ). Therefore, the C-dimension of Cent(f) is d2 and its
R-dimension is 2d2. Finally, the dimension (2.1) of the conjugacy class of f is
dim(A) − dim(Cent(f)) = 4d2 − 2d2 = 2d2 = dim(A)/2. The two connected
components of G(A) are determined by the sign of the determinant. Because
of the next lemma, the R-determinant of every element of Cent(f) is ≥
0. Therefore, the intersection Cent(f)

⋂
G(A) is contained in the neutral

connected component of G(A) and, consequently, the conjugacy class of f
has two connected components like G(A). Because of the next lemma, the R-
trace of f vanishes (indeed its C-trace is di, because f is the multiplication
by the scalar i: f(v) = iv for all v) whence Scal(f) = 0. This equality is
corroborated by the matrix written above.

We conclude that the square roots of −1 constitute one conjugacy class
with two connected components of dimension dim(A)/2 contained in the
hyperplane defined by the equation

Scal(f) = 0. (3.3)

Before stating the lemma that here is so helpful, we show what happens
in the easiest case d = 1. The square roots of −1 in M(2, R) are the real
matrices

(
a c
b −a

)

with

(
a c
b −a

)(
a c
b −a

)

= (a2 + bc)1 = −1; (3.4)

hence a2 + bc = −1, a relation between a, b, c which is equivalent to (b −
c)2 = (b + c)2 + 4a2 + 4 ⇒ (b − c)2 ≥ 4 ⇒ b − c ≥ 2 (one component)
or c − b ≥ 2 (second component). Thus, we recognize the two connected
components of square roots of −1: The inequality b ≥ c + 2 holds in one
connected component, and the inequality c ≥ b+2 in the other one, compare
Fig. 2.

In terms of C`(2, 0) coefficients (3.1) with b−c = β+b1−(−β+b1) = 2β,
we get the two component conditions simply as

β ≥ 1 (one component), β ≤ −1 (second component). (3.5)

Rotations (det(g) = 1) leave the pseudoscalar βe12 invariant (and thus pre-
serve the two connected components of square roots of −1), but reflections
(det(g′) = −1) change its sign βe12 → −βe12 (thus interchanging the two
components).
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Figure 2. Two components of square roots of −1 in M(2, R)

Because of the previous argument involving a complex structure on
the real space V , we conversely consider the complex space Cd with its
structure of vector space over R. If (e1, e2, . . . , ed) is a C-basis of Cd , then
(e1 , ie1, e2, ie2, . . . , ed, ied) is a R-basis. Let g be a C-linear endomorphism of
C

d (i.e., a complex d × d matrix), let trC(g) and detC(g) be the trace and
determinant of g in C, and trR(g) and detR(g) its trace and determinant for
the real structure of Cd.

Example. For d = 1 an endomorphism of C1 is given by a complex number
g = a + ib, a, b ∈ R. Its matrix representation is according to (3.2)

(
a −b
b a

)

with

(
a −b
b a

)2

= (a2 − b2)

(
1 0
0 1

)

+ 2ab

(
0 −1
1 0

)

. (3.6)

Then we have trC(g) = a+ib, trR

(
a −b
b a

)

= 2a = 2<(trC(g)) and detC(g) =

a + ib, detR

(
a −b
b a

)

= a2 + b2 = | detC(g)|2 ≥ 0.

Lemma 3.1. For every C-linear endomorphism g we can write trR(g) =
2<(trC(g)) and detR(g) = | detC(g)|2 ≥ 0.

Proof. There is a C-basis in which the C-matrix of g is triangular [then
detC(g) is the product of the entries of g on the main diagonal]. We get the
R-matrix of g in the derived R-basis by replacing every entry a + bi of the

C-matrix with the elementary matrix

(
a −b
b a

)

. The conclusion soon follows.

The fact that the determinant of a block triangular matrix is the product of
the determinants of the blocks on the main diagonal is used. �

4. Square roots of −1 in M(2d, R2)

Here A = M(2d, R2) = M(2d, R) × M(2d, R), whence dim(A) = 8d2.
The group G(A) has four14 connected components. Every element (f, f ′) ∈

14In general, the number of connected components of G(A) is two if A = M(m, R), and

one if A = M(m,C) or A = M(m, H), because in all cases every matrix can be joined
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A (with f, f ′ ∈ M(2d, R)) has a determinant in R
2 which is obviously

(det(f), det(f ′)), and the four connected components of G(A) are determined
by the signs of the two components of detR2(f, f ′).

The lowest dimensional example (d = 1) is C`(2, 1) isomorphic to
M(2, R2). Here the pseudoscalar ω = e123 has square ω2 = +1. The cen-
ter of the algebra is {1, ω} and includes the idempotents ε± = (1±ω)/2,
ε2± = ε±, ε+ε− = ε−ε+ = 0. The basis of the algebra can thus be written
as {ε+, e1ε+, e2ε+, e12ε+, ε−, e1ε−, e2ε−, e12ε−}, where the first (and the last)
four elements form a basis of the subalgebra C`(2, 0) isomorphic to M(2, R).
In terms of matrices we have the identity matrix (1, 1) representing the scalar
part, the idempotent matrices (1, 0), (0, 1), and the ω matrix (1,−1), with 1

the unit matrix of M(2, R).

The square roots of (−1,−1) in A are pairs of two square roots of −1

in M(2d, R). Consequently they constitute a unique conjugacy class with
four connected components of dimension 4d2 = dim(A)/2. This number
can be obtained in two ways. First, since every element (f, f ′) ∈ A (with
f, f ′ ∈ M(2d, R)) has twice the dimension of the components f ∈ M(2d, R)
of Section 3, we get the component dimension 2 · 2d2 = 4d2. Second, the cen-
tralizer Cent(f, f ′) has twice the dimension of Cent(f) of M(2d, R), therefore
dim(A) − Cent(f, f ′) = 8d2 − 4d2 = 4d2. In the above example for d = 1
the four components are characterized according to (3.5) by the values of the
coefficients of βe12ε+ and β′e12ε− as

c1 : β ≥ 1, β′ ≥ 1,

c2 : β ≥ 1, β′ ≤ −1,

c3 : β ≤ −1, β′ ≥ 1,

c4 : β ≤ −1, β′ ≤ −1. (4.1)

For every (f, f ′) ∈ A we can with (2.2) write tr(f) + tr(f ′) = 2dScal(f, f ′)
and

tr(f) − tr(f ′) = 2dSpec(f, f ′) if ω = (1,−1); (4.2)

whence Scal(f, f ′) = Spec(f, f ′) = 0 if (f, f ′) is a square root of (−1,−1),
compare (3.3).

The group Aut(A) is larger than Inn(A), because it contains the swap
automorphism (f, f ′) 7→ (f ′, f) which maps the central element ω to −ω,
and interchanges the two idempotents ε+ and ε−. The group Aut(A) has
eight connected components which permute the four connected components
of the submanifold of square roots of (−1,−1). The permutations induced
by Inn(A) are the permutations of the Klein group. For example for d = 1 of

by a continuous path to a diagonal matrix with entries 1 or −1. When an algebra A is

a direct product of two algebras B and C , then G(A) is the direct product of G(B) and
G(C), and the number of connected components of G(A) is the product of the numbers of

connected components of G(B) and G(C).
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(4.1) we get the following Inn(M(2, R2)) permutations

det(g) > 0, det(g′) > 0 : identity,

det(g) > 0, det(g′) < 0 : (c1, c2), (c3, c4),

det(g) < 0, det(g′) > 0 : (c1, c3), (c2, c4),

det(g) < 0, det(g′) < 0 : (c1, c4), (c2, c3). (4.3)

Beside the identity permutation, Inn(A) gives the three permutations that
permute two elements and also the other two ones.

The automorphisms outside Inn(A) are

(f, f ′) 7→ (gf ′g−1, g′fg′−1) for some (g, g′) ∈ G(A). (4.4)

If det(g) and det(g′) have opposite signs, it is easy to realize that this auto-
morphism induces a circular permutation on the four connected components
of square roots of (−1,−1): If det(g) and det(g′) have the same sign, this
automorphism leaves globally invariant two connected components, and per-
mutes the other two ones. For example, for d = 1 the automorphisms (4.4)
outside Inn(A) permute the components (4.1) of square roots of (−1,−1) in
M(2, R2) as follows

det(g) > 0, det(g′) > 0 : (c1), (c2, c3), (c4),

det(g) > 0, det(g′) < 0 : c1 → c2 → c4 → c3 → c1,

det(g) < 0, det(g′) > 0 : c1 → c3 → c4 → c2 → c1,

det(g) < 0, det(g′) < 0 : (c1, c4), (c2), (c3). (4.5)

Consequently, the quotient of the group Aut(A) by its neutral connected
component is isomorphic to the group of isometries of a square in a Euclidean
plane.

5. Square roots of −1 in M(d, H)

Let us first consider the easiest case d = 1, when A = H, e.g., of C`(0, 2). The
square roots of −1 in H are the quaternions ai+bj+cij with a2+b2+c2 = 1.
They constitute a compact and connected manifold of dimension 2. Every
square root f of −1 is conjugate with i, i.e., there exists v ∈ H : v−1fv =
i ⇔ fv = vi. If we set v = −fi + 1 = a + bij − cj + 1 we have

fv = −f2i + f = f + i = (f(−i) + 1)i = vi.

v is invertible, except when f = −i. But i is conjugate with −i because
ij = j(−i), hence, by transitivity f is also conjugate with −i.

Here A = M(d, H), whence dim(A) = 4d2. The ring H is the algebra
over R generated by two elements i and j such that i2 = j2 = −1 and
ji = −ij. We identify C with the subalgebra generated by15 i alone.

The group G(A) has only one connected component. We shall soon
prove that every square root of −1 in A is conjugate with i1. Therefore, the

15This choice is usual and convenient.
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submanifold of square roots of −1 is a conjugacy class, and it is connected.
The centralizer of i1 in A is the subalgebra of all matrices with entries in C.
The C-dimension of Cent(i1) is d2, its R-dimension is 2d2, and, consequently,
the dimension (2.1) of the submanifold of square roots of −1 is 4d2 − 2d2 =
2d2 = dim(A)/2.

Here V = H
d is treated as a (unitary) module over H on the right side:

The product of a line vector tv = (x1, x2, . . . , xd) ∈ V by y ∈ H is tv y =
(x1y, x2y, . . . , xdy). Thus, every f ∈ A determines an H-linear endomorphism
of V : The matrix f multiplies the column vector v = t(x1, x2, . . . , xd) on the
left side v 7→ fv. Since C is a subring of H, V is also a vector space of dimen-
sion 2d over C. The scalar i always operates on the right side (like every scalar
in H). If (e1, e2, . . . , ed) is an H-basis of V , then (e1, e1j, e2, e2j, . . . , ed, edj)
is a C-basis of V . Let f be a square root of −1, then the eigenvalues of f in
C are +i or −i. If we treat V as a 2d vector space over C, it is the direct
(C-linear) sum of the eigenspaces

V + = {v ∈ V | f(v) = vi} and V − = {v ∈ V | f(v) = −vi}, (5.1)

representing f as a 2d × 2d C-matrix w.r.t. the C-basis of V , with C-scalar
eigenvalues (multiplied from the right): λ± = ±i.

Since ij = −ji, the multiplication v 7→ vj permutes V + and V − , as
f(v) = ±vi is mapped to f(v)j = ±vij = ∓(vj)i. Therefore, if (e1, e2, . . . , er)
is a C-basis of V + , then (e1j, e2j, . . . , erj) is a C-basis of V −, consequently
(e1 , e1j, e2, e2j, . . . , er, erj) is a C-basis of V , and (e1, e2, . . . , er=d) is an H-
basis of V . Since f by f(ek) = eki for k = 1, 2, . . . , d operates on the H-basis
(e1 , e2, . . . , ed) in the same way as i1 on the natural H-basis of V , we conclude
that f and i1 are conjugate.

Besides, Scal(i1) = 0 because 2i1 = [j1, ij1] ∈ [A,A], thus i1 /∈ Z(A).
Whence,16

Scal(f) = 0 for every square root of − 1. (5.2)

These results are easily verified in the above example of d = 1 when
A = H.

6. Square roots of −1 in M(d, H2)

Here, A = M(d, H2) = M(d, H) × M(d, H), whence dim(A) = 8d2. The
group G(A) has only one connected component (see Footnote 14).

The square roots of (−1,−1) in A are pairs of two square roots of −1

in M(d, H). Consequently, they constitute a unique conjugacy class which is
connected and its dimension is 2 × 2d2 = 4d2 = dim(A)/2.

For every (f, f ′) ∈ A we can write Scal(f) + Scal(f ′) = 2 Scal(f, f ′)
and, similarly to (4.2),

Scal(f) − Scal(f ′) = 2 Spec(f, f ′) if ω = (1,−1); (6.1)

16Compare the definition of Scal(f) in Section 2, remembering that in the current section

the associated ring is H.
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whence Scal(f, f ′) = Spec(f, f ′) = 0 if (f, f ′) is a square root of (−1,−1),
compare with (5.2).

The group Aut(A) has two17 connected components; the neutral com-
ponent is Inn(A), and the other component contains the swap automorphism
(f, f ′) 7→ (f ′, f).

The simplest example is d = 1, A = H2 , where we have the identity
pair (1, 1) representing the scalar part, the idempotents (1, 0), (0, 1), and ω
as the pair (1,−1).

A = H2 is isomorphic to C`(0, 3). The pseudoscalar ω = e123 has the
square ω2 = +1. The center of the algebra is {1, ω}, and includes the idem-
potents ε± = 1

2 (1±ω), ε2± = ε±, ε+ε− = ε−ε+ = 0. The basis of the algebra
can thus be written as {ε+, e1ε+, e2ε+, e12ε+, ε−, e1ε−, e2ε−, e12ε−} where the
first (and the last) four elements form a basis of the subalgebra C`(0, 2) iso-
morphic to H.

7. Square roots of −1 in M(2d, C)

The lowest dimensional example for d = 1 is the Pauli matrix algebra A =
M(2, C) isomorphic to the geometric algebra C`(3, 0) of the 3D Euclidean
space and C`(1, 2). The C`(3, 0) vectors e1, e2, e3 correspond one-to-one to
the Pauli matrices

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

, (7.1)

with σ1σ2 = iσ3 =

(
i 0
0 −i

)

. The element ω = σ1σ2σ3 = i1 represents the

central pseudoscalar e123 of C`(3, 0) with square ω2 = −1. The Pauli algebra
has the following idempotents

ε1 = σ2
1 = 1, ε0 =

1

2
(1 + σ3), ε−1 = 0 . (7.2)

The idempotents correspond via

f = i(2ε − 1), (7.3)

to the square roots of −1:

f1 = i1 =

(
i 0
0 i

)

, f0 = iσ3 =

(
i 0
0 −i

)

, f−1 = −i1 =

(
−i 0
0 −i

)

, (7.4)

where by complex conjugation f−1 = f1 . Let the idempotent ε′0 = 1
2
(1− σ3)

correspond to the matrix f ′
0 = −iσ3. We observe that f0 is conjugate to

f ′
0 = σ−1

1 f0σ1 = σ1σ2 = f0 using σ−1
1 = σ1 but f1 is not conjugate to

f−1 . Therefore, only f1, f0, f−1 lead to three distinct conjugacy classes of
square roots of −1 in M(2, C). Compare Appendix B for the corresponding
computations with CLIFFORD for Maple.

17Compare Footnote 14.
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In general, if A = M(2d, C), then dim(A) = 8d2. The group G(A) has
one connected component. The square roots of −1 in A are in bijection with
the idempotents ε [2] according to (7.3). According18 to (7.3) and its inverse
ε = 1

2(1− if) the square root of −1 with Spec(f−) = k/d = −1, i.e. k = −d
(see below), always corresponds to the trival idempotent ε− = 0, and the
square root of −1 with Spec(f+) = k/d = +1, k = +d, corresponds to the
identity idempotent ε+ = 1.

If f is a square root of −1, then V = C2d is the direct sum of the
eigenspaces19 associated with the eigenvalues i and −i. There is an integer
k such that the dimensions of the eigenspaces are respectively d + k and
d − k. Moreover, −d ≤ k ≤ d. Two square roots of −1 are conjugate if and
only if they give the same integer k. Then, all elements of Cent(f) consist of
diagonal block matrices with 2 square blocks of (d + k) × (d + k) matrices
and (d − k) × (d − k) matrices. Therefore, the C-dimension of Cent(f) is
(d + k)2 + (d− k)2 . Hence the R-dimension (2.1) of the conjugacy class of f :

8d2 − 2(d + k)2 − 2(d − k)2 = 4(d2 − k2). (7.5)

Also, from the equality tr(f) = (d + k)i − (d − k)i = 2ki we deduce that
Scal(f) = 0 and that Spec(f) = (2ki)/(2di) = k/d if ω = i1 (whence
tr(ω) = 2di).

As announced on page 5, we consider that a square root of −1 is ordinary

if the associated integer k vanishes, and that it is exceptional if k 6= 0 . Thus
the following assertion is true in all cases: the ordinary square roots of −1 in
A constitute one conjugacy class of dimension dim(A)/2 which has as many
connected components as G(A), and the equality Spec(f) = 0 holds for every
ordinary square root of −1 when the linear form Spec exists. All conjugacy
classes of exceptional square roots of −1 have a dimension < dim(A)/2.

All square roots of −1 in M(2d, C) constitute (2d+1) conjugacy classes20

which are also the connected components of the submanifold of square roots
of −1 because of the equality Spec(f) = k/d, which is conjugacy class spe-
cific.

When A = M(2d, C), the group Aut(A) is larger than Inn(A) since
it contains the complex conjugation (that maps every entry of a matrix to
the conjugate complex number). It is clear that the class of ordinary square
roots of −1 is invariant by complex conjugation. But the class associated

18On the other hand it is clear that complex conjugation always leads to f− = f+ , where

the overbar means complex conjugation in M(2d,C) and Clifford conjugation in the iso-
morphic Clifford algebra C`(p, q). So either the trivial idempotent ε− = 0 is included in

the bijection (7.3) of idempotents and square roots of −1, or alternatively the square root

of −1 with Spec(f−) = −1 is obtained from f− = f+.
19The following theorem is sufficient for a matrix f in M(m,K), if K is a (commutative)
field. The matrix f is diagonalizable if and only if P (f) = 0 for some polynomial P that

has only simple roots, all of them in the field K. (This implies that P is a multiple of
the minimal polynomial, but we do not need to know whether P is or is not the minimal

polynomial).
20Two conjugate (similar) matrices have the same eigenvalues and the same trace. This

suffices to recognize that 2d + 1 conjugacy classes are obtained.
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with an integer k other than 0 is mapped by complex conjugation to the
class associated with −k. In particular the complex conjugation maps the
class {ω} (associated with k = d) to the class {−ω} associated with k = −d.

All these observations can easily verified for the above example of d = 1
of the Pauli matrix algebra A = M(2, C). For d = 2 we have the isomor-
phism of A = M(4, C) with C`(0, 5), C`(2, 3) and C`(4, 1). While C`(0, 5)
is important in Clifford analysis, C`(4, 1) is both the geometric algebra of
the Lorentz space R4,1 and the conformal geometric algebra of 3D Euclidean
geometry. Its set of square roots of −1 is therefore of particular practical
interest.

Example. Let C`(4, 1) ∼= A where A = M(4, C) for d = 2. The C`(4, 1)
1-vectors can be represented21 by the following matrices:

e1 =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







, e2 =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







, e3 =







0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0







,

e4 =







0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0







, e5 =







0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0







. (7.6)

We find five conjugacy classes of roots fk of −1 in C`(4, 1) for k ∈ {0,±1,±2}:
four exceptional and one ordinary. Since fk is a root of p(t) = t2 + 1 which
factors over C into (t − i)(t + i), the minimal polynomial mk(t) of fk is
one of the following: t − i, t + i, or (t − i)(t + i). Respectively, there are
three classes of characteristic polynomial ∆k(t) of the matrix Fk in M(4, C)
which corresponds to fk , namely, (t−i)4, (t+i)4, and (t−i)n1(t+i)n2 , where
n1 + n2 = 2d = 4 and n1 = d + k = 2 + k, n2 = d− k = 2 − k. As predicted
by the above discussion, the ordinary root corresponds to k = 0 whereas the
exceptional roots correspond to k 6= 0.

1. For k = 2, we have ∆2(t) = (t − i)4, m2(t) = t − i, and so F2 =
diag(i, i, i, i) which in the above representation (7.6) corresponds to the
non-trivial central element f2 = ω = e12345. Clearly, Spec(f2) = 1 = k

d ;
Scal(f2) = 0; the C-dimension of the centralizer Cent(f2) is 16; and the
R-dimension of the conjugacy class of f2 is zero as it contains only f2

since f2 ∈ Z(A). Thus, the R-dimension of the class is again zero in
agreement with (7.5).

2. For k = −2, we have ∆−2(t) = (t + i)4, m−2(t) = t + i, and F−2 =
diag(−i,−i,−i,−i) which corresponds to the central element f−2 =

21For the computations of this example in the Maple package CLIFFORD we have used the
identification i = e23. Yet the results obtained for the square roots of −1 are independent

of this setting (we can alternatively use, e.g., i = e12345 , or the imaginary unit i ∈ C), as
can easily be checked for f1 of (7.7), f0 of (7.8) and f−1 of (7.9) by only assuming the

standard Clifford product rules for e1 to e5.
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−ω = −e12345. Again, Spec(f−2) = −1 = k
d ; Scal(f−2) = 0; the C-

dimension of the centralizer Cent(f−2) is 16 and the conjugacy class of
f−2 contains only f−2 since f−2 ∈ Z(A). Thus, the R-dimension of the
class is again zero in agreement with (7.5).

3. For k 6= ±2, we consider three subcases when k = 1, k = 0, and k = −1.
When k = 1, then ∆1(t) = (t − i)3(t + i) and m1(t) = (t − i)(t + i).
Then the root F1 = diag(i, i, i,−i) corresponds to

f1 =
1

2
(e23 + e123 − e2345 + e12345). (7.7)

Note that Spec(f1) = 1
2

= k
d

so f1 is an exceptional root of −1.

When k = 0, then ∆0(t) = (t−i)2(t+i)2 and m0(t) = (t−i)(t+i). Thus
the root of −1 in this case is F0 = diag(i, i,−i,−i) which corresponds
to just

f0 = e123. (7.8)

Note that Spec(f0) = 0 thus f0 = e123 is an ordinary root of −1.
When k = −1, then ∆−1(t) = (t− i)(t+ i)3 and m−1(t) = (t− i)(t+ i).
Then, the root of −1 in this case is F−1 = diag(i,−i,−i,−i) which
corresponds to

f−1 =
1

2
(e23 + e123 + e2345 − e12345). (7.9)

Since Scal(f−1) = −1
2

= k
d
, we gather that f−1 is an exceptional root.

As expected, we can also see that the roots ω and −ω are re-
lated via the grade involution whereas f1 = −f̃−1 where ˜ denotes the
reversion in C`(4, 1).

Example. Let C`(0, 5) ∼= A where A = M(4, C) for d = 2. The C`(0, 5)
1-vectors can be represented22 by the following matrices:

e1 =







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







, e2 =







0 −i 0 0
−i 0 0 0
0 0 0 −i
0 0 −i 0







, e3 =







−i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i







,

e4 =







0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0







, e5 =







0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0







, (7.10)

Like for C`(4, 1), we have five conjugacy classes of the roots fk of −1 in
C`(0, 5) for k ∈ {0,±1,±2}: four exceptional and one ordinary. Using the

22For the computations of this example in the Maple package CLIFFORD we have used the
identification i = e3 . Yet the results obtained for the square roots of −1 are independent

of this setting (we can alternatively use, e.g., i = e12345 , or the imaginary unit i ∈ C), as
can easily be checked for f1 of (7.11), f0 of (7.12) and f−1 of (7.13) by only assuming the

standard Clifford product rules for e1 to e5.
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same notation as in Example 7, we find the following representatives of the
conjugacy classes.

1. For k = 2, we have ∆2(t) = (t−i)4, m2(t) = t−i, and F2 = diag(i, i, i, i)
which in the above representation (7.10) corresponds to the non-trivial
central element f2 = ω = e12345. Then, Spec(f2) = 1 = k

d ; Scal(f2) = 0;
the C-dimension of the centralizer Cent(f2) is 16; and the R-dimension
of the conjugacy class of f2 is zero as it contains only f2 since f2 ∈ Z(A).
Thus, the R-dimension of the class is again zero in agreement with (7.5).

2. For k = −2, we have ∆−2(t) = (t + i)4, m−2(t) = t + i, and F−2 =
diag(−i,−i,−i,−i) which corresponds to the central element f−2= −
ω = −e12345. Again, Spec(f−2) = −1 = k

d ; Scal(f−2) = 0; the C-
dimension of the centralizer Cent(f−2) is 16 and the conjugacy class of
f−2 contains only f−2 since f−2 ∈ Z(A). Thus, the R-dimension of the
class is again zero in agreement with (7.5).

3. For k 6= ±2, we consider three subcases when k = 1, k = 0, and k = −1.
When k = 1, then ∆1(t) = (t − i)3(t + i) and m1(t) = (t − i)(t + i).
Then the root F1 = diag(i, i, i,−i) corresponds to

f1 =
1

2
(e3 + e12 + e45 + e12345). (7.11)

Since Spec(f1) = 1
2 = k

d , f1 is an exceptional root of −1.

When k = 0, then ∆0(t) = (t−i)2(t+i)2 and m0(t) = (t−i)(t+i). Thus
the root of −1 is this case is F0 = diag(i, i,−i,−i) which corresponds
to just

f0 = e45. (7.12)

Note that Spec(f0) = 0 thus f0 = e45 is an ordinary root of −1.
When k = −1, then ∆−1(t) = (t− i)(t+ i)3 and m−1(t) = (t− i)(t+ i).
Then, the root of −1 in this case is F−1 = diag(i,−i,−i,−i) which
corresponds to

f−1 =
1

2
(−e3 + e12 + e45 − e12345). (7.13)

Since Scal(f−1) = −1
2 = k

d , we gather that f−1 is an exceptional root.
Again we can see that the roots f2 and f−2 are related via the

grade involution whereas f1 = −f̃−1 where ˜ denotes the reversion in
C`(0, 5).

Example. Let C`(7, 0) ∼= A where A = M(8, C) for d = 4. We have nine
conjugacy classes of roots fk of −1 for k ∈ {0,±1,±2 ± 3 ± 4}. Since fk is
a root of a polynomial p(t) = t2 + 1 which factors over C into (t − i)(t + i),
its minimal polynomial m(t) will be one of the following: t − i, t + i, or
(t − i)(t + i) = t2 + 1.

Respectively, each conjugacy class is characterized by a characteristic
polynomial ∆k(t) of the matrix Mk ∈ M(8, C) which represents fk . Namely,
we have

∆k(t) = (t − i)n1(t + i)n2 ,
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where n1 + n2 = 2d = 8 and n1 = d + k = 4 + k and n2 = d − k = 4 − k.
The ordinary root of −1 corresponds to k = 0 whereas the exceptional roots
correspond to k 6= 0.

1. When k = 4, we have ∆4(t) = (t − i)8, m4(t) = t − i, and F4 =

diag(

8
︷ ︸︸ ︷

i, . . . , i) which in the representation used by CLIFFORD [3] cor-
responds to the non-trivial central element f4 = ω = e1234567. Clearly,
Spec(f4) = 1 = k

d ; Scal(f4) = 0; the C-dimension of the centralizer
Cent(f4) is 64; and the R-dimension of the conjugacy class of f4 is zero
since f4 ∈ Z(A). Thus, the R-dimension of the class is again zero in
agreement with (7.5).

2. When k = −4, we have ∆−4(t) = (t + i)8, m−4(t) = t + i, and

F−4 = diag(

8
︷ ︸︸ ︷

−i, . . . ,−i) which corresponds to f−4 = −ω = −e1234567.
Again, Spec(f−4) = −1 = k

d ; Scal(f−4) = 0; the C-dimension of the
centralizer Cent(f) is 64 and the conjugacy class of f−4 contains only
f−4 since f−4 ∈ Z(A). Thus, the R-dimension of the class is again zero
in agreement with (7.5).

3. When k 6= ±4, we consider seven subcases when k = ±3, k = ±2,
k = ±1, and k = 0.
When k = 3, then ∆3(t) = (t − i)7(t + i) and m3(t) = (t − i)(t + i).

Then the root F3 = diag(

7
︷ ︸︸ ︷

i, . . . , i,−i) corresponds to

f3 =
1

4
(e23 − e45 + e67 − e123 + e145 − e167 + e234567 + 3e1234567). (7.14)

Since Spec(f3) = 3
4 = k

d , f3 is an exceptional root of −1.

When k = 2, then ∆2(t) = (t − i)6(t + i)2 and m2(t) = (t − i)(t + i).

Then the root F2 = diag(

6
︷ ︸︸ ︷

i, . . . , i,−i,−i) corresponds to

f2 =
1

2
(e67 − e45 − e123 + e1234567). (7.15)

Since Spec(f2) = 1
2 = k

d , f2 is also an exceptional root.

When k = 1, then ∆1(t) = (t − i)5(t + i)3 and m1(t) = (t − i)(t + i).

Then the root F1 = diag(

5
︷ ︸︸ ︷

i, . . . , i,−i,−i,−i) corresponds to

f1 =
1

4
(e23 − e45 + 3e67 − e123 + e145 + e167 − e234567 + e1234567). (7.16)

Since Spec(f1) = 1
4

= k
d
, f1 is another exceptional root.

When k = 0, then ∆0(t) = (t − i)4(t + i)4 and m0(t) = (t − i)(t + i).
Then the root F0 = diag(i, i, i, i,−i,−i,−i,−i) corresponds to

f0 =
1

2
(e23 − e45 + e67 − e234567). (7.17)

Since Spec(f0) = 0 = k
d , we see that f0 is an ordinary root of −1.
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When k = −1, then ∆−1(t) = (t− i)3(t+ i)5 and m−1(t) = (t− i)(t+ i).

Then the root F−1 = diag(i, i, i,

5
︷ ︸︸ ︷

−i, . . . ,−i) corresponds to

f−1 =
1

4
(e23 − e45 + 3e67 + e123 − e145 − e167 − e234567 − e1234567). (7.18)

Thus, Spec(f−1) = −1
4 = k

d and so f−1 is another exceptional root.

When k = −2, then ∆−2(t) = (t− i)2(t+ i)6 and m−2(t) = (t− i)(t+ i).

Then the root F−2 = diag(i, i,

6
︷ ︸︸ ︷

−i, . . . ,−i) corresponds to

f−2 =
1

2
(e67 − e45 + e123 − e1234567). (7.19)

Since Spec(f−2) = −1
2 = k

d , we see that f−2 is also an exceptional root.

When k = −3, then ∆−3(t) = (t− i)(t+ i)7 and m−3(t) = (t− i)(t+ i).

Then the root F−3 = diag(i,

7
︷ ︸︸ ︷

−i, . . . ,−i) corresponds to

f−3 =
1

4
(e23 − e45 + e67 + e123 − e145 + e167 + e234567 − 3e1234567). (7.20)

Again, Spec(f−3) = −3
4 = k

d and so f−3 is another exceptional root
of −1.

As expected, we can also see that the roots ω and −ω are related
via the reversion whereas f3 = −f̄−3 , f2 = −f̄−2 , f1 = −f̄−1 where ¯
denotes the conjugation in C`(7, 0).

8. Conclusions

We proved that in all cases Scal(f) = 0 for every square root of −1 in A
isomorphic to C`(p, q). We distinguished ordinary square roots of −1, and
exceptional ones.

In all cases the ordinary square roots f of −1 constitute a unique con-
jugacy class of dimension dim(A)/2 which has as many connected compo-
nents as the group G(A) of invertible elements in A. Furthermore, we have
Spec(f) = 0 (zero pseudoscalar part) if the associated ring is R2, H2 , or C.
The exceptional square roots of −1 only exist if A ∼= M(2d, C) (see Sec-
tion 7).

For A = M(2d, R) of Section 3, the centralizer and the conjugacy class
of a square root f of −1 both have R-dimension 2d2 with two connected
components, pictured in Fig. 2 for d = 1.

For A = M(2d, R2) = M(2d, R) × M(2d, R) of Section 4, the square
roots of (−1,−1) are pairs of two square roots of −1 in M(2d, R). They
constitute a unique conjugacy class with four connected components, each of
dimension 4d2. Regarding the four connected components, the group Inn(A)
induces the permutations of the Klein group whereas the quotient group
Aut(A)/Inn(A) is isomorphic to the group of isometries of a Euclidean square
in 2D.
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For A = M(d, H) of Section 5, the submanifold of the square roots f
of −1 is a single connected conjugacy class of R-dimension 2d2 equal to the
R-dimension of the centralizer of every f . The easiest example is H itself for
d = 1.

For A = M(d, H2) = M(2d, H) × M(2d, H) of Section 6, the square
roots of (−1,−1) are pairs of two square roots (f, f ′) of −1 in M(2d, H)
and constitute a unique connected conjugacy class of R-dimension 4d2. The
group Aut(A) has two connected components: the neutral component Inn(A)
connected to the identity and the second component containing the swap
automorphism (f, f ′) 7→ (f ′, f). The simplest case for d = 1 is H2 isomorphic
to C`(0, 3).

For A = M(2d, C) of Section 7, the square roots of −1 are in bijection
to the idempotents. First, the ordinary square roots of −1 (with k = 0) con-
stitute a conjugacy class of R-dimension 4d2 of a single connected component
which is invariant under Aut(A). Second, there are 2d conjugacy classes of
exceptional square roots of −1, each composed of a single connected compo-
nent, characterized by equality Spec(f) = k/d (the pseudoscalar coefficient)
with ±k ∈ {1, 2, . . . , d}, and their R-dimensions are 4(d2 − k2). The group
Aut(A) includes conjugation of the pseudoscalar ω 7→ −ω which maps the
conjugacy class associated with k to the class associated with −k. The sim-
plest case for d = 1 is the Pauli matrix algebra isomorphic to the geometric
algebra C`(3, 0) of 3D Euclidean space R3 , and to complex biquaternions
[32].

Section 7 includes explicit examples for d = 2: C`(4, 1) and C`(0, 5),
and for d = 4: C`(7, 0). Appendix A summarizes the square roots of −1

in all C`(p, q) ∼= M(2d, C) for d = 1, 2, 4. Appendix B contains details on
how square roots of −1 can be computed using the package CLIFFORD for
Maple.

Among the many possible applications of this research, the possibility
of new integral transformations in Clifford analysis is very promising. This
field thus obtains essential algebraic information, which can e.g., be used to
create steerable transformations, which may be steerable within a connected
component of a submanifold of square roots of −1.

Appendix A. Summary of roots of −1 in C`(p, q) ∼= M(2d, C)
for d = 1, 2, 4

In this appendix we summarize roots of −1 for Clifford algebras C`(p, q) ∼=
M(2d, C) for d = 1, 2, 4. These roots have been computed with CLIFFORD [3].
Maple [30] worksheets written to derive these roots are posted at [18].
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k fk ∆k(t)

1 ω = e123 (t − i)2

0 e23 (t − i)(t + i)

−1 −ω = −e123 (t + i)2

Table 1. Square roots of −1 in C`(3, 0) ∼= M(2, C), d = 1

k fk ∆k(t)

2 ω = e12345 (t − i)4

1 1
2
(e23 + e123 − e2345 + e12345) (t − i)3(t + i)

0 e123 (t − i)2(t + i)2

−1 1
2
(e23 + e123 + e2345 − e12345) (t − i)(t + i)3

−2 −ω = −e12345 (t + i)4

Table 2. Square roots of −1 in C`(4, 1) ∼= M(4, C), d = 2

k fk ∆k(t)

2 ω = e12345 (t − i)4

1 1
2(e3 + e12 + e45 + e12345) (t − i)3(t + i)

0 e45 (t − i)2(t + i)2

−1 1
2(−e3 + e12 + e45 − e12345) (t − i)(t + i)3

−2 −ω = −e12345 (t + i)4

Table 3. Square roots of −1 in C`(0, 5) ∼= M(4, C), d = 2

k fk ∆k(t)

2 ω = e12345 (t − i)4

1 1
2(e3 + e134 + e235 + ω) (t − i)3(t + i)

0 e134 (t − i)2(t + i)2

−1 1
2(−e3 + e134 + e235 − ω) (t − i)(t + i)3

−2 −ω = −e12345 (t + i)4

Table 4. Square roots of −1 in C`(2, 3) ∼= M(4, C), d = 2

Appendix B. A sample Maple worksheet

In this appendix we show a computation of roots of −1 in C`(3, 0) in CLIF-
FORD. Although these computations certainly can be performed by hand,
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k fk ∆k(t)

4 ω = e1234567 (t − i)8

3 1
4(e23 − e45 + e67 − e123 + e145

− e167 + e234567 + 3ω)
(t − i)7(t + i)

2 1
2(e67 − e45 − e123 + ω) (t − i)6(t + i)2

1 1
4
(e23 − e45 + 3e67 − e123 + e145

+ e167 − e234567 + ω)
(t − i)5(t + i)3

0 1
2
(e23 − e45 + e67 − e234567) (t − i)4(t + i)4

−1 1
4(e23 − e45 + 3e67 + e123 − e145

− e167 − e234567 − ω)
(t − i)3(t + i)5

−2 1
2(e67 − e45 + e123 − ω) (t − i)2(t + i)6

−3 1
4(e23 − e45 + e67 + e123 − e145

+ e167 + e234567− 3ω)
(t − i)(t + i)7

−4 −ω = −e1234567 (t + i)8

Table 5. Square roots of −1 in C`(7, 0) ∼= M(8, C), d = 4

k fk ∆k(t)

4 ω = e1234567 (t − i)8

3 1
4
(e4 − e23 − e56 + e1237 + e147

+ e1567− e23456 + 3ω)
(t − i)7(t + i)

2 1
2
(−e23 − e56 + e147 + ω) (t − i)6(t + i)2

1 1
4(−e4 − e23 − 3e56 − e1237 + e147

+ e1567 − e23456 + ω)
(t − i)5(t + i)3

0 1
2(e4 + e23 + e56 + e23456) (t − i)4(t + i)4

−1 1
4(−e4 − e23 − 3e56 + e1237 − e147

− e1567 − e23456 − ω)
(t − i)3(t + i)5

−2 1
2(−e23 − e56 − e147 − ω) (t − i)2(t + i)6

−3 1
4(e4 − e23 − e56 − e1237 − e147

− e1567− e23456− 3ω)
(t − i)(t + i)7

−4 −ω = −e1234567 (t + i)8

Table 6. Square roots of −1 in C`(1, 6) ∼= M(8, C), d = 4

as shown in Section 7, they illustrate how CLIFFORD can be used instead
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k fk ∆k(t)

4 ω = e1234567 (t − i)8

3 1
4(e4 + e145 + e246 + e347 − e12456

−e13457−e23467+3ω)
(t − i)7(t + i)

2 1
2(e145 − e12456 − e13457 + ω) (t − i)6(t + i)2

1 1
4
(−e4 + e145 + e246 − e347 − 3e12456

− e13457 − e23467 + ω)
(t − i)5(t + i)3

0 1
2
(e4 + e12456 + e13457 + e23467) (t − i)4(t + i)4

−1 1
4(−e4 − e145 − e246 + e347 − 3e12456

− e13457 − e23467 −ω)
(t − i)3(t + i)5

−2 1
2(−e145 − e12456 − e13457 − ω) (t − i)2(t + i)6

−3 1
4(e4 − e145 − e246 − e347 − e12456

−e13457−e23467−3ω)
(t − i)(t + i)7

−4 −ω = −e1234567 (t + i)8

Table 7. Square roots of −1 in C`(3, 4) ∼= M(8, C), d = 4

k fk ∆k(t)

4 ω = e1234567 (t − i)8

3 1

4
(−e23 + e123 + e2346 + e2357 − e12346

− e12357 + e234567 + 3ω)
(t − i)7(t + i)

2 1

2
(e123 − e12346 − e12357 + ω) (t − i)6(t + i)2

1 1

4
(−e23 + e123 − e2346 + e2357 − 3e12346

− e12357 − e234567 + ω)
(t − i)5(t + i)3

0 1

2
(e23 + e12346 + e12357 + e234567) (t − i)4(t + i)4

−1 1

4
(−e23 − e123 + e2346 − e2357 − 3e12346

− e12357 − e234567 − ω)
(t − i)3(t + i)5

−2 1

2
(−e123 − e12346 − e12357 − ω) (t − i)2(t + i)6

−3 1

4
(−e23 − e123 − e2346 − e2357 − e12346

− e12357 + e234567 − 3ω)
(t − i)(t + i)7

−4 −ω = −e1234567 (t + i)8

Table 8. Square roots of −1 in C`(5, 2) ∼= M(8, C), d = 4

especially when extending these computations to higher dimensions.23 To see

23In showing Maple display we have edited Maple output to save space. Package asvd is
a supplementary package written by the third author and built into CLIFFORD. The pri-

mary purpose of asvd is to compute Singular Value Decomposition in Clifford algebras [1].
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the actual Maple worksheets where these computations have been performed,
see [18].
> restart:with(Clifford):with(linalg):with(asvd):
> p,q:=3,0; ##<<-- selecting signature
> B:=diag(1$p,-1$q): ##<<-- defining diagonal bilinear form
> eval(makealiases(p+q)): ##<<-- defining aliases
> clibas:=cbasis(p+q); ##assigning basis for Cl(3,0)

p, q := 3, 0

clibas := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

> data:=clidata(); ##<<-- displaying information about Cl(3,0)

data := [complex, 2, simple,
Id

2
+

e1

2
, [Id , e2 , e3 , e23 ], [Id , e23 ], [Id, e2 ]]

> MM:=matKrepr(); ##<<-- displaying default matrices to generators

Cliplus has been loaded. Definitions for type/climon and
type/clipolynom now include &C and &C[K]. Type ?cliprod for help.

MM := [e1 =

2

4

1 0

0 −1

3

5 , e2 =

2

4

0 1

1 0

3

5 , e3 =

2

4

0 −e23

e23 0

3

5]

Pauli algebra representation displayed in (7.1):
> sigma[1]:=evalm(rhs(MM[1]));
> sigma[2]:=evalm(rhs(MM[2]));
> sigma[3]:=evalm(rhs(MM[3]));

σ1, σ2, σ3 :=

2

4

0 1

1 0

3

5 ,

2

4

0 −e23

e23 0

3

5 ,

2

4

1 0

0 −1

3

5

We show how we represent the imaginary unit i in the field C and the diagonal
matrix diag(i, i) :
> ii:=e23; ##<<-- complex imaginary unit
> II:=diag(ii,ii); ##<<-- diagonal matrix diag(i,i)

ii := e23

II :=

2

4

e23 0

0 e23

3

5

We compute matrices m1 , m2, . . . , m8 representing each basis element in
C`(3, 0) isomorphic with C(2). Note that in our representation element e23

in C`(3, 0) is used to represent the imaginary unit i.
> for i from 1 to nops(clibas) do

lprint(‘The basis element‘,clibas[i],‘is represented by the following
matrix:‘);
M[i]:=subs(Id=1,matKrepr(clibas[i])) od;

‘The basis element‘, Id, ‘is represented by the following matrix:‘
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M1 :=

2

4

1 0

0 1

3

5

‘The basis element‘, e1, ‘is represented by the following matrix:‘

M2 :=

2

4

1 0

0 −1

3

5

‘The basis element‘, e2, ‘is represented by the following matrix:‘

M3 :=

2

4

0 1

1 0

3

5

‘The basis element‘, e3, ‘is represented by the following matrix:‘

M4 :=

2

4

0 −e23

e23 0

3

5

‘The basis element‘, e12, ‘is represented by the following matrix:‘

M5 :=

2

4

0 1

−1 0

3

5

‘The basis element‘, e13, ‘is represented by the following matrix:‘

M6 :=

2

4

0 −e23

−e23 0

3

5

‘The basis element‘, e23, ‘is represented by the following matrix:‘

M7 :=

2

4

e23 0

0 −e23

3

5

‘The basis element‘, e123, ‘is represented by the following matrix:‘

M8 :=

2

4

e23 0

0 e23

3

5
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We will use the procedure phi from the asvd package which gives an
isomorphism from C(2) to C`(3, 0). This way we can find the image in C`(3, 0)
of any complex 2 × 2 complex matrix A. Knowing the image of each matrix
m1, m2, . . . , m8 in terms of the Clifford polynomials in C`(3, 0), we can easily
find the image of A in our default spinor representation of C`(3, 0) which is
built into CLIFFORD.

Procedure Centralizer computes a centralizer of f with respect to the
Clifford basis L:

> Centralizer:=proc(f,L) local c,LL,m,vars,i,eq,sol;
m:=add(c[i]*L[i],i=1..nops(L));
vars:=[seq(c[i],i=1..nops(L))];
eq:=clicollect(cmul(f,m)-cmul(m,f));
if eq=0 then return L end if:
sol:=op(clisolve(eq,vars));
m:=subs(sol,m);
m:=collect(m,vars);
return sort([coeffs(m,vars)],bygrade);
end proc:

Procedures Scal and Spec compute the scalar and the pseudoscalar
parts of f .

> Scal:=proc(f) local p: return scalarpart(f); end proc:
> Spec:=proc(f) local N; global p,q;

N:=p+q:
return coeff(vectorpart(f,N),op(cbasis(N,N)));
end proc:

The matrix idempotents in C(2) displayed in (7.2) are as follows:

> d:=1:Eps[1]:=sigma[1] &cm sigma[1];
> Eps[0]:=evalm(1/2*(1+sigma[3]));
> Eps[-1]:=diag(0,0);

Eps1, Eps0, Eps
−1 :=

2

4

1 0

0 1

3

5 ,

2

4

1 0

0 0

3

5 ,

2

4

0 0

0 0

3

5

This function ff computes matrix square root of −1 corresponding to the
matrix idempotent eps:

> ff:=eps->evalm(II &cm (2*eps-1));

ff := eps → evalm(II &cm (2 eps − 1))

We compute matrix square roots of −1 which correspond to the idempotents
Eps1, Eps0, Eps−1, and their characteristic and minimal polynomials. Note
that in Maple the default imaginary unit is denoted by I .

> F[1]:=ff(Eps[1]); ##<<--this square root of -1 corresponds to Eps[1]
Delta[1]:=charpoly(subs(e23=I,evalm(F[1])),t);
Mu[1]:=minpoly(subs(e23=I,evalm(F[1])),t);

F1 :=

2

4

e23 0

0 e23

3

5 , ∆1 := (t − I)2, M1 := t − I
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> F[0]:=ff(Eps[0]); ##<<--this square root of -1 corresponds to Eps[0]
Delta[0]:=charpoly(subs(e23=I,evalm(F[0])),t);
Mu[0]:=minpoly(subs(e23=I,evalm(F[0])),t);

F0 :=

2

4

e23 0

0 −e23

3

5 , ∆0 := (t − I) (t + I), M0 := 1 + t
2

> F[-1]:=ff(Eps[-1]); ##<<--this square root of -1 corresponds to Eps[-1]
Delta[-1]:=charpoly(subs(e23=I,evalm(F[-1])),t);
Mu[-1]:=minpoly(subs(e23=I,evalm(F[-1])),t);

F−1 :=

2

4

−e23 0

0 −e23

3

5 , ∆−1 := (t + I)2, M−1 := t + I

Now, we can find square roots of −1 in C`(3, 0) which correspond to the
matrix square roots F−1, F0, F1 via the isomorphism φ : C`(3, 0) → C(2)
realized with the procedure phi.

First, we let reprI denote element in C`(3, 0) which represents the
diagonal (2d)× (2d) with I = i on the diagonal where i2 = −1. This element
will replace the imaginary unit I in the minimal polynomials.
> reprI:=phi(diag(I$(2*d)),M);

reprI := e123

Now, we compute the corresponding square roots f1, f0, f−1 in C`(3, 0).
> f[1]:=phi(F[1],M); ##<<--element in Cl(3,0) corresponding to F[1]

cmul(f[1],f[1]); ##<<--checking that this element is a root of -1
Mu[1]; ##<<--recalling minpoly of matrix F[1]
subs(e23=I,evalm(subs(t=evalm(F[1]),Mu[1]))); ##<<--F[1] in Mu[1]
mu[1]:=subs(I=reprI,Mu[1]); ##<<--defining minpoly of f[1]
cmul(f[1]-reprI,Id); ##<<-- verifying that f[1] satisfies mu[1]

f1 := e123

−Id , t − I,

2

4

0 0

0 0

3

5

µ1 := t − e123 , 0

> f[0]:=phi(F[0],M); ##<<--element in Cl(3,0) corresponding to F[0]
cmul(f[0],f[0]); ##<<-- checking that this element is a root of -1
Mu[0]; ##<<--recalling minpoly of matrix F[0]
subs(e23=I,evalm(subs(t=evalm(F[0]),Mu[0]))); ##<<--F[0] in Mu[0]
mu[0]:=subs(I=reprI,Mu[0]); ##<<--defining minpoly of f[0]
cmul(f[0]-reprI,f[0]+reprI); ##<<--f[0] satisfies mu[0]

f0 := e23

−Id , 1 + t
2
,

2

4

0 0

0 0

3

5

µ0 := 1 + t
2
, 0
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> f[-1]:=phi(F[-1],M); ##<<--element in Cl(3,0) corresponding to F[-1]
cmul(f[-1],f[-1]); ##<<--checking that this element is a root of -1
Mu[-1]; ##<<--recalling minpoly of matrix F[-1]
subs(e23=I,evalm(subs(t=evalm(F[-1]),Mu[-1]))); ##<<--F[-1] in Mu[-1]
mu[-1]:=subs(I=reprI,Mu[-1]); ##<<--defining minpoly of f[-1]
cmul(f[-1]+reprI,Id); ##<<--f[-1] satisfies mu[-1]

f−1 := −e123

−Id , t + I,

2

4

0 0

0 0

3

5

µ
−1 := t + e123 , 0

Functions RdimCentralizer and RdimConjugClass of d and k compute
the real dimension of the centralizer Cent(f) and the conjugacy class of f
(see (7.4)).
> RdimCentralizer:=(d,k)->2*((d+k)^2+(d-k)^2); ##<<--from the theory
> RdimConjugClass:=(d,k)->4*(d^2-k^2); ##<<--from the theory

RdimCentralizer := (d, k) → 2 (d + k)2 + 2 (d − k)2

RdimConjugClass := (d, k) → 4 d
2
− 4 k

2

Now, we compute the centralizers of the roots and use notation d, k, n1, n2

displayed in Examples.
Case k = 1 :
> d:=1:k:=1:n1:=d+k;n2:=d-k;

A1:=diag(I$n1,-I$n2); ##<<-- this is the first matrix root of -1

n1 := 2, n2 := 0, A1 :=

2

4

I 0

0 I

3

5

> f[1]:=phi(A1,M); cmul(f[1],f[1]); Scal(f[1]), Spec(f[1]);

f1 := e123 , −Id , 0, 1

> LL1:=Centralizer(f[1],clibas); ##<<--centralizer of f[1]
dimCentralizer:=nops(LL1); ##<<--real dimension of centralizer of f[1]
RdimCentralizer(d,k); ##<<--dimension of centralizer of f[1] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<--checking equality

LL1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

dimCentralizer := 8, 8, true

Case k = 0 :
> d:=1:k:=0:n1:=d+k;n2:=d-k;

A0:=diag(I$n1,-I$n2); ##<<-- this is the second matrix root of -1

n1 := 1, n2 := 1, A0 :=

2

4

I 0

0 −I

3

5
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> f[0]:=phi(A0,M); cmul(f[0],f[0]); Scal(f[0]), Spec(f[0]);

f0 := e23 , −Id , 0, 0

> LL0:=Centralizer(f[0],clibas); ##<<--centralizer of f[0]
dimCentralizer:=nops(LL0); ##<<--real dimension of centralizer of f[0]
RdimCentralizer(d,k); ##<<--dimension of centralizer of f[0] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<--checking equality

LL0 := [Id , e1 , e23 , e123 ]

dimCentralizer := 4, 4, true

Case k = −1 :
> d:=1:k:=-1:n1:=d+k;n2:=d-k;

Am1:=diag(I$n1,-I$n2); ##<<-- this is the third matrix root of -1

n1 := 0, n2 := 2, Am1 :=

2

4

−I 0

0 −I

3

5

> f[-1]:=phi(Am1,M); cmul(f[-1],f[-1]); Scal(f[-1]), Spec(f[-1]);

f−1 := −e123 , −Id , 0, −1

> LLm1:=Centralizer(f[-1],clibas); ##<<--centralizer of f[-1]
dimCentralizer:=nops(LLm1); ##<<--real dimension of centralizer of f[-1]
RdimCentralizer(d,k); ##<<--dimension of centralizer of f[-1] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<--checking equality

LLm1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

dimCentralizer := 8, 8, true

We summarize roots of −1 in C`(3, 0):
> ’F[1]’=evalm(F[1]); ##<<--square root of -1 in C(2)

Mu[1]; ##<<--minpoly of matrix F[1]
’f[1]’=f[1]; ##<<--square root of -1 in Cl(3,0)
mu[1]; ##<<--minpoly of element f[1]

F1 =

2

4

e23 0

0 e23

3

5 , t − I

f1 = e123 , t − e123

> ’F[0]’=evalm(F[0]); ##<<-- square root of -1 in C(2)
Mu[0]; ##<<--minpoly of matrix F[0]
’f[0]’=f[0]; ##<<--square root of -1 in Cl(3,0)
mu[0]; ##<<--minpoly of element f[0]

F0 =

2

4

e23 0

0 −e23

3

5 , 1 + t
2

f0 = e23 , 1 + t
2
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> ’F[-1]’=evalm(F[-1]); ##<<--square root of -1 in C(2)
Mu[-1]; ##<<--minpoly of matrix F[-1]
’f[-1]’=f[-1]; ##<<--square root of -1 in Cl(3,0)
mu[-1]; ##<<--minpoly of element f[-1]

F−1 =

2

4

−e23 0

0 −e23

3

5 , t + I

f−1 = −e123 , t + e123

Finaly, we verify that roots f1 and f−1 are related via the reversion:
> reversion(f[1])=f[-1]; evalb(%);

−e123 = −e123 , true
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