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Abstract. In this letter, the Lounesto spinor field classification is extended to the

spacetime quantum Clifford algebra and the associated quantum algebraic spinor

fields are constructed. In order to accomplish this extension, the spin-Clifford bundle

formalism is employed, where the algebraic and geometric objects of interest may

be considered. In particular, we describe the bilinear covariant fields in the context

of algebraic spinor fields. By endowing the underlying spacetime structure with a

bilinear form that contains an antisymmetric part, which extends the spacetime metric,

the quantum algebraic spinor fields are exhibited and compared to the standard case,

together with the bilinear covariants that they induce. Quantum spinor field classes

are hence introduced and a correspondence between them and the Lounesto spinor field

classification is provided. A physical interpretation regarding the deformed parts and

the underlying Zn-grading is also given. The existence of an arbitrary bilinear form

endowing the spacetime, already explored in the literature in the context of quantum

gravity [1], plays a prominent role in the structure of the Dirac, Weyl, and Majorana

spinor fields, besides the most general flagpoles and flag-dipoles, which are shown to

be capable to probe interesting features associated to the spacetime.
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1. Introduction

The formalism of Clifford algebras allows wide applications, in particular, the prominent

construction of spinors and Dirac operators, and index theorems. Usually such algebras

are essentially associated to an underlying quadratic vector space. Notwithstanding,

there is nothing that complies to a symmetric bilinear form endowing the vector space [2].

For instance, symplectic Clifford algebras are objects of huge interest. More generally,

when one endows the underlying vector space with an arbitrary bilinear form, it evinces

prominent features, especially regarding their representation theory. The most drastic

character distinguishing the so called quantum and the orthogonal Clifford algebras

ones is that a different Zn-grading arises, despite of the Z2-grading being the same,

since they are functorial. The most general Clifford algebras of multi-vectors [3] are

further named quantum Clifford algebras. The arbitrary bilinear form that defines the

quantum Clifford algebra defines a Zn-grading, which are not solely suitable, instead

hugely necessary. For instance, it is employed in every quantum mechanical setup. In

fact, when one analyzes functional hierarchy equations of quantum field theory, one

is able to use Clifford algebras to emulate the description of these functionals. At

least the time-ordering and normal-ordering are needed in quantum field theory [4],

and singularities due to the reordering procedures such as the normal-ordering, are no

longer present [5]. Quantum Clifford algebras can be led to Hecke algebras in a very

particular case [6] and this structure should play a major role in the discussion of the

Yang-Baxter equation, the knot theory, the link invariants and in other related fields

which are crucial for the physics of integrable systems in statistical physics. Moreover,

the coalgebraic and the Hopf algebraic structure associated to those algebras can be

completely defined [7, 8].

From the physical point of view, there can be found a list of references containing a

non symmetric gravity theory, and some applications. For instance, the rotation curves

of galaxies and cosmology, without adducing dominant dark matter and identifying dark

energy with the cosmological constant, can be obtained [9, 10], by just considering the

spacetime metric to have symmetric and antisymmetric parts. Besides, a gravitational

theory based on general relativity was formulated and discussed in [9, 10], concerning

non symmetric tensors playing the role of the spacetime metric.

This paper aims to provide a complete classification of algebraic spinor fields in

quantum Clifford algebras, also in the context of their representations. It is organized

as follows: in Section 2, the Clifford and spinor bundles are revisited; in Section 3,

the bilinear covariants and the associated spinor field classification are recalled; and

in Section 4, the correspondence between the classical and the algebraic spinor fields

is obtained. In Section 5, the quantum algebraic spinor fields and some important

properties are introduced and investigated. In Section 6, the spinor field classification,

according to their bilinear covariants, is accomplished in the quantum Clifford algebraic

formalism. The spinor field disjoint classes that encompass the Dirac, Weyl, Majorana

– the flagpoles – and the flag-dipoles are shown to reveal a dramatic alterations with
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potentially prominent physical applications. In Appendix A we show explicitly a

complete set of primitive and orthogonal idempotents in C ⊗ C`B1,3 and a spinor basis

in a minimal ideal SB = (C ⊗C`B1,3)fB while in Appendix B we calculate each part of a

B-spinor (ψB)
B
(fB) ∈ SB.

2. Preliminaries

Let V be a finite n-dimensional real vector space and V ∗ denotes its dual. The exterior

algebra
∧

V = ⊕n
k=0

∧k V is the space of the antisymmetric k-tensors. Given ψ ∈
∧

V ,

the reversion is given by ψ̃ = (−1)[k/2]ψ, where [k] corresponds to the integer part of k.

If V is endowed with a non-degenerate, symmetric, bilinear map g : V × V → R, it is

possible to extend g to
∧

V . Given ψ = a1∧· · ·∧ak and φ = b1∧· · ·∧bl, for ai,bj ∈ V ,

g(ψ, φ) = det(g(ai,bj)) if k = l and g(ψ, φ) = 0 if k 6= l. Given ψ, φ, ξ ∈
∧

V , the left

contraction is defined implicitly by g(ψ yφ, ξ) = g(φ, ψ̃ ∧ ξ). The right contraction is

analogously defined by g(ψ xφ, ξ) = g(φ, ψ ∧ ξ̃). The Clifford product between w ∈ V

and ψ ∈
∧

V is given by wψ = w∧ψ+w xψ. The Grassmann algebra (
∧

V, g) endowed

with the Clifford product is denoted by C`(V, g) or C`p,q, the Clifford algebra associated

with V ' Rp,q, p + q = n.

By restricting to the case where p = 1 and q = 3, the Clifford and spin-

Clifford bundles are briefly revisited [11, 12]. Denote by (M, g,∇, τg, ↑) the spacetime

structure: M is a 4-dimensional manifold, g ∈ secT 0
2M is the metric of the cotangent

bundle (in an arbitrary basis g = gαβdx
α ⊗ dxβ), ∇ is the Levi-Civita connection of

g, τg ∈ sec
∧4 TM defines a spacetime orientation and ↑ is an equivalence class of

timelike 1-form fields defining a time orientation. F (M) denotes the principal bundle

of frames, PSOe
1,3

(M) is the orthonormal frame bundle, and PSOe
1,3

(M) the orthonormal

coframe bundle. Moreover, when M is a spin manifold, there exists PSpine
1,3

(M) and

PSpine
1,3

(M), respectively called the spin frame and the spin coframe bundles. By

denoting r : PSpine
1,3

(M) →PSOe
1,3

(M) the mapping in the definition of PSpine
1,3

(M), a

spin structure on M is constituted by a principal bundle πr : PSpine
1,3

(M) → M , with

group Spine
1,3, and the map r : PSpine

1,3
(M) → PSOe

1,3
(M) satisfying:

(i) π(r(p)) = πr(p), ∀p ∈ PSpine
1,3

(M), where π is the projection map of the bundle

PSOe
1,3

(M).

(ii) r(pφ) = r(p)adφ, ∀p ∈ PSpine
1,3

(M) and ad : Spine
1,3 → Aut(C`1,3), adφ : ω 7→

φωφ−1 ∈ C`1,3 [11, 12].

Sections of PSOe
1,3

(M) are orthonormal coframes, and the ones in PSpine
1,3

(M) are also

orthonormal coframes — two coframes differing by a 2π rotation are distinct and two

coframes differing by a 4π rotation are equivalent. The Clifford bundle of differential

forms C`(M, g) is a vector bundle associated to PSpine
1,3

(M), having as sections sums

of differential forms — Clifford fields. Furthermore, C`(M, g) = PSOe
1,3

(M) ×ad′ C`1,3,

where C`1,3 ' Mat(2,H) is the spacetime algebra. The bundle structure is obtained as:
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(a) Consider πc : C`(M, g) → M be the canonical projection and {Uα} is an open

covering of M . There are trivialization mappings ψi : π−1
c (Uα) → Uα × C`1,3 of

the form ψα(p) = (πc(p), ψα,x(p)) = (x, ψα,x(p)). If x ∈ Uα ∩ Uβ and p ∈ π−1
c (x),

therefore

ψα,x(p) = hαβ(x)ψβ,x(p), (1)

for hαβ(x) ∈ Aut(C`1,3), where hαβ : Uα∩Uβ → Aut(C`1,3) are transition mappings.

As every automorphism of C`1,3 is inner, thus

hαβ(x)ψβ,x(p) = aαβ(x)ψα,x(p)aαβ(x)
−1,

where aαβ(x) ∈ C`1,3 is invertible.

(b) The group SOe
1,3 is extended in the Clifford algebra C`1,3: in fact, as the group

C`∗1,3 ⊂ C`1,3 of invertible elements acts on C`1,3 as an algebra automorphism

through by its adjoint representation, a set of lifts of the transition functions of

C`(M, g) is constituted by elements {aαβ} ⊂ C`∗1,3 such that if adφ(τ ) = φτφ−1, for

all τ ∈ C`1,3, hence adaαβ
= hαβ.

(c) As Spine
1,3 = {φ ∈ C`01,3 |φφ̃ = 1} ' SL(2,C) is the universal covering group for

SOe
1,3, accordingly σ = Ad|Spine

1,3
defines a group homeomorphism σ : Spine

1,3 →

SOe
1,3 which is onto and has kernel Z2. Since Ad−1 equals the identity map, thus

Ad : Spine
1,3 → Aut(C`1,3) descends to a representation of SOe

1,3. One denominates

ad′ this representation, namely ad′ : SOe
1,3 → Aut(C`1,3). Thereon one denotes

ad′
σ(φ)ω = adφω = φωφ−1.

(d) The group structure associated to the Clifford bundle C`(M, g) is reducible from

Aut(C`1,3) to SOe
1,3. The transition maps of the principal bundle of oriented

Lorentz cotetrads PSOe
1,3

(M) are regarded transition maps for the Clifford bundle.

Thereupon it follows that C`(M, g) = PSOe
1,3

(M) ×Ad′ C`1,3, meaning that the

Clifford bundle is a vector bundle associated to the principal bundle PSOe
1,3

(M)

of orthonormal Lorentz coframes. In a spin manifold we have C`(M, g) =

PSpine
1,3

(M) ×Ad C`1,3. Consequently, spinor fields are sections of vector bundles

associated with the principal bundle related to spinor coframes. Dirac spinor fields

are sections of the bundle S(M, g) = PSpine
1,3

(M)×ρ C4, with ρ the D(1/2,0)⊕D(0,1/2)

representation of Spine
1,3

∼= SL(2,C) in the space of endomorphisms End(C4).

3. Bilinear covariants

This section is devoted to recalling the bilinear covariants. In this article all spinor fields

live in the a 4-dimensional spacetime (M, η,D, τη , ↑) which locally has the Lorentzian

metric η(∂/∂xµ, ∂/∂xν) = ηµν = diag(1,−1,−1,−1). Hence forward {xµ} are global

coordinates adapted to an inertial reference frame e0 = ∂/∂x0, and ei = ∂/∂xi,

i = 1, 2, 3. Moreover, the set {eµ} is constituted by sections of the frame bundle

PSOe
1,3

(M), related to a set of reciprocal frames {eµ} satisfying η(eµ, eν) := eµ · eν = δµ
ν .

Let {θµ} [{θµ}] be bases dual to {eµ} [{eµ}]. Classical spinor fields are elements of
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the carrier space associated to a D(1/2,0) ⊕ D(0,1/2) representation of SL(2,C), namely,

sections of the vector bundle PSpine
1,3

(M)×ρ C4, where ρ stands for the above mentioned

D(1/2,0) ⊕ D(0,1/2) representation. In addition, the classical spinor fields carrying the

D(1/2,0) or the D(0,1/2)) representation of SL(2,C) are sections in the vector bundle

PSpine
1,3

(M) ×ρ′ C2, where ρ′ stands for the D(1/2,0) or the D(0,1/2) representation of

SL(2,C) in C2. Given a spinor field ψ ∈ sec PSpine
1,3

(M) ×ρ C4, the bilinear covariants

may be taken as the following sections of the exterior algebra bundle
∧

TM :

σ = ψ†γ0ψ, J = Jµθ
µ = ψ†γ0γµψθ

µ, S = Sµνθ
µν = 1

2
ψ†γ0iγµνψθ

µ ∧ θν ,

K = Kµθ
µ = ψ†γ0iγ0123γµψθ

µ, ω = −ψ†γ0γ0123ψ. (2)

Furthermore, the set {14, γµ, γµγν , γµγνγρ, γ0γ1γ2γ3} (µ, ν, ρ = 0, 1, 2, 3, and µ < ν < ρ)

is a basis for M(4,C) satisfying [13] γµγν + γνγµ = 2ηµν14 and the Clifford product is

denoted by juxtaposition [11, 12].

Concerning the electron, described by Dirac spinor fields (classes 1, 2 and 3

below), J is a timelike vector corresponding to the current of probability. The bivector S

represents the intrinsic angular momentum distribution, and the spacelike vector K

provides the direction of the electron spin. The bilinear covariants satisfy the Fierz

identities [13–15]

J2 = ω2 + σ2, K2 = −J2, J x K = 0, J ∧ K = −(ω + σγ0123)S. (3)

When ω = 0 = σ, a spinor field is said to be singular.

Lounesto [13] has classified spinor fields into the following six disjoint classes. In

the classes (1), (2), and (3) below it is implicit that J, K and S are all nonzero:

1) σ 6= 0, ω 6= 0.

2) σ 6= 0, ω = 0.

3) σ = 0, ω 6= 0.

4) σ = 0 = ω, K 6= 0, S 6= 0.

5) σ = 0 = ω, K = 0, S 6= 0.

6) σ = 0 = ω, K 6= 0, S = 0.

Spinor fields of types (1), (2), and (3) are called Dirac spinor fields for spin-1/2 particles

while spinor fields of types (4), (5), and (6) are called, respectively, flag-dipoles, flagpoles

and Weyl spinor fields. Despite J 6= 0, for these three types the vectors J and K are

always timelike. Furthermore, a complex multivector field can be introduces as [13]

Z = σ + J + iS + iKγ0123 + ωγ0123, (4)

where the multivector operators σ, ω, J, S and K satisfy the Fierz identities. It is

denominated the Fierz aggregate. Moreover, if γ0Z
†γ0 = Z, Z is called a boomerang.

With respect to a singular spinor field (ω = 0 = σ), the Fierz identities are replaced by

the more general conditions [14]

ZγµZ = 4JµZ, Z2 = 4σZ, ZiγµνZ = 4SµνZ,

Zγ0123Z = −4ωZ, Ziγ0123γµZ = 4KµZ. (5)
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4. Classical spinors, algebraic spinors and spinor operators

Given an orthonormal basis {eµ} in R1,3, an arbitrary element of C`1,3 is written as

Ψ = b+ bµeµ + bµνeµν + bµνσeµνσ + pe0123, (6)

From the isomorphism C`1,3 ' M(2,H), in order to obtain a representation of C`1,3, a

primitive idempotent f = 1
2
(1 + e0) is used. An arbitrary element of the left minimal

ideal C`1,3f is given by

Ω = (a1 + a2e23 + a3e31 + a4e12)f + (a5 + a6e23 + a7e31 + a8e12)e0123f,

If we set Ω = Ψf ∈ C`1,3f , then

a1 = b+ b0, a2 = b23 + b023, a3 = −b13 − b013, a4 = b12 + b012,

a5 = −b123 + p, a6 = b1 − b01, a7 = b2 − b02, a8 = b3 − b03.

In fact, although C`1,3f is a minimal left ideal, it is a right H-module, therefore the

quaternionic coefficients should be written to the right of f . Let q1 and q2 be two

quaternions

q1 = a1 + a2e23 + a3e31 + a4e12, q2 = a5 + a6e23 + a7e31 + a8e12 ∈ H (7)

where K = fC`1,3f = spanR{1, e23, e31, e12} ∼= H. The quaternionic coefficients q1, q2
commute with f and with e0123 thus fq1+e0123fq2 = q1f+q2e0123f . The left ideal C`1,3f

is a right module over K and as such its basis is {f, e0123f}. By denoting i = e23, j = e31,

and k = e12, in the representation

e0 =

(

1 0

0 −1

)

, e1 =

(

0 i

i 0

)

, e2 =

(

0 j

j 0

)

, e3 =

(

0 k

k 0

)

, (8)

the elements f and e0123f are represented as [f ] =

(

1 0

0 0

)

and [e0123f ] =

(

0 0

1 0

)

.

Thus, any element Ψ ∈ C`1,3 can be represented as the following quaternionic matrix:














b+ b0 + (b23 + b023)i

−(b13 + b013)j + (b12 + b012)k

p− b123 + (b1 − b01)i

+(b2 − b02)j + (b3 − b03)k

−b123 − p + (b1 + b01)i+

(b2 + b02)j + (b3 + b03)k

b− b0 + (b23 − b023)i+

(b013 − b13)j + (b12 − b012)k















=

(

q1 q3
q2 q4

)

. (9)

Spinor fields were constructed by differential forms by Fock, Ivanenko, and Landau in

1928 and also in [13]. A spinor operator Ψ̊ ∈ C`+1,3 is written as

Ψ̊ = b+ bµνeµν + pe0123, (10)

which in the light of (9) reads

Ψ̊ =

(

b+ b23i − b13j + b12k −b0123 + b01i + b02j + b03k

b0123 − b01i − b02j − b03k b+ b23i − b13j + b12k

)

=

(

q1 −q2
q2 q1

)
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where b0123 = p. Now, the vector space isomorphisms

C`+1,3 ' C`3,0 ' C`1,3
1
2
(1 + e0) ' C4 ' H2

give the equivalence among the classical, the operatorial, and the algebraic definitions

of a spinor. In this sense, the spinor space H2 which carries the D(1/2,0) ⊕ D(0,1/2) or

D(1/2,0), or D(0,1/2) representations of SL(2,C) is isomorphic to the minimal left ideal

C`1,3
1
2
(1+ e0) – corresponding to the algebraic spinor – and also isomorphic to the even

subalgebra C`+1,3 – corresponding to the operatorial spinor. It is hence possible to write

a Dirac spinor field as
(

q1 −q2
q2 q1

)

[f ] =

(

q1 −q2
q2 q1

)(

1 0

0 0

)

=

(

q1 0

q2 0

)

'

(

b+ b23i − b13j + b12k

p− b01i − b02j − b03k

)

∈ C`1,3f ' H ⊕ H. (11)

Returning to (10), and using for instance the standard representation,

1 7→

(

1 0

0 1

)

, i 7→

(

i 0

0 −i

)

, j 7→

(

0 1

−1 0

)

, k 7→

(

0 i

i 0

)

(12)

the complex matrix associated to the spinor operator Ψ̊ looks as follows:

[Ψ̊] =











b+ b23i −b13 + b12i −b0123 + b01i b02 + b03i

b13 + b12i b− b23i −b02 + b03i −p− b01i

b0123 − b01i −b02 − b03i b+ b23i −b13 + b12i

b02 − b03i p + b01i b13 + b12i b− b23i











:=











φ1 −φ∗
2 −φ3 φ∗

4

φ2 φ∗
1 −φ4 −φ∗

3

φ3 −φ∗
4 φ1 −φ∗

2

φ4 φ∗
3 φ2 φ∗

1











.

The Dirac spinor ψ is an element of the minimal left ideal (C ⊗ C`1,3)f where

f = 1
4
(1 + e0)(1 + ie12) (13)

is a primitive idempotent that gives the Dirac representation (instead, one could set

f = 1
4
(1 + ie0123)(1 + ie12), (14)

that would give the Weyl representation). In this standard Dirac representation, the

basis vectors eµ are sent to γµ ∈ End(C4) (see (A.3) in Appendix A). Therefore,

ψ = Φ1
2
(1 + iγ12) ∈ (C ⊗ C`1,3)f

where Φ = Φ1
2
(1 + γ0) ∈ C`1,3(1 + γ0) is twice the real part of ψ [13, Sec. 10.3]. Using

this representation it follows that

ψ '











φ1 0 0 0

φ2 0 0 0

φ3 0 0 0

φ4 0 0 0











∈ (C ⊗C`1,3)f '











φ1

φ2

φ3

φ4











∈ C
4. (15)
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Thus, the above allows for identifying the algebraic spinor fields with the classical Dirac

spinor fields.

5. Quantum algebraic spinor fields

An arbitrary bilinear form B : V × V → R can be written as B = g + A, where

g = 1
2
(B +BT ) and A = 1

2
(B −BT ). Specifically, we let

g = diag(1,−1,−1,−1) and A =











0 A01 A02 A03

−A01 0 A12 A13

−A02 −A12 0 A23

−A03 −A13 −A23 0











.

Let u, v, w ∈ V . The form defines an annihilation operator Iu(v) := u y

B
v = B(u, v)

which is extended to
∧

V . Given φ, ψ ∈
∧

V , the annihilation and creation operators

Iu, Eu :
∧

V →
∧

V are respectively defined as

Iu(φ ∧ ψ) = (u y

B
φ) ∧ ψ + φ̂ ∧ (u y

B
ψ),

Eu(ψ) = u ∧ ψ (16)

where φ̂ denotes the grade involution of φ. The maps in (16) induce a Clifford map

Γu = Eu + Iu :
∧

V →
∧

V satisfying

Γu ◦ Γv + Γv ◦ Γu = 2g(u, v),

Γu ◦ Γv − Γv ◦ Γu = 2(Γu∧v + A(u, v)), (17)

where A(u, v) = u y

A
v. Since Γu ◦ Γv = Γu∧v +B(u, v), namely (uv)B = u ∧ v +B(u, v),

the equations above can be written as

(uv)B + (vu)B = 2g(u, v)1, (uv)B − (vu)B = 2(u ∧ v + A(u, v)), (18)

showing that the antisymmetric part A defines another Zn-grading. Here, (uv)B denotes

the Clifford product between u and v in C`(V,B). Indeed,

(uv)B := uv + A(u, v)1 = u ∧ v + g(u, v) + A(u, v) = u ∧ v +B(u, v),

where uv denotes the Clifford product between u and v in C`(V, g). Thus, there is

another exterior product – the dotted wedge [13] – ∧̇ induced by A: u∧̇v = u∧v+A(u, v).

In general, the A-induced Zn grading is given by ˙∧2k
V =

∧0 V ⊕ · · · ⊕
∧2k V and

˙∧2k+1
V =

∧0 V ⊕ · · · ⊕
∧2k+1 V .

Given u, v, w ∈ V and ψ ∈ C`(V, g), the B-products – namely, the Clifford product

induced by the arbitrary bilinear form B – between one, two, and three vectors and

arbitrary multivectors are provided, respectively, as follows:

(uψ)B = uψ + u y

A
ψ,

[(uv)ψ]B = uvψ+ u(v y

A
ψ) − v ∧ (u y

A
ψ) + u y

A
(v y

B
ψ),
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[(uvw)ψ]B = uvwψ + uv(w y

A
ψ) − uw(u y

g
ψ) + w ∧ (u y

g
(v y

A
ψ)) + u(v y

A
(w y

B
ψ))

−v ∧ (u y

A
w)ψ + v ∧ w ∧ (u y

A
ψ)− v ∧ (u y

g−A
(w y

g
ψ)) + u y

A
((v y

g
w)ψ)

−v ∧ (u y

A
(w y

B
ψ)) − (w y

A
u)vψ− (v y

A
w)uψ. (19)

In (15) we used the minimal ideal provided by the idempotent

f = 1
4
(1 + γ0)(1 + iγ1γ2) = 1

4
(1 + γ0 + iγ1γ2 + iγ0γ1γ2).

Now, in C`(V,B) the formalism is recovered when we consider the idempotent

fB = 1
4
(1 + γ0 + iγ1

B
γ2 + iγ0

B
γ1

B
γ2) (20)

where we let γ1
B
γ2 = (γ1γ2)B , γ0

B
γ1

B
γ2 = (γ0γ1γ2)B, etc. in C`(V,B). The formalism

for C`(V,B) is mutatis mutandis obtained, just by changing the standard Clifford

product γµγν to

γµ
B
γν = γµγν + Aµν (21)

The last expression is the prominent essence of transliterating C`(V,B) to C`(V, g). For

instance, (15) evinces the necessity of defining

f = 1
4
(1 + γ0)(1 + iγ1γ2) ∈ C`(V, g). (22)

Now, in C ⊗C`B1,3 we have

fB = 1
4
(1 + γ0)

B
(1 + iγ1

B
γ2)

= 1
4
(1 + γ0)(1 + iγ1γ2) + i

4
(A12 + A12γ0 −A02γ1 + A01γ2). (23)

Herein we shall denote

fB = f + f(A) (24)

where f(A) = i
4
(A12 + A12γ0 − A02γ1 + A01γ2).

In the Dirac representation (A.3), the idempotent f in (22) reads

f =











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











and as

γ0
B
γ1

B
γ2 = γ0γ1γ2 + A01γ2 − A02γ1 + A12γ0, (25)

one can substitute it in (24) to obtain

fB =











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











+
1

4











2iA12 0 0 −iA02 − A01

0 2iA12 −iA02 + A01 0

0 iA02 + A01 0 0

iA02 − A01 0 0 0











. (26)
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When Aµν = 0 it implies that B = g and the standard spinor formalism is recovered.

Let us denote by C`B1,3 the Clifford algebra C`(V,B), where V = R4 and B = η + A,

where η denotes the Minkowski metric.

An arbitrary element of C`B1,3 is written as

ψB = c+ cµγµ + cµν(γµγν)B + cµνσ(γµγνγσ)B + p(γ0γ1γ2γ3)B . (27)

By using (21, 25), (27) reads

ψB = ψ + cµνAµν + cµνρ(Aµνγρ + Aρµγν + Aνργµ) + pεµνρσAµν(γρσ + Aρσ) (28)

where ψ is an element in the standard Clifford algebra C`1,3 of the form given by (6).

Herein we shall rewrite (28) as

ψB = ψ + ψ(A) (29)

where it indicates that an arbitrary element of C`B1,3 is written as the sum of an arbitrary

element of C`1,3 and an A-dependent element of C`1,3, where ψ(A) ∈
∧0 V⊕

∧1 V⊕
∧2 V .

Furthermore, we denoted above

ψ(A) = (cµνAµν + pεµνρσAµνAρσ) + cµνρ(Aµνγρ + Aρµγν + Aνργµ) + pεµνρσAµνγρσ (30)

where εµνρσ denotes the Levi-Civita symbol.

An algebraic B-spinor is defined to be an element (ψB)
B
(fB) of a minimal left ideal

(C ⊗C`B1,3)fB generated by a primitive idempotent fB in C⊗C`B1,3. In Appendix A, we

discuss primitive idempotents in C⊗C`B1,3 which give an orthogonal decomposition of the

unity and we calculate a basis for the ideal (C⊗C`B1,3)fB. Now, by using (24) and (29),

and remembering that the usual Clifford product in C`1,3 is denoted by juxtaposition,

any algebraic spinor can be written as

(ψB)
B
(fB) = (ψ + ψ(A))

B
(f + f(A))

= ψ
B
f + ψ(A)

B
f + ψ

B
f(A) + ψ(A)

B
f(A) (31)

Here upon we shall denote by s the scalar part cµνAµν + pεµνρσAµνAρσ of ψ(A) in (30).

Each term in (31) is explicitly calculated in Appendix B.

6. Spinor field classification in quantum Clifford algebras

In order to provide physical insight into the mathematical formalism presented in the

context of the spinor fields classification, the formalism presented in Section 3 is now

analyzed in the context of the quantum Clifford algebra C`(V,B). In particular, we aim

to describe the correspondence between spinor fields in C`(V, g) and the quantum spinor

fields, or the B-spinor fields, in C`(V,B) where V denotes the 4-dimensional Minkowski

spacetime.

As in the orthogonal Clifford algebraic formalism, the quantum spinor fields

classification is provided by the following spinor field classes:

1B) σB 6= 0, ωB 6= 0.
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2B) σB 6= 0, ωB = 0.

3B) σB = 0, ωB 6= 0.

4B) σB = 0 = ωB , KB 6= 0, SB 6= 0.

5B) σB = 0 = ωB , KB = 0, SB 6= 0.

6B) σB = 0 = ωB , KB 6= 0, SB = 0.

It is always possible to write:

σB = σ + σ(A), (32)

JB = J + J(A), (33)

SB = S + S(A), (34)

KB = K + K(A), (35)

ωB = ω + ω(A). (36)

In general, since we assume A 6= 0 (otherwise there is nothing new to prove, as

when A = 0 it implies that C`(V,B) = C`(V, g)), it follows that all the A-dependent

quantities σ(A), J(A), S(A), K(A), and ωA do not equal zero. The expressions for

such A-independent terms are developed in the Appendix. There is an immediate

correspondence between the spinor fields in the Lounesto classification and the quantum

spinor fields that are distributed in the six classes 1B) − 6B) above. More precisely, all

possibilities are analyzed in what follows:

1B) σB 6= 0, ωB 6= 0. As σB 6= 0 and σB = σ + σ(A), we have some possibilities,

depending whether σ does or does not equal zero, as well as ω:

i) σ = 0 = ω. This case corresponds to the type-(4), type-(5), and type-(6) spinor

fields – respectively flag-dipoles, flagpoles, and Weyl ones. Such possibility is

obviously compatible to σB 6= 0, ωB 6= 0.

ii) σ = 0 and ω 6= 0. This case corresponds to the type-(3) Dirac spinor fields.

The condition σ = 0 is compatible to σB 6= 0, but as ω 6= 0, the additional

condition ωB = ω + ω(A) 6= 0 must be imposed. Equivalently, 0 6= ω 6= ω(A).

iii) σ 6= 0 and ω = 0. This case corresponds to the type-(2) Dirac spinor fields.

The condition ω = 0 is compatible to ωB 6= 0, but as σ 6= 0, the additional

condition σB = σ + σ(A) 6= 0 is demanded. Equivalently, 0 6= σ 6= σ(A).

iv) σ 6= 0 and ω 6= 0. This case corresponds to the type-(1) Dirac spinor fields.

Here both the conditions 0 6= ω 6= ω(A) and 0 6= σ 6= σ(A) must be imposed.

All the conditions heretofore must hold in order so that the B-spinor field be a

representing spinor field in class 1B).

2B) σB 6= 0, ωB = 0. Although the condition σB 6= 0 is compatible to the possibilities

σ = 0 and σ 6= 0 as well (clearly the condition σ 6= 0 is compatible to σB 6= 0 if

σ 6= −σ(A)), the condition ωB = 0 implies that ω = −ω(A), which does not equal

zero. To summarize:

i) σ = 0 and ω 6= 0. This case corresponds to the type-(3) Dirac spinor fields.

The condition σ = 0 is compatible to σB 6= 0, but as ω 6= 0, the additional
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Table 1. Correspondence among the spinor field and the (quantum) B-spinor fields

under Lounesto spinor field classification.

Quantum Spinor Fields Spinor Fields

type-(1B) B-Dirac Dirac type-(1)

Dirac type-(2)

Dirac type-(3)

Flag-dipoles type-(4)

Flagpoles (also Elko, Majorana) type-(5)

Weyl type-(6)

type-(2B) B-Dirac Dirac type-(3)

Dirac type-(1)

type-(3B) B-Dirac Dirac type-(2)

Dirac type-(1)

type-(4B) B-flag-dipole Dirac type-(1)

type-(5B) B-flagpole Dirac type-(1)

type-(6B) B-Weyl Dirac type-(1)

condition ωB = ω + ω(A) 6= 0 must hold. It is tantamount to assert that

0 6= ω 6= ω(A).

ii) σ 6= 0 and ω 6= 0. This case corresponds to the type-(1) Dirac spinor fields.

Here both the conditions 0 6= ω 6= ω(A) and 0 6= σ 6= σ(A) has to hold.

3B) σB = 0, ωB 6= 0. Despite the condition ωB 6= 0 is compatible to both the possibilities

ω = 0 and ω 6= 0 (clearly the condition ω 6= 0 is compatible to ωB 6= 0 if

ω 6= −ω(A)), the condition σB = 0 implies that σ = −σ(A), which does not

equal zero. To summarize:

i) ω = 0 and σ 6= 0. This case corresponds to the type-(2) Dirac spinor fields.

The condition ω = 0 is compatible to ωB 6= 0, but as σ 6= 0, the additional

condition σB = σ + σ(A) 6= 0 must be imposed. Equivalently, 0 6= σ 6= σ(A).

ii) σ 6= 0 and ω 6= 0. This case corresponds to the type-(1) Dirac spinor fields.

Here both the conditions 0 6= ω 6= ω(A) and 0 6= σ 6= σ(A) must be imposed.

4B) σB = 0 = ωB , KB 6= 0, SB 6= 0.

5B) σB = 0 = ωB , KB = 0, SB 6= 0.

6B) σB = 0 = ωB , KB 6= 0, SB = 0.

All the quantum spinor fields 4B), 5B), and 6B) are defined by the condition σB = 0 =

ωB . This implies that σ = −σ(A)( 6= 0), and that ω = −ω(A)( 6= 0). It means that all

the singular B-spinor fields correspond to the type-(1) Dirac spinor fields.

The results regarding the analysis above can be abridged in the table The

paramount importance concerning such classification is multifold. For instance, the

Dirac spinor fields in quantum Clifford algebras (B-Dirac spinor fields) correspond to

all types of spinor fields in the standard Lounesto spinor field classification. In particular,
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type-(1B) Dirac spinor fields correspond to all spinor fields in the orthogonal Clifford

algebra. A deep discussion about these results is going to be accomplished in the next

Section.

7. Concluding remarks and outlook

The mathematical apparatus provided by the quantum Clifford algebraic formalism is a

powerful tool, in particular to bring additional interpretations about the underlying

standard spacetime structures. For instance, equations (32–36) illustrate that the

distribution of intrinsic angular momentum, formerly a legitimate bivector in the

standard Clifford algebra C`(V, g), is now the direct sum of a bivector and a scalar

when considered in C`(V,B) from the point of view of C`(V, g), evincing the different

Zn-grading induced by the antisymmetric part of the arbitrary bilinear form B.

Furthermore, now, the bilinear covariant K is a paravector – the sum of a vector and

a scalar – which is not a homogeneous Clifford element. Indeed, in C`(V,B) it is a

homogeneous 1-form, but in C`(V, g) it is a paravector.

Some questions and possible answers can still be posed in the context of the

quantum Clifford algebraic arena. The mathematical formalism concerning quantum

Clifford algebras is rich and a plethora of relevant results can be found in the specialized

literature from the last decades. Notwithstanding, the physical relevance of such

formalism and its applications is a prominent feature to be still explored. The B-spinor

fields indicated and categorized in Table 1 can probe spacetime attributes.

We already constructed a dynamical transformation that maps types-(1), (2), and

(3) Dirac spinor fields into a subset of type-(5) spinor field [17] which is a prime

candidate in terms of which one could attempt to describe the dark matter [19,20] and to

incorporate the flagpole spinor fields into the Standard Model. Besides, such a mapping

revealed to be an instanton Hopf fibration map [16]. Furthermore, the classification

shown at Table 1 is an alternative path to encompass the above mentioned mapping

between the different spinor field classes. It can be used further to probe the existence

of an arbitrary bilinear form B endowing the spacetime structure. Physically, there

are some formulations of gravitational theories in spacetimes endowed with arbitrary

bilinear forms composed by a (symmetric) metric g and an additional (antisymmetric)

part A. From the phenomenological point of view, if such antisymmetric part can be

detected or probed, it shall be unraveled as a form that has a tiny norm when compared

to the norm of the symmetric part g, given any norm on the space of bilinear forms.

It is worth to emphasize here that it is not the first time that the Lounesto spinor

field classification is employed to probe unexpected spacetime properties. The so called

exotic (type-(5)) dark spinor fields have been used to probe topological obstructions is

the spacetime structure. The dark spinor fields dynamics imposes constraints in the

spacetime metric structure. Meanwhile, such constraints may be alleviated at the cost

of constraining the exotic spacetime topology [18]. In addition, the exotic interactions

with the Higgs boson can make it phenomenologically explicit that a subset of type-
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(5) spinor fields is a prime candidate to describe the dark matter [19,20]. In particular,

observational aspects of such a possibility has been proposed at LHC [21]. The formalism

presented here can bring some new light on the possibilities of probing the spacetime

structure, here provided by the alteration of the spacetime metric structure by the

addition of an antisymmetric part to the metric.
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Appendix A. Primitive idempotents in C ⊗C`1,3 and in C ⊗ C`B1,3

In this appendix we use notation from Sections IV and V. Recall that the Dirac spinor ψ

is an element of the minimal left ideal S = (C⊗C`1,3)f which is generated by a primitive

idempotent f shown in (13). Then, as it can be easily checked, either by hand or with

CLIFFORD [22], a basis for S may be chosen as

S = (C ⊗C`1,3)f = SpanC{f,−e13f, e30f, e10f} = SpanC{f,−e13f, e3f, e1f}. (A.1)

The idempotent f is primitive which means it cannot be written as a sum f = f1 + f2

of two non zero mutually annihilating idempotents, that is, satisfying f1f2 = f2f1 = 0.

The fact that f is primitive follows from the isomorphism C⊗C`1,3
∼= C`2,3

∼= Mat(4,C)

and the fact that the Radon-Hurwitz number rq−p for the signature (2, 3), i.e., where

p = 2, q = 3, is 1. This in turn implies that any idempotent in C`2,3 of the form

f = 1
2
(1 ± ei

1
)1

2
(1 ± ei

2
), (A.2)

where eii
, i = 1, 2, are commuting basis monomials in C`2,3 with square 1 is a primitive

idempotent in C`2,3 [23]. In fact, the number k of non-primitive idempotent factors

in (A.2) equals k = 3 − r3−2 = 2. Thus, the Dirac standard representation of the

algebra C ⊗ C`1,3 in the ideal S yields the well-known Dirac matrices γµ, µ = 0, 1, 2, 3:

γ0 =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, γ1 =











0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0











,

γ2 =











0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0











, γ3 =











0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0











(A.3)

which represent, respectively, the algebra generators e0, e1, e2, e3. Since the idempotent f

is primitive, the ideal S is minimal, and the representation (A.3) is faithful and

irreducible. By alternating signs in the idempotent f shown in (13), we get three



Bilinear Covariants and Spinor Field Classification 15

additional primitive idempotents. Thus, we get four primitive idempotents f1, f2, f3, f4

which are mutually annihilating and which provide a decomposition of the unity, namely,

f1 = 1
4
(1 + e0)(1 + ie12), f2 = 1

4
(1 + e0)(1 − ie12),

f3 = 1
4
(1 − e0)(1 + ie12), f4 = 1

4
(1 − e0)(1 − ie12). (A.4)

where f1 = f , f2
i = fi, fifj = fjfi = 0, for i, j = 1, . . . , 4, i 6= j, and f1 +f2 +f3 +f4 = 1

in C ⊗ C`1,3.

As it was shown in (23), the primitive idempotent f in C⊗C`1,3 generalized to the

idempotent fB in C ⊗ C`B1,3 which we recall here in the notation from Section V:

fB = 1
4
(1 + γ0)

B
(1 + iγ1

B
γ2)

= 1
4
(1 + γ0)(1 + iγ1γ2) + i

4
(A12 + A12γ0 −A02γ1 + A01γ2). (A.5)

The fact that this idempotent is primitive follows from the algebra isomorphism

C`1,3
∼= C`B1,3 [13, 24] extended to C ⊗ C`1,3

∼= C ⊗ C`B1,3. Notice that the generators

e0, e1, e2, e3 satisfy the following relations in C`B1,3:

(e2
i )B =

{

+1 for i = 0;

−1 for i = 1, 2, 3,
and ei

B
ej + ej

B
ei = 0 for i 6= j. (A.6)

These relations generalize the defining relations satisfied by these generators in C`1,3.

Thus, the four primitive idempotents (A.4) extend to four primitive mutually

annihilating idempotents in C ⊗C`B1,3, namely,

f1
B = 1

4
(1 + γ0)

B
(1 + iγ1

B
γ2)

= 1
4
(1 + γ0)(1 + iγ1γ2) + i

4
(A12 + A12γ0 −A02γ1 + A01γ2),

f2
B = 1

4
(1 + γ0)

B
(1 − iγ1

B
γ2)

= 1
4
(1 + γ0)(1 − iγ1γ2) −

i
4
(A12 + A12γ0 − A02γ1 + A01γ2),

f3
B = 1

4
(1 − γ0)

B
(1 + iγ1

B
γ2)

= 1
4
(1 − γ0)(1 + iγ1γ2) −

i
4
(−A12 + A12γ0 − A02γ1 + A01γ2),

f4
B = 1

4
(1 − γ0)

B
(1 − iγ1

B
γ2)

= 1
4
(1 − γ0)(1 − iγ1γ2) + i

4
(−A12 + A12γ0 − A02γ1 + A01γ2), (A.7)

where f1
B = fB , (f i

B)2 = f i
B, f

i
Bf

j
B = f j

Bf
i
B = 0, for i, j = 1, . . . , 4, i 6= j, and

f1
B + f2

B + f3
B + f4

B = 1 in C ⊗ C`B1,3.

Thus, we can now consider the minimal ideal SB = (C ⊗C`B1,3)fB in C ⊗C`B1,3 (see

(31)) whose elements are the B-spinors. It can be easily checked that a basis for this

ideal generalizes the basis (A.1) for S ⊂ C ⊗ C`1,3 and is given by

SB = (C ⊗ C`B1,3)fB = SpanC{fB, −e1
B
e3

B
fB, e3

B
e0

B
fB, e1

B
e0

B
fB}

= SpanC{fB, −e1
B
e3

B
fB, e3

B
fB, e1

B
fB}. (A.8)

For completeness, we provide an explicit form for the symbolic (non-matrix) basis (A.8):

fB = 1
4
((1 + A12i)1 + (1 + iA12)e0 − iA02e1 + iA01e2 + ie12 + ie012),
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−e1
B
e3

B
fB = 1

4
((iA23 − A13)1 + (iA23 − A13)e0 + A03e1 − iA03e2 − (A01 − iA02)e3

−e13 + ie23 − e013 + ie023),

e3
B
fB = 1

4
(−(A03 + iA03A12 + iA01A23 − iA13A02)1 + iA23e1 − iA13e2 +

(1 + iA12)e3 − iA23e01 + iA13e02 − (1 + iA12)e03 − iA03e12 +

iA02e13 − iA01e23 − ie0123 + ie123),

e1
B
fB = 1

4
(−(A01 − iA02)1 + e1 − ie2 − e01 + ie02), (A.9)

where 1 denotes the unity of C ⊗ C`B1,3. Of course, when we set Aij = 0 for all the

coefficients of the antisymmetric part A appearing in (A.9), we obtain back the explicit

basis for the ideal S = (C ⊗ C`1,3)f shown in (A.1). Due to the relations (A.6),

the gamma matrices (A.3) also represent the generators e0, e1, e2, e3 in the faithful

and irreducible representation of the algebra C ⊗ C`B1,3 in the ideal SB . This can be

checked directly by computing these matrices in the explicit symbolic basis (A.9) with

CLIFFORD [22].

Appendix B. Additional terms in the quantum spinor fields

Recall from (31) that a B-spinor has the form

(ψB)
B
(fB) = (ψ)

B
f + ψ(A)

B
f + (ψ)

B
f(A) + (ψ(A))

B
f(A). (B.1)

where the term (ψ)
B
f is the classical spinor field displayed in (15). The remaining terms

in the above expression represent correction terms and are provided by:

(a) The term −4i(ψ(A))
B
f(A) is given by

p
[

b013 (A01 (A01A32 + A20A31 + A12A30) + A12A13 + A03A20)

+b023 (A02 (A01A32 + A20A31 + A12A30 + A30) + A12A13 + A03A20)

+b123 (A12 (A01A32 + A20A31 + A12A30) − A23A20 − A31A01)

+b012 (A10A01 + A20A02 + A12A12)
]

+γ0 [p (A13A01 − A23A20 + 2A12A12A13 + A23A20A12 + A23A01A12) + sA12]

+γ1 [p (A12A13 − A12A23 − A03A01 + A01A20A32 + A01A20A13 + A02A12A03

+A03A12A21 + A23A01A10) + sA01]

+γ2 [p (A03A20 + A01A01A32 + A13A01A02 + A13A20A02) + sA02]

+γ3 [p (A01A01 + A02A02 + A02A12A13 + A12A20A10 + A02A20A12 + A01A12A13)]

+γ01

[

p
(

b013 (A13A20 + A21A30) + b023 (A03A12 + A13A20) − b123A23A12

)]

+γ02

[

p
(

b013A13A01 + b023A13A01 + b123A13A21

)]

+γ03

[

p
(

b013A01A12 + b023A02A12 + b123A12A21

)]

+γ12

[

p
(

b013A01A30 + b023A30A01 + b123 (A13A20 + A23A01)
)]

+γ31

[

p
(

b013A01A20 + b023A01A20 + b123A12A20

)]
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+γ23

[

p
(

b013A01A10 + b023A01A20 + b123A12A10

)]

+γ023A12A01

+γ031 (A01A12 + A12A20 + A23A01)

+γ012 (A03A12 + A13A20) . (B.2)

(b) The term −4i(ψ(A))
B
f is given by

[

b023 (A03 + A02) + b123A23 + b012A01 + b3A01A32 + b3 (A20A31 + A03A21)

+b0A12 + b2A01 + b1A02

]

+γ0

[

b01 ((A01 + A20)A12 + A20) + b02 (A10 + A12A20)

+b03 (A01A32 + A20A32 + A12A30) + bA12

+p (A12 + A20A13 + A10 (A23 + A13) + A30A12)]

+γ1

[

b01 (A20 (A01 + A02) + A12 (A10 + 1)) + bA20

+b12 ((A12 + A02)A20 − A01)A01 + b13 (A32 (A01 + A20) + A12A30)
]

+γ2

[

b02A21 + b12A20 + b23 (A01A32 + A12A31 + A20A32 + bA01

+p (A12A31 + 2A02 (A01A31 + A21A30) + A20A20))]

+γ3

[

p (−A01A01 − A02A02 + A12A12) + b03A21 + b13 (A01A21 + A20)

+b23A12 (A02 + A01A13)
]

+γ01

[

b013 (A31A20 + A12A30 + A32A01) − b013 (A03A12 + 2A13A20)

+b123A23 (A12 + A02) + b0A20 + b1A21

]

+γ02

[

b013A31A01 + b023 (A32A01 + A20A31 + A30A12) + b123A32A01

+b012A21A01 + (b0 + b2)A01

]

+γ03

(

2b012A20 + b3A12

)

+γ12

[

b1A01 + b2A02 + b012A12 + b023 (A13A01 + A03A20)

+b123 (A30A01 + A30A12 + A20A31)
]

−γ31

(

b013A01A20 + b012A01A20 + b123A01

)

+γ23

[

b023A12 + b123 (A10A12 + A20 + A02A01) + b3A10

]

+γ023

[

b03A10 + b23A12 + p (A20A12 + A02 + A21A10)
]

+γ013

[

p (2A20A02 + A01) + b03A02 + b13A12

]

+γ012

[

b01A01 + b02A02 + b12A12 + p (A02A23 + A13A20 + A21A20)
]

+γ123

[

p (A21 + A20A20) + b23A20 + b13A10

]

+γ0123

(

b013A10 + b023A20 + b123A12

)

(B.3)

(c) The term −4iψ
B
f is given by

[

b012 (A21A12 − 1) + b013A31A02 + b023A31 + b123 (A30 − A32A20)

+p (A02 (A23 + A13 + A01A12) + A01 (A32 + A31) + (A21 − 1)A03)]

+γ0

[

b01 (A21A01 + A02 + A10) + b02 (A21A20 + A01 + A20)
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+b03 (A02A31 + A23A01 + A30) + b31 (A21A31 + A23)

+p (A30A20 + A32A01 + A21A20A13 + A30A21A12 + A30A20

+A32A01 + A21A12 (A02 + A30) + b023A23A21

)

+b12 (A21A12 − 1) + b23 (A31 −A32A21)
]

+γ1

[

b01 (A20A10 + A12 + 2) + b02 (A20A02 − 1) + b03 (A32 − A30A02)

+b31 (A01A32 + A12A30 + A30)

+b12 (A20A12 + A01 + A02) + b23 (A30 + A32A20)

+p (A32A01A02 + A30A20A12)]

+γ2

[

b01 (A10A01 − 1) + b02 (A20A01 + A12 + 2) + b03 (A30A01 + A13)

+b31 (A10A31 + A30) + b12 (A10A12 + A02) + b23 (A30A21 + A31A20)

+p (A01 (A12A30 + A32A10) + A23)]

+γ3

(

b123A23 + 2b03 + 2b13A10 + 2b23A20 + pA20

)

+γ01

[

b013A03A12 + b012A03A12 + b123 (A13 + A23A12) + b023A30

+p (A20 (A32A10 + A31A20) + A31 + A12A23)]

+γ02

[

b013A03 + b012A10 + b123A32 + b023 (A30A21 + A23A01 + A13A20)

+p (A10 (A32A10 + A31A20) + A23)]

+γ03

(

b123A32

)

+γ12[b
012(A21 + A02A01) + b023A32 + b123A30(A21 + A10)

+b013(A31 + A03A10) + p(A30A12 + A23A10 + A13A20)]

+γ31

(

b013A12 + pA02A21

)

+γ012

[

b01A01 + b02A02 + b12A12 + p (A02A23 + A13A20 + A21A20)
]

+γ013

[

p (A20A21 + A10) + b03A20 − b23 + b31A12

]

+γ023

[

b03A10 + b31 + b23A12 + p (A10A12 + A02 + A21A01)
]

+γ123

[

p(A21 (A30 + A32) + A10A32) + b23A02 + b31A10

]

+γ0123

(

b023A02 + b123A12

)

(B.4)

(d) The term −4iψ
B
f(A) is given by

[

b0A12 + b2A10 + b1A02

]

+γ0

[

b01 (A12A01 + A02A21 + A20) + b02 (A10 + A12A20)

+b03 (A01A32 + A23A02 + A12A30)

+bA12 + pA12 (A20A13 + A32A01 + A30A12 + A10A13)]

+γ1

[

b01 (A20 (A01 + A02) + A12 (A01 + 1)) + b12 (A10 + A02A20 + A12A20)

+b13 (A01A32 + A23A02 + A12A30) + bA20

+p (A12A23 + A10A30 + A02A01A23)]

+γ2

[

b02A21 + b12A20 + b23 (A12A30 + A32A01 + A20A32)

+p (2A10A31 + 2A12A30 + A20) + A12A31]
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+γ3

[

A20A02 + A10A01 + A12A12 + b03A21 + b13(A20 + A01A21) + b23A01

]

+γ01

[

b013
(

A03A12 + A31A20) + b123A23(A12 + A02

)

+ b012 (A10 + A20A21)

+b013A32A01 + b0A20 + b1A21

]

+γ02

[

b013A01A31 + b123A32A01 + b012 (A20 + A21A01)

+b023 (A23A01 + A20A31 + A30A12) + b0A01 + b2A01

]

+γ03

(

b012A20

)

+γ12

[

b013A01A31 + b123 (A20A31 + A30A12 + A32A01)

+b023 (A13A01 + A03A20) + b1A01 + b2A02

]

+γ13

(

b013A12 + b123A01 + b013A02 + b3A02

)

+γ23

[

b123 (A01(A02 + A21) + A20) + b023A12

]

(B.5)
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