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Abstract: Generators of rings of invariants and the ideal of relations are computed for Salingaros’s vee
groups of orders 4, 8, and 16.

1 Introduction

This article begins with a summary of major theorems from [3] which provide a method of finding an ideal
of relations for representations of finite groups. In particular, these methods are applied to Salingaros’ vee
groups of orders 4, 8, and 16 whose irreducible representations were computed in [2]. Salingaros’ vee groups
are discussed in [5, 6, 7]. The main purpose of this article is to compute generators for the rings of invariants
for the Salingaros’ vee groups, and then compute the ideal of relations for these groups. In this article all
computations are performed with a package [1] for Maple.

2 Summary of major theorems

In this section, we discuss major theorems needed to compute the ring of invariants k[x1, . . . , xn]G and the
ideal of relations for a finite group G. These results will be used in later sections where for G we will take
the Salingaros’ vee groups of orders 4, 8, and 16.

First, we introduce the definition of Reynolds’ operator as follows.

Definition 1. Given a finite matrix group G ⊂ GL(n, k), the Reynolds’ operator of G is the map RG :
k[x1, . . . , xn] → k[x1, . . . , xn] defined by the formula

RG(f)(x) =
1

|G|

∑

g∈G

f(A · x) (1)

for f(x) ∈ k[x1, . . . , xn]. Here, x denotes a column vector [x1, . . . , xn]t and A · x denotes the action of a
matrix A on x by the left matrix multiplication (see [3, P. 329] for more details).

The following theorem can be used to find finitely many polynomial invariants that generate the ring of
invariants k[x1, . . . , xn]G of the group G. Notation is taken from [3] where all proofs can be found.

Theorem 1. Given a finite matrix group G ⊂ GL(n, k), we have

k[x1, . . . , xn]G = k[RG(xβ) : |β| ≤ |G|]. (2)

In particular, k[x1, . . . , xn]G is generated by finitely many homogeneous invariants.
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Theorem 1 guarantees that there are finitely many invariants f1, . . . , fm such that k[x1, . . . , xn]G =
k[f1, . . . , fm]. Suppose that g1 and g2 are polynomials in k[y1, . . . , ym], then

g1(f1, . . . , fm) = g2(f1, . . . , fm) ⇐⇒ h(f1, . . . , fm) = 0, (3)

where h = g1−g2. It follows that uniqueness of the algebraic relations fails if and only if a nonzero polynomial
h ∈ k[y1, . . . , ym] exists such that

h(f1, . . . , fm) = 0. (4)

Such nonzero polynomial h is a nontrivial algebraic relation among f1, . . . , fm. The following important
definition introduces an ideal of relations also called a syzygy ideal.

Definition 2. If we let F = (f1, . . . , fm), then the set

IF = {h ∈ k[y1, . . . , ym] : h(f1, . . . , fm) = 0 in k[x1, . . . , xn]} (5)

records all algebraic relations among f1, . . . , fm.

The set IF has the following properties.

Proposition 1. If k[x1, . . . , xn]G = k[f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be as in (5). Then:

(i) IF is a prime ideal of k[y1, . . . , ym].

(ii) Suppose that f ∈ k[x1, . . . , xn]G and that f = g(f1, . . . , fm) is one representation of f in terms of
f1, . . . , fm. Then all such representations are given by

f = g(f1, . . . , fm) + h(f1, . . . , fm), (6)

as h varies over IF .

Proposition 2. If k[x1, . . . , xn]G = k[f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be the ideal of relations. Then
there is a ring isomorphism

k[y1, . . . , ym]/IF
∼= k[x1, . . . , xn]G (7)

between the quotient ring of IF and the ring of invariants.

Proposition 3. If k[x1, . . . , xn]G = k[f1, . . . , fm], consider the ideal

JF = 〈f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . , xn, y1, . . . , ym]. (8)

(i) IF is the n-th elimination ideal of JF . Thus, IF = JF ∩ k[y1, . . . , ym].

(ii) Fix a monomial order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involving one of x1, . . . , xn is
greater than all monomials in k[y1, . . . , ym] and let G be a Groebner basis of JF . Then G ∩ k[y1, . . . , ym]
is a Groebner basis for IF in the monomial order induced on k[y1, . . . , ym].

Example 1. The invariants of C2 = {±I2} ⊂ GL(2, k) are given by

k[x1, x2]
C2 = k[x2

1, x
2

2, x1x2]. (9)
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Let F = (x2
1, x

2
2, x1x2) and let the new variables be u, v, w. Then the ideal of relations is obtained by

eliminating x1, x2 from the equations

u = x2

1,

v = x2

2
,

w = x1x2. (10)

If we use the lex order with x1 > x2 > u > v > w, then a Groebner basis for the ideal JF = 〈u − x2
1, v −

x2

2, w − x1x2〉 consists of the polynomials

x2

1 − u, x1x2 − w, x1v − x2w, x1w − x2v, x2

2 − v, uv − w2. (11)

It follows from Proposition 3 that IF = 〈uv −w2〉. This says that all relations between x2
1, x

2
2, and x1x2 are

generated by the obvious relation x2
1x

2
2 = (x1x2)

2
. Then, Proposition 2 shows that the ring of invariants can

be written as

k[x1, x2]C2 ∼= k[u, v, w]/〈uv− w2〉. (12)

Example 2. The cyclic matrix group C4 ⊂ GL(2, k) of order 4 can be generated by

A =

(

0 −1
1 0

)

(13)

and

k[x1, x2]C4 = k[x2

1
+ x2

2
, x3

1
x2 − x1x

3

2
, x2

1
x2

2
]. (14)

Putting F = (x2

1 + x2

2, x
3

1x2 − x1x
3

2, x
2

1x
2

2), the ideal IF ⊂ k[u, v, w] is given by IF = 〈u2w − v2 − 4w2〉. By
Proposition 2, the ring of invariants can be written as

k[x1, x2]C4 ∼= k[u, v, w]/〈u2w − v2 − 4w2〉. (15)

3 Rings of invariants for the Salingaros’ groups

In this section we describe the process of computing the syzygy ideals of Salingaros’ vee groups Gp,q ⊂ C`p,q

of orders 4, 8, and 16 using the above Propositions and SymGroupAlgebra, a package for Maple [1].

3.1 The groups of order 4

The vee groups G1,0 and G0,1 of order 4 are isomorphic to D2
∼= Z2×Z2

∼= C2×C2 and Z4
∼= C4, respectively.

Computation of their irreducible representations of degree 2 and higher can be found in [2]. Now consider
results for the above groups separately.

First, consider the group G1,0
∼= C2 × C2 which we can write as the matrix group G1,0 = {E, A, B, C}

where

E =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, A =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









,

B =









−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









, C =









−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (16)
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The ring of invariants k[x1, x2, x3, x4]G1,0 is computed using Theorem 1. It is generated by six polynomials.
That is,

k[x1, x2, x3, x4]G1,0 = k[x2

1, x2

2, x2

3, x2

4, x1x2, x3x4]. (17)

Then the two non-trivial relations on these polynomials are exactly the two polynomials in y1, . . . , y6 gener-
ating IF as shown below.

IF = 〈y2

2 − y1y3, y2

5 − y4y6〉. (18)

Now consider the group G0,1
∼= C4 which we can realize as the matrix group G0,1 = {E, A, B, C} where

E =

(

1 0
0 1

)

, A =

(

0 −1
1 0

)

, B =

(

−1 0
0 −1

)

, C =

(

0 1
−1 0

)

(19)

The ring of invariants k[x1, x2]G0,1 is again computed using Theorem 1. It is generated by three polyno-
mials. That is,

k[x1, x2, x3, x4]
G1,0 = k[x2

1x
2

2, x2

2 + x2

1, x3

1x2 − x1x
3

2]. (20)

Then there is only one non-trivial polynomial relation in y1, . . . , y3 generating IF as shown below.

IF = 〈y2y
2

3
− y2

1
− 4y2

2
〉. (21)

3.2 The groups of order 8

Since the vee groups G2,0, G1,1 and G0,2 of order 8 are isomorphic to D4, D4 and Q4, respectively, their
character tables and their representations are computed in [2]. Now we present results for each of these
groups separately.

First, let’s consider G2,0. Using a degree 2 representation from [2], the ring of invariants k[x1, x2]G2,0

is found to be generated by twenty four polynomials while the ideal of relations IF happens to be the zero
ideal IF = 〈0〉. This means that there are no non-trivial relations among the invariants. The quotient ring
k[y1, . . . , y24]/IF is essentially isomorphic to k[y1, . . . , y24]. Intuitively, the quotient ring k[y1, . . . , y24]/IF is
a simplified version of k[y1, . . . , y24] where the elements of IF are ignored.

Now consider G0,2. The ring of invariants k[x1, x2]
G0,2 is generated by five polynomials. That is,

k[x1, x2]G0,2 = k[x2

1x
2

2, x4

2 + x4

1, x1x
5

2 − x5

1x2, x2

1x
6

2 + x6

1x
2

2, x5

1x2 − x1x
5

2]. (22)

Then, the three non-trivial relations on these polynomials are exactly the two polynomials in y1, . . . , y5

generating IF as shown below.

IF = 〈y2

3
− y1y5 + 2y2y5, y2

4
− y1 − 2y2, y2

5
− y2〉. (23)

3.3 The groups of order 16

The vee groups G3,0, G2,1, G1,2 and G0,3 of order 16 are denoted by Salingaros as S1, Ω1, S1, and Ω2,
respectively. Their character tables and their irreducible representations are computed in [2]. Now consider
results for each of these groups separately.
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First consider G3,0 or G1,2. Then, using the degree 2 representations from [2], rings of invariants
k[x1, x2]G3,0 and k[x1, x2]G1,2 are computed. Each of them is generated by thirteen polynomials. Later,
we compute the corresponding syzygy ideals. Then, the sixty one non-trivial relations on these polynomials
are exactly the sixty one polynomials in y1, . . . , y13 generating IF as shown below.

IF = 〈y1y12y13 − y2y10 − y2y11 + y4y11, y2

2 − y1y3 + y3y5 − 2y2

5 , y2y3 − y1y4 + y2y5 − y4y5, y2

3 − y1y5 − 2y2

5 ,

y2y4 − y1y5 − y3y5, y3y4 − y2y5 − y4y5, y2

4
− y3y5 − 2y5, y2y6 − y1y7 + y3y9 − 2y5y9, y3y6 − y1y8 + y2y9−

y4y9, y4y6 − y1y9 − y3y9, y5y6 − y2y9, y2

6 − y1y10 + y3y11 − 2y5y11, y2y7 − y1y8 + y2y9 − y4y9, y3y7 − y1y9

−2y5y9, y4y7 − y2y9 − y4y9, y5y7 − y3y9, y6y7 − y2y10, y2

7 − y1y11 − 2y5y11, y2y8 − y1y9 − y3y9, y3y8 − y2y9

−y4y9, y4y8 − y3y9 − 2y5y9, y5y8 − y4y9, y6y8 − y1y11 − y3y11, y7y8 − y2y11 − y4y11, y2

8 − y3y11 − 2y5y11,

y6y9 − y2y11, y7y9 − y3y11, y8y9 − y4y11, y2

9 − y5y11, y3y10 − y1y11 − 2y5y11, y4y10 − y2y11 − y4y11, y5y10

−y3y11, y6y10 − y1y12 + y2y13 − y4y13, y7y10 − y1y13 − 2y5y13, y8y10 − y2y13 − y4y13, y9y10 − y3y13, y2

10
−

y1 − 2y5, y6y11 − y2y13, y7y11 − y3y13, y8y11 − y4y13, y9y11 − y5y13, y10y11 − y3, y2

11 − y5, y2y12 − y1y13−

y3y13, y3y12 − y2y13 − y4y13, y4y12 − y3y13 − 2y5y13, y5y12 − y4y13, y6y12 − y1 − y3, y7y12 − y2 − y4, y8y12

−y3 − 2y5, y9y12 − y4, y10y12 − y6 − y8, y11y12 − y8, y2

12
− y10 − 2y11, y6y13 − y2, y7y13 − y3, y8y13 − y4,

y9y13 − y5, y10y13 − y7, y11y13 − y9, y13 − y11〉 (24)

Now consider G2,1. In a similar manner, the ring of invariants k[x1, x2]G2,1 is computed using Theorem 1.
It has been found to be generated by twenty four polynomials. The ideal of relations IF happens to be the
zero ideal.

For the group G0,3, the ring of invariants k[x1, x2]G0,3 is generated by twenty polynomials. Then the one
hundred and five non-trivial relations on these polynomials are exactly the one hundred and five polynomials
in y1, . . . , y20 generating IF as shown below.
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IF = 〈y4

11
− y1y

2

5
y17 + 4y3y

2

5
y17 − 6y3

5
y17, 4y2

5
y18y20 + y3

11
− y4y5y15, y1y

2

11
− 2y5y

2

11
− y1y4y13 + 4y2y5y13−

2y4y5y13, y2y
2

11 − y1y5y13 + 3y3y5y13 − 4y2

5y13, y3y
2

11 + 2y5y
2

11 − y2y5y13 + y4y5y13, y4y
2

11 − y3y5y13+

2y2

5
y13, y2

11
y20 − y3y5 + 2y2

5
, y1y16y20 − y2

11
− y2y12, y2y16y20 − y1y13 + y3y13 − 2y5y13, 2y1y17y20 + y2

11
−

2y2y13 + y4y13, y2y17y20 − y3y13 + y5y13, 2y3y17y20 − y2

11 − y4y13, y4y17y20 − y5y13, 4y5y17y20 + y2

11 − y4y13,

y1y18y20 − 2y5y18y20 − y2y15 + y4y15, y2y18y20 − y3y15 + y5y15, y3y18y20 + 2y5y18y20 − y4y15, y4y18y20−

y5y15, y1y19y20 − y2y16 − y2y17 + y4y17, y7y19y20 − y2y18 − 2y4y18, y2

2
− y1y3 + y3y5 − 2y2

5
, y2y3 − y1y4+

y2y5 − y4y5, y2

3 − y1y5 − 2y2

5 , y2y4 − y1y5 − y3y5, y3y4 − y2y5 − y4y5, y2

4 − y3y5 − 2y2

5 , y2y7 − y1y9 − y4y11,

y3y7 − y1y11 − y3y11 − 2y5y11, y4y7 − y2y11 − 2y4y11, y5y7 − y3y11 − y5y11, y2

7 − y2

11 − y2y12 + y4y13, y2y9

−y1y11 − y3y11, y3y9 − y2y11 − y4y11, y4y9 − y3y11 − 2y5y11, y5y9 − y4y11, y7y9 − y1y13 + y3y13, y2

9 − y2y13

+y4y13, y7y11 + y2

11 − y2y13 + y4y13, y9y11 − y3y13 + 2y5y13, y3y12 − y1y13 + y3y13 − 2y5y13, y4y12 − y2y13,

y5y12 − y3y13 + y5y13, y7y12 − y1y15 − y5y15, y9y12 − y2y15, y11y12 − y3y15 + y5y15, y2

12
− y1y16 + y3y17−

2y5y17, y7y13 − y3y15 − y5y15, y9y13 − y4y15, y11y13 − y5y15, y12y13 − y1y17 − y3y17, y2

13 − y3y17 − 2y5y17,

y7y15 − y2y16 + 2y4y17, y9y15 − y1y17 + 2y5y17, y11y15 − y2y17 + y4y17, y12y15 − y1y18 − y3y18, y13y15−

y3y18 − 2y5y18, y2

15 − y1y20 + 2y5y20, y3y16 − y1y17 − 2y5y17, y4y16 − y2y17 − y4y17, y5y16 − y3y17, y7y16−

y1y18 − y3y18 − 2y5y18, y9y16 − y2y18 − y4y18, y11y16 − y3y18, y12y16 − y1y19 + y2y20 − y4y20, y13y16 − y2y20

−y4y20, y15y16 − y7y19 + y9y20, y2

16 − y1 − 2y5, y7y17 − y3y18 − y5y18, y9y17 − y4y18, y11y17 − y5y18, y12y17

−y2y20, y13y17 − y4y20, y15y17 − y9y20, y16y17 − y3, y2

17 − y5, y7y18 − y1y20 + y3y20, y9y18 − y2y20 + y4y20,

y11y18 − y3y20 + 2y5y20, y12y18 − y7y19 + 2y9y20, y13y18 − y9y20, y15y18 − y2 + y4, y16y18 − y7 + y11, y17y18

−y11, y2

18
− y16y20 + 2y17y20, y2y19 − y1y20 − y3y20, y3y19 − y2y20 − y4y20, y4y19 − y3y20 − 2y5y20, y5y19−

y4y20, y9y19 − y7y20 − y11y20, y11y19 − y9y20, y12y19 − y1 − y3, y13y19 − y3 − 2y5, y15y19 − y7 − y11, y16y19

−y12 − y13, y17y19 − y13, y18y19 − y15, y2

19 − y16 − 2y17, y12y20 − y2, y13y20 − y4, y15y20 − y9, y2

20 − y17, y6

+y7 , y8 + y9, y10 + y11, y14 + y15〉. (25)

4 Conclusions

In this article, the theory of invariants of finite groups has been applied to irreducible representations of
Salingaros’ vee groups. In particular, we have discussed the rings of invariants and the syzygy ideals for
Salingaros’ vee groups of orders 4, 8 and 16.

In Section 2, the author summarized important results regarding the theory of invariants of finite group
which she used in Section 3 to compute the rings of invariants and the syzygy ideal for the Salingaros’ vee
groups of orders 4, 8 and 16.

All computations were performed with a help of the Maple package SymGroupAlgebra.
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