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STEINHAUS PROPERTY IN BANACH LATTICES

DAMIAN KUBIAK AND DAVID TIDWELL

Abstract. We prove that a strictly monotone order continuous Banach lattice X over a non-atomic
measure space has the Steinhaus property, that is for every quasi-finite set A ⊂ X there is a dense set
Y ⊂ X such that for every y ∈ Y and for every positive integer n there exists an open ball centered at
y which contains exactly n points of A. We present several examples of spaces satisfying and failing the
Steinhaus property. We also deliver detailed proofs of some important and known results connected
with the Steinhaus property.

1. Introduction

Hugo Steinhaus in 1957 in a polish journal for high school teachers “Matematyka” raised a question
[3] of existence of a circle in the plane surrounding exactly n points of the integer lattice Z×Z, n ∈ N.
The answer to that question is affirmative and can be found in [4] or [1]. In fact, it is possible to
show that there exists a dense set Y ⊂ R2 such that for every y ∈ Y and for every integer n there is
a circle surrounding exactly n points of Z× Z. That problem have been generalized by P. Zwoleński
in 2011 [5] in the following way. An infinite set A in a metric space X is said to be quasi finite if
every open ball in X contains finitely many elements of A. We say that a Banach space (X, ‖ ·‖X) has
the Steinhaus property if for every quasi-finite set A ⊂ X there exists a dense set Y ⊂ X such that
for every y ∈ Y and every n ∈ N there exists an open ball B centered at y which contains exactly n
elements of A. Zwoleński showed that every Hilbert space has the Steinhaus property.

In a preprint from 2013, T. Kochanek found an equivalent condition for the Steinhaus property in
Banach spaces. He also showed that the Lp spaces over a non-atomic measure space have the Steinhaus
property if 1 6 p < ∞ [2]. We present a generalization of that result in section 4. In section 3 give
detailed proofs of some Kochanek’s results.

2. Preliminaries

Let X be a Banach space over R. By S(x, r) and B(x, r) we denote the sphere and the ball centered
at x ∈ X and radius r > 0, respectively. We also write S(X) = S(0, 1) and B(X) = B(0, 1) to denote
the unit sphere and the unit ball of X.

Let (Ω,Σ, µ) be a σ-finite complete measure space. By L0 = L0(Ω) we denote the set of all
(equivalence classes with respect to the equality µ-a.e. of) measurable extended-real valued functions
on Ω. Let (E, ‖ · ‖E) be a Banach lattice on (Ω,Σ, µ), that is E ⊂ L0 and if |x| 6 |y| µ-a.e. on Ω,
x ∈ L0, y ∈ E then x ∈ E and ‖x‖E 6 ‖y‖E . For any function x ∈ L0, the support of x is defined by
supp(x) = {t ∈ Ω : x(t) 6= 0}. An element x ∈ E is called order continuous if for every 0 6 xn 6 |x|
such that xn ↓ 0 µ-a.e. it holds ‖xn‖E → 0.

We say that a Banach lattice (E, ‖ · ‖E) is strictly monotone if for all x, y ∈ E, ‖y‖E < ‖x‖E
whenever 0 6 y 6 x and x 6= y.

Date: May 11, 2015.
2010 Mathematics Subject Classification. 46B20, 46B04, 51M04.
Key words and phrases. Steinhaus property, lattice points problem, Banach lattice.
Some results from this report are part of the second named author’s Master Thesis defended at the Tennessee

Technological University on April 14, 2015.

1



2 DAMIAN KUBIAK AND DAVID TIDWELL

3. Steinhaus property in Banach spaces

In this section we provide elaborated proofs of some results obtained in [2].

Theorem 3.1 ([2]Th. 2). A Banach space (X, ‖ ·‖) has the Steinhaus property if and only if for every
x, y ∈ S(X) and for every δ > 0 there exists z ∈ X such that ‖z‖ < δ and max{‖x + z‖, ‖y + z‖} >
1 > min{‖x+ z‖, ‖y + z‖}.

Proof. Suppose that X has the Steinhaus property. Let x, y ∈ S(X), x 6= y and δ ∈ (0, 1). Let
A = {y, x, 2x, 3x, . . .}. Clearly A is quasi-finite. By the Steinhaus property there is u ∈ B((δ/4)x, δ/4)
such that for some r > 0, B(u, r) contains exactly one element of A. Since

‖x− u‖ 6 ‖x− (δ/4)x‖+ ‖(δ/4)x− u‖ < 1,

without loss of generality we can assume that x ∈ B(u, r), y /∈ B(u, r) and r < 1. We have that
‖u‖ 6 ‖u− (δ/4)x‖+ ‖(δ/4)x‖ < δ/2. Hence by the triangle inequality

(1) 1− δ/2 < ‖x− u‖ < r 6 ‖y − u‖ < 1 + δ/2.

It follows that r = 1− ε for some ε ∈ (0, δ/2). Let ρ be any number satisfying

(2) 0 < ρ < r − ‖x− u‖.
From (1) we have that ρ < δ/2− ε. Define w = y − u, v = −(ε+ ρ)w/‖w‖ and z = −(u+ v). Clearly
‖v‖ = ε+ ρ and by (1) ‖w‖ > r. It follows that ‖z‖ = ‖u+ v‖ 6 ε+ ρ+ δ/2 < δ and

‖y + z‖ = ‖y − (u+ v)‖ = ‖w(1 + (ε+ ρ)/‖w‖)‖ = ‖w‖+ ε+ ρ > r + ε+ ρ > 1.

Moreover by (2)

‖x+ z‖ = ‖x− (u+ v)‖ 6 ‖x− u‖+ ‖v‖ < r − ρ+ ε+ ρ = r + ε = 1.

Hence max{‖x+ z‖, ‖y + z‖} > 1 > min{‖x+ z‖, ‖y + z‖}.
Now assume that for every x, y ∈ S(X) and for every δ > 0 there exists z ∈ X such that ‖z‖ < δ

and max{‖x+ z‖, ‖y + z‖} > 1 > min{‖x+ z‖, ‖y + z‖}. Let A ⊂ X be a quasi-finite set. Define

(3) Gn = {x ∈ X : |A ∩B(x, r)| = n for some r > 0}, n ∈ N ∪ {0}.
Fix n ∈ N. First we show Gn is open. Let x ∈ Gn, that is there is r > 0 such that |A ∩B(x, r)| = n.
Let 0 < ε < min{r−‖x− a‖ : a ∈ A and ‖x− a‖ < r}. It follows that A∩B(x, r) ⊂ B(x, r− ε). Now
for y ∈ B(x, ε/2) and a ∈ A ∩B(x, r),

‖y − a‖ 6 ‖x− a‖+ ‖y − x‖ < r − ε+ ε/2 = r − ε/2.

Moreover, for c ∈ A \B(x, r),

‖y − c‖ > |‖y − x‖ − ‖x− c‖| > r − ε/2.

Hence |A ∩B(y, r − ε/2)| = n, that is y ∈ Gn. Hence Gn is open.
Now we show that each Gn is dence in X. Assume towards contradiction that there is n ∈ N such

that Gn is not dense in X. Hence there is an open ball B(x0, r0), x0 ∈ X, r0 > 0 such that

(4) Gn ∩B(x0, r0) = ∅.
By definition of Gn, either |A∩B(x0, r0)| > n or |A∩B(x0, r0)| < n. Since A is quasi-finite by taking
r0 large enough, we assume, without loss of generality, that |A ∩B(x0, r0)| > n.

Define I0 = A ∩ B(x0, r0), J0 = A ∩ S(x0, r0) and L0 = A \ (I0 ∪ J0). Clearly |I0| + |J0| > n. Let
δ0 = r0.

Suppose that for a positive integer i, for all j ∈ {1, 2, . . . , i − 1}, xj , δj , Ij , Jj and Lj are defined
and satisfy |Ij |+ |Jj | > n,

(5) xj ∈ B(x0, r0),

‖xj − b‖ < ‖xj − c‖ for all b ∈ Jj , c ∈ Lj , and if Ij 6= ∅ then ‖xj − a‖ < ‖xj − b‖ for all a ∈ Ij , b ∈ Jj .
Clearly, all the assumptions are satisfied if i = 1.
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Let Di = {m < n : |A ∩ B(xi−1, r)| = m for some r > 0}, mi = maxDi and ri = max{r > 0 :
|A ∩ B(xi−1, r)| = mi}. Note that ri exists because A is quasi-finite. Define Ii = A ∩ B(xi−1, ri),
Ji = A ∩ S(xi−1, ri) and Li = A \ (Ii ∪ Ji). Clearly |Ii| = mi and |Ii|+ |Ji| > n. Let ki = |Ji|. Since
A is quasi-finite we can define a positive number

(6) λi = min{‖xi−1 − c‖ − ri : c ∈ Li}/2.

If |Ii|+ |Ji| = n then |A∩B(xi−1, ri + λi)| = n. Hence xi−1 ∈ Gn what by (5) contradicts (4) and the
proof denseness of Gn is finished.

Since |Ji| = 1 implies that |Ii|+|Ji| = n, by the above, we may assume that |Ji| > 1 and |Ii|+|Ji| > n.
Assuming that min ∅ =∞ we define

(7) γi = min{ri − ‖xi−1 − a‖ : a ∈ Ii}/2
and choose a positive number δi such that

(8) δi < min{δi−1, λi, γi}/(ri2i).

By |Ji| > 1 we choose two distinct elements b
(1)
i , b

(2)
i ∈ Ji. Since (xi−1 − b)/ri ∈ S(X) for every

b ∈ Ji by the assumption we get that there is zi ∈ X with ‖zi‖ < δi such that ‖(xi−1−b(1)
i )/ri+zi‖ < 1

and ‖(xi−1 − b(2)
i )/ri + zi‖ > 1. Defining xi = xi−1 + rizi we get that

‖xi − b(1)
i ‖ < r1 and ‖xi − b(2)

i ‖ > r1.

Moreover

‖xi − x0‖ 6 ‖xi−1 − x0‖+ ri‖zi‖ 6 r1‖z1‖+ r2‖z2‖+ . . .+ ri‖zi‖ < r0

i∑
j=1

2−j < r0.

Hence xi ∈ B(x0, r0). We have that for all b ∈ Ji and for every c ∈ Li,

‖xi− b‖ 6 ‖xi−1− b‖+ri‖zi‖ < ‖xi−1− b‖+λi 6 ‖xi−1− b‖+(‖xi−1− c‖−ri)/2 = (ri +‖xi−1− c‖)/2
and for all c ∈ Li,

‖xi−c‖ = ‖xi−1−c−(−rizi)‖ > ‖xi−1−c‖−λi > ‖xi−1−c‖−(‖xi−1−c‖−ri)/2 = (ri+‖xi−1−c‖)/2.

Furthermore, if Ii 6= ∅ then for all a ∈ Ii,,
‖xi−a‖ 6 ‖xi−1−a‖+ri‖zi‖ < ‖xi−1−a‖+γi 6 ‖xi−1−a‖+(ri−‖xi−1−a‖)/2 = (ri+‖xi−1−a‖)/2
and for all a ∈ Ii and for every b ∈ Ji,
‖xi−b‖ = ‖xi−1−b−(−rizi)‖ > ‖xi−1−b‖−γi > ‖xi−1−b‖−(ri−‖xi−1−a‖)/2 = (ri+‖xi−1−a‖)/2.

Now we see that all the assumptions which held true for i − 1, hold true for i. By (3.1) we get that
|Ji| < |Ji−1| if i > 2. Therefore we can repeat the process until a contradiction with non denseness of
Gn is found.

Since all the sets Gn, n ∈ N are open and dense, by the Baire Category Theorem the set Y = ∩∞n=1Gn

is dense in X. It follows that for all y ∈ Y and n ∈ N there exists an open ball B(y, r), r > 0 such
that |A ∩B(y, r)| = n. Hence X satisfies the Steinhaus property.

�

By using the above characterization we can prove the following result.

Theorem 3.2 ([2] Cor. 3). Every strictly convex Banach space satisfies the Steinhaus property.

Proof. Suppose that X is strictly convex. Let x, y ∈ S(X), x 6= y and δ > 0. Define z = (δ/4)x −
(δ/4)y. Clearly ‖z‖ < δ. Recall that strict convexity of X gives ‖αx+ (1−α)y‖ < 1 for all α ∈ (0, 1).
Hence by taking α = 1− (δ/4), ‖y + z‖ < 1. By the triangle inequality ‖x+ z‖ > 1. If ‖x+ z‖ = 1,
since x 6= x+ z, strict convexity of X gives ‖x+ (1/2)z‖ < 1. However

‖x+ (1/2)z‖ = ‖(1 + δ/8)x− (δ/8)y‖ > 1.
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That is a contradiction. Hence ‖x + z‖ > 1. By Theorem 3.1 we get that X has the Steinhaus
property. �

4. Steinhaus property in some Banach lattices

In this section we prove that a large class of Banach lattices over a non-atomic measure space
satisfies the Steinhaus property.

Lemma 4.1. A strictly monotone Banach lattice (E, ‖ · ‖E) has the Steinhaus property if and only
if for every x, y ∈ S(E), x, y > 0, x 6= y and for every δ > 0 there is z ∈ E with ‖z‖ < δ such that
max{‖x+ z‖E , ‖y + z‖E} > 1 > min{‖x+ z‖E , ‖y + z‖E}.

Proof. Let x, y ∈ S(E), x 6= y and δ > 0. Let D = {t ∈ Ω : x(t) 6= y(t)}. If sign(x) 6= sign(y) then,
without loss of generality, there is a measurable set C ⊂ D with positive measure such that x(t) < 0,
y(t) > 0 and y(t)−x(t) > η for all t ∈ C and some η > 0. Let a measurable set B ⊂ C with µ(B) > 0
and β > 0 be such that β 6 |x(t)| for t ∈ B. Let 0 < γ 6 min{β, η} be so small that z = (γ/2)χB has
‖z‖ < δ. Note that by the choice of β, 0 6 z 6 |x|, hence z ∈ E. Clearly |x+z| 6 |x|, |x+z| 6= |x| and
|y + z| > |y|, |y + z| 6= |y|. Since E is strictly monotone we get that ‖x+ z‖E < 1 and ‖y + z‖E > 1.

If sign(x) = sign(y) then |x| 6= |y|. By the assumption there exists z̃ ∈ E with ‖z̃‖ < δ such that
max{‖|x| + z̃‖E , ‖|y| + z̃‖E} > 1 > min{‖|x| + z̃‖E , ‖|y| + z̃‖E}. By taking z = z̃ sign(x) the claim
follows. �

Theorem 4.2. Let (E, ‖·‖E) be a strictly monotone order continuous Banach lattice on a non-atomic
measure space. Then (E, ‖ · ‖E) has the Steinhaus property.

Proof. We apply Lemma 4.1. Let x, y ∈ S(E), x, y > 0, x 6= y and δ > 0. Without loss of generality,
there is a measurable set D with positive measure and η > 0 such that y(t) − x(t) > η for t ∈ D.
Since E is order continuous and the measure space is non-atomic there is a measurable set C ⊂ D
with µ(C) > 0 such that 0 < ‖(x+ y)χC‖E < δ. Let z = −(x+ y)χC . We get that |x+ z| > x+ ηχC

and |y + z| 6 y − ηχC . Now by applying the strict monotonicity of E the claim follows. �

Strict monotonicity of a Banach lattice over a non-atomic measure space is not sufficient for the
Steinhaus property. An example which shows that is the space (L1∩L∞)(Ω,Σ, µ) over a finite measure
space such that µ(Ω) > 1 and equipped with the norm ‖f‖ = ‖f‖1 + ‖f‖∞. To see that it is enough
to take pairwise disjoint measurable sets A,B,C ⊂ Ω with positive measure such that

(µ(A) + 1)(1 + η) < µ(B) + µ(C)

for some small η > 0 and µ(B) = µ(C), and define

f =
1

2

1

µ(A) + 1
χA +

1

2

1

µ(B) + µ(C)
χB∪C

and

g =
1

2

1

µ(A) + 1
χA +

1

2

1− η
µ(B) + µ(C)

χB +
1

2

1 + η

µ(B) + µ(C)
χC

and take δ ∈ (0,m), where

m = min

{
1

2

(
1

2

1

µ(A) + 1
− 1

2

1 + η

µ(B) + µ(C)

)
,
1

2

1− η
µ(B) + µ(C)

}
.

Observe that ‖h‖ < δ implies |h| 6 δ µ-a.e. on Ω. Hence f + h > 0, g + h > 0, ‖f + h‖∞ =
‖(f + h)χA‖∞ = ‖(g + h)χA‖∞ = ‖g + h‖∞ and ‖f + h‖1 = ‖g + h‖1.

An example of an order continuous non strictly monotone Banach lattice over a non-atomic measure
space is the space (L1 + L∞)(Ω,Σ, µ) such that µ(Ω) <∞ equipped with the norm

‖f‖ = inf{max{‖g‖1, ‖h‖∞} : f = g + h, g ∈ L1, h ∈ L∞}.
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In view of Theorem 4.2 this space may be considered in order to determine whether the assumption of
order continuity itself is also not sufficient for the Steinhaus property. Unfortunately, we were unable
to establish whether (L1 + L∞) fails the Steinhaus property or not.

An example of a Banach lattice which fails the Steinhaus property is L∞(Ω,Σ, µ) over a non-atomic
measure space. Indeed, it is enough to consider f = χA + (1/2)χΩ\A and g = χA + (1/4)χΩ\A, where
A is a measurable set with positive measure such that µ(Ω \A) > 0.

An example of a non strictly convex Banach space which satisfies the Steinhaus property is L1(Ω,Σ, µ)
over a non-atomic measure space. That is the case since L1 is a strictly monotone Banach lattice.
Note that the sequence space `1 fails the Steinhaus property. To see that it is enough to consider
x = (1/2, 1/2, 0, 0, . . .) and y = (2/5, 3/5, 0, 0, . . .).
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