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PROOF FRAMEWORKS—A WAY TO GET STARTED 

 

Annie Selden, John Selden, and Ahmed Benkhalti1 

 

Abstract:  Many mathematics departments have instituted transition-to-proof 

courses for second semester sophomores to help them learn how to construct 

proofs and prepare for proof-based courses, such as abstract algebra and real 

analysis. We have developed a way of getting students, who often stare at a 

blank piece of paper not knowing what to do, started on writing proofs. This is 

the technique of writing proof frameworks, based on the logical structure of 

the statement of the theorem and associated definitions. Often there is both a 

first-level and a second-level proof framework.  

Key Words: Transition-to-proof courses, proof frameworks, operable 

interpretations of definitions. 

 

1. INTRODUCTION 

Have you ever heard a student say about writing proofs, “I just don’t know 

where to start”? This is a commonplace lament heard by just about every 

transition-to-proof course teacher. It has even been documented several times 

in the mathematics education research literature. For example, Moore [7], in 

one of the first studies of transition-to-proof courses, found seven major 

sources of students’ difficulties in constructing proofs, one of them being, 
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2 

 

“The students did not know how to use definitions to obtain the overall 

structure of proofs . . . despite diligent studying.” Baker and Campbell [1] 

investigated what hinders transition-to-proof course students’ proof writing. 

They observed that “While it appeared that the students seemed to have little 

trouble understanding and comprehending the basic laws of logic … many 

students experienced a type of mental block when the transition was made into 

mathematical proof construction, seeming either unable to comprehend the 

purpose of this type of writing or unclear on how to proceed in constructing 

such arguments.” Edwards and Ward [4], in their research on students’ 

(mis)use of definitions, found that, “Many students do not use definitions the 

way mathematicians do, even in the apparent absence of any other course of 

action.” Selden, McKee, and Selden [10] reported instances of students’ 

tendencies to write proofs from the “top-down” and their reluctance to unpack 

and use the conclusion to structure their proofs.  

Students’ difficulty getting started on writing proofs is not in question—

those of us who teach transition-to-proof courses have seen it. The question is: 

What can be done about it? We think we have an effective solution to the 

difficulty; namely, begin by teaching students to write proof frameworks2. 

Before going into detail about this technique, we would like to tell you a little 

about how we teach our transition-to-proof courses. 

2. OUR TRANSITION-TO-PROOF COURSES 

                                                           
2 Selden and Selden first introduced the idea of proof frameworks in [15], but have expanded on it 

since then. 
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We feel that students learn to construct proofs best by learning through 

experience—that learning to prove theorems is a skill, somewhat like learning 

a physical skill. Thus, when we teach a transition-to-proof course, whether for 

undergraduates or for beginning graduate students in need of help in writing 

proofs, we maximize student experiences by teaching from brief notes and not 

lecturing. We have students present their proofs in class3 and introduce them 

to a way of getting started writing proofs that we call proof frameworks. The 

course notes contain definitions, requests for examples, questions, and 

statements of theorems to prove.  The students prove the theorems outside of 

class, present their proof attempts in class on the blackboard, and receive 

extensive critiques. The critiques consist of careful, oral, line-by-line readings 

to determine if they guarantee the theorem is true, along with occasional 

suggestions. This is followed by a second reading of the students’ proof 

attempts, indicating how they might have been written in “better style” to 

conform to the genre of proofs [12]. Once these corrections and suggestions 

have been made, the student who made the proof attempt is asked to write it 

up carefully, incorporating any corrections and suggestions, for duplication 

for the entire class. In this way, by the end of the semester, all students receive 

a correct, well-written proof for each theorem in the course notes. Sometimes, 

if the students seem to need it, there are mini-lectures on topics such as logic 

or proof by contradiction.  

                                                           
3 In some ways, the course resembles a very Modified Moore Method course [3, 5] or a science 

lab. 
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The homework, assigned each class period, consists of requests for proofs 

of the next two or three theorems in the course notes. It is not graded, but at 

the beginning of the next class, students show their proof attempts to the first 

author, who determines “on the spot”, based on the students’ written work, 

which students will be asked to present their proof attempts on the blackboard 

that day. Occasionally, a proof attempt with an interesting error is selected 

over other proofs. In addition to presenting their attempted proofs in class, the 

students have both take-home and in-class final examinations, each of which 

consists of four theorems, new to them, to prove. The mathematical topics 

considered in the course include sets, functions, continuity, and beginning 

abstract algebra in the form of a few theorems about semigroups and 

homomorphisms, and for graduate students, some point set topology. The 

teaching aim is to facilitate students’ learning of the proof construction 

process through experience by having them construct as many different kinds 

of proofs as possible4, especially in abstract algebra and real analysis, and not 

to learn a particular mathematical content.  

 We mention several times to our classes that, although we 

occasionally note especially good work, we are not grading them on the 

theorems they present and that we regard mistakes as opportunities to learn. 

Most important, we point out that telling another student how to prove a 

theorem is not a favor, as it takes away the other student’s opportunity to 

                                                           
4 In large classes, while students may not get to the board very often, they benefit from seeing 

other students’ proofs critiqued. 
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experience how to prove it.  

Next we discuss students’ difficulty with where to start writing proofs. 

3. PROOF FRAMEWORKS AND ACTIONS IN PROVING 

When students are first learning to prove theorems, many actions5 can 

become routine. It may seem surprising, but a great deal of what one does 

when writing a straightforward proof can be done almost on “automatic pilot”, 

rather like stopping a car at a red light while talking to a passenger. One of the 

things that can be done this way is the writing of a proof framework to 

structure a straightforward proof. So what is a proof framework? 

Proof frameworks are determined by the logical structure of the statement 

of the theorem to be proved. The most common form of theorem in our course 

notes is: Some quantified variables; then “If P”, where P is a predicate about 

those variables; followed by “then Q”, where Q is another predicate involving 

some of the variables. 

A proof framework starts by introducing the variables. If, for example, 

“For all a ϵ A” occurs in the theorem statement, one writes in the emerging 

proof “Let a ϵ A”, in which case a is henceforth regarded as fixed, but 

unspecified. If “there is a b ϵ B” occurs, one must “find/create” such a b and 

leave a space to insert or explain that. Typically, one works out what b should 

be near the end of a proof construction. If the quantifiers are mixed, some “for 

all” and some “there exist”, then in the proof these should be introduced in the 

                                                           
5 Our theoretical perspective on actions in the proving process can be found in Selden and Selden 

[13]. 
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same order as in the statement of the theorem. This avoids inadvertently 

changing the meaning of the theorem during the proving process6. Where the 

theorem statement says “If P”, one writes in the proof, “Suppose P” and 

leaves a space for further portions of the proof. Where the theorem statement 

says “then Q”, one writes at the end of the emerging proof “Therefore Q”. 

This produces the first-level of the proof framework. 

At this point, in the process of writing a proof framework, the student 

should focus on Q and “unpack” its meaning, that is, remember or look up its 

definition, being careful to change the names of the variables to fit the proof at 

hand. It may happen that the meaning of Q has the same logical form as the 

original theorem. In that case, one can repeat the above process, providing a 

second-level proof framework which is written into the blank space between 

the “Suppose P and the “Therefore Q”. If in writing the second-level 

framework, some variables have already been introduced, one does not re-

introduce them. 

All of this may seem rather complicated to explain, but it is much easier to 

understand in practice, and is illustrated below in our sample proofs. Also, 

once students can produce and use a proof framework for the above “If P, then 

Q” logical structure, it appears to be relatively easy to introduce frameworks 

for the seven or so other logical structures in our course7. Finally, we are not 

                                                           
6 The need for this is easily seen by comparing “For all x∊ℕ, there is a y∊ℕ such that x≤y” with 

“There is a y∊ℕ such that for all x∊ℕ,  x≤y”. 
7 For example, a proof involving cases or a proof by contradiction each have their own proof 

framework. 
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claiming that mathematicians write proofs in the way we are describing, but 

only that doing so will be helpful for students and that mathematicians will 

accept the results.   

Next we will provide a sample proof framework of an elementary set 

theory theorem.  

4. A PROOF FRAMEWORK FOR A THEOREM ABOUT SETS 

Here is the theorem: 

       Theorem. If A, B, and C are sets and C\B   C\A, then C∩A  C∩B. 

        We will illustrate our technique by writing the first-level proof 

framework, namely, using the “If” part to write the first line of the emerging 

proof, skipping a space (here indicated by an ellipsis), and then writing the 

last line of the proof. Thus: 

Theorem. If A, B, and C are sets and C\B   C\A, then C∩A  C∩B. 

Proof:  

Let A, B, and C be sets. Suppose C\B  C\A.  

    . . . 

Therefore, C∩A  C∩B.  QED. 

 This completes the first-level framework. Next, one should focus on the 

last line of the proof to determine what is to be proved. In this case, it is a set 

inclusion. One then looks up, or remembers, the definition of set inclusion and 

uses it in its operable form (discussed below). Accordingly, one knows how 

the second line and the second-to-last line should be written. Thus:  
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Theorem. If A, B, and C are sets and C\B   C\A, then C∩A  C∩B. 

Proof:  

Let A, B, and C be sets. Suppose C\B  C\A.  

Suppose x  C∩A. 

    . . . 

Thus x  C∩B.  

Therefore, C∩A  C∩B.  QED. 

 This gets one a long way towards a proof, but of course, there next needs 

to be some genuine problem solving, and perhaps exploration on scratch 

work, to fill in the middle (the ellipsis). For completeness, we give the entire 

proof. Thus: 

Theorem. If A, B, and C are sets and C\B   C\A, then C∩A  C∩B. 

Proof:  

Let A, B, and C be sets. Suppose C\B  C\A.  

Suppose x  C∩A. So x  C and x  A. 

Suppose to the contrary x  B.  

Then x C\B, so x  C\A. Thus x  A. This is a contradiction.  

So x  B. 

Thus x  C∩B.  

Therefore, C∩A  C∩B.  QED. 



 

 

9 

 

 We are not claiming that teaching mid-level university mathematics 

students to write proof frameworks is a panacea, but it gives students a start so 

they won’t just stare at a blank piece of paper.  

To indicate the usefulness of proof frameworks, we provide a real life 

anecdote. We taught a graduate student who, considerably later, was taking 

her real analysis PhD comprehensive examination consisting of eight (original 

to her) theorems to prove in three hours. Afterwards, she reported to us that 

upon reading one of the theorems, she panicked, but then controlled herself 

and decided to write a proof framework. Just this simple act oriented her to 

the “real problem” at hand, relieved her anxiety, and allowed her to proceed to 

construct a proof. 

5. A PROOF FRAMEWORK FOR A REAL ANALYSIS THEOREM  

 Writing proof frameworks can get more complicated as the proofs 

themselves get more complicated and as they begin to involve several mixed 

quantifiers. For beginning students of real analysis, proofs of the N or  

type are notoriously difficult, both to understand and to structure. We will 

give an example using the following theorem on sequence convergence8: 

Theorem: Let {an} and {bn} be sequences, both converging to L. If {cn} is the 

sequence given by cn=an when n is even and cn=bn when n is odd, then {cn} 

converges to L. 

                                                           
8 This theorem was previously used in McKee, Savic, Selden, and Selden [6] to illustrate proof co-

construction in a real analysis proving supplement. 



 

 

10 

 

As with the above theorem about sets, one begins by writing a first-level 

framework. To keep track of the order of the proving actions, we will number 

them sequentially using square brackets (e.g., [1]). 

Theorem: Let {an} and {bn} be sequences, both converging to L. If {cn} is the 

sequence given by cn=an when n is even and cn=bn when n is odd, then {cn} 

converges to L. 

Proof:  [1] Let {an} and {bn} be sequences and L be a number so that {an} and 

{bn} converge to L. Suppose {cn} is the sequence given by cn=an when n is 

even and cn=bn when n is odd.  

   . . . 

 [2] Therefore {cn} converges to L.   QED. 

 This completes the first-level framework. Next, to write the second-level 

proof framework, one unpacks the definition of sequence convergence and 

writes [3], [4]. [5], and [6], leaving three blank spaces, designated below by 

ellipses, to be filled in after one has done some scratch work calculations. 

Thus:  

Theorem: Let {an} and {bn} be sequences, both converging to L. If {cn} is the 

sequence given by cn=an when n is even and cn=bn when n is odd, then {cn} 

converges to L. 

Proof:  [1] Let {an} and {bn} be sequences and L∊ℝ so that {an} and {bn} 

converge to L. Suppose {cn} is the sequence given by cn=an when n is even 

and cn=bn when n is odd.  
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[3] Let ∊ℝ and>0.  

 . . . 

[4] Let N∊ℕ and N =  . . .   . 

[5] Suppose n>N. 

 . . . 

[6] Then | cn  - L|<. 

[2] Therefore {cn} converges to L.   QED. 

 This gets one a long way towards a proof, but of course, one needs to use 

the hypotheses ([7] and [8] below), “play with” the absolute value condition 

on , notice the joint dependency of Na and Nbon ,and conjecture an 

appropriate value for N. Doing so involves some genuine problem solving, 

and perhaps exploration in scratch work, to fill in the three spaces (the 

ellipses). For completeness, we next give the entire proof: 

Theorem: Let {an} and {bn} be sequences, both converging to L. If {cn} is the 

sequence given by cn=an when n is even and cn=bn when n is odd, then {cn} 

converges to L. 

Proof:  [1] Let {an} and {bn} be sequences and L be a number so that {an} and 

{bn} converge to L. Suppose {cn} is the sequence given by cn=an when n is 

even and cn=bn when n is odd.  

[3] ] Let ∊ℝ and>0.  

 

[7] Since {an} converges there exists an Na∊ℕ such that for all i∊ℕ if i> Na, 

then |ai - L|<. 
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[8] Since {bn} converges there exists an Nb∊ℕ such that for all j∊ℕ if  j> Nb, 

|bj - L|<. 

[4] Let N∊ℕ and     

[9] N = max{Na, Nb}.  

[5] Suppose n>N. 

[10] Case 1: Suppose n is even. Then |cn - L|=|an - L|<. 

[11] Case 2: Suppose n is odd. Then |cn - L|=|bn - L|<. 

[6] Then  |cn - L|<. 

[2] Therefore {cn} converges to L.   QED. 

 

 Students do not always come up with N=max{Na, Nb}. Sometimes they 

come up with N=Na+Nb, which also works. It is clear that having students learn to 

construct proof frameworks is indeed just a way to get started and there is really a 

great deal more to proving that cannot be proceduralized. But we are only 

claiming that the writing of proof frameworks gets students started. Once they get 

started and begin to write straightforward proofs, they often get a feeling that 

writing proofs is something they really can do. Then a budding sense of self-

efficacy, along with persistence9 will enable them to continue the journey to 

writing ever harder proofs. 

 For the above N proof, the order of the sequence of proving actions is 

quite different from the top-down order of the proof text itself. A student who had 

                                                           
9 Much of our theoretical perspective on the role of self-efficacy and persistence can be found in 

[11]. 
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not experienced this technique, who was trying to prove a similar but more 

difficult, theorem, might come up with a collection of relevant, but unordered 

pieces of information, which might then have to be assembled, rather like a jigsaw 

puzzle. We believe the need for such assembly would add to the difficulty of 

constructing this kind of proof.  

Unfortunately, early on there is another student difficulty that can impede the 

writing of a proof, and in particular, a second-level proof framework -- how to use 

a mathematical definition to structure a proof. Students need to be able to 

“unpack” mathematical definitions, as was done above in the sample set theory 

and sequence convergence proofs, in order to write a second-level proof 

framework. 

6. UNPACKING DEFINITIONS TO WRITE A SECOND-LEVEL 

PROOF FRAMEWORK 

In addition to knowing how to get started, that is, to write at least a first-level 

proof framework, we have noticed another problem with university students just 

beginning to prove theorems. Just as observed by Moore [7] and Edwards and 

Ward [4], beginning university students don’t consider mathematical definitions 

in the same way mathematicians do. Furthermore, they often don’t know how to 

use them as mathematicians would, even when they are considering what we 

would call straightforward definitions. Thus, we have come up with the idea of 

operable interpretations10 of definitions.   

                                                           
10 This is similar to Bills and Tall’s [2] idea of operable definitions. 
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Consider the following definition of the image of a set A under a function 

f. Let f: X  Y be a function and A  X. Then f(A) = { y | y ϵ Y and there is a ϵ 

A so that f(a) = y}. To use this definition, one really needs the following 

operable interpretation.  That is, one needs to know that if one has “q ϵ f(A)”, 

one can say “there is p ϵ A so that f(p) = q”. And conversely, one also needs to 

know that if one knows “p ϵ A”, then one can say “f(p) ϵ f(A)”.  One might 

expect that beginning transition-to-proof course students would be able to 

come to such operable interpretations of definitions by themselves, but we 

have observed that many do not.  

 To help our undergraduate transition-to-proof course students with 

learning to use mathematical definitions in their operable versions, we have 

provided students with two-column handouts containing operable 

interpretations of definitions that are in our notes. In the left-hand column is 

the definition as stated in our notes. Across from it, in the right-hand column, 

is the corresponding operable interpretation. That is, given the definition of 

the image of a set A under a function f, we would write across from the 

mathematical definition, “If you know q ϵ f(A), you can say ‘there is p ϵ A so 

that f(p) = q’.  Also, if you know p ϵ A, then one can say ‘f(p) ϵ f(A)’”.  Since 

for this course we are interested in getting students to construct proofs and not 

especially in having them memorize definitions, theorems, or their proofs, we 

let students use both the course notes and these operable interpretation 
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handouts not only on homework, but also on both the mid-term and final 

examinations. 

7. EXAMPLE OF NOT UNPACKING THE CONCLUSION AND 

WRITING FROM THE TOP-DOWN 

We have observed that, although some students may have misconceptions 

that impede their ability to write proofs, what actually seems to stop many 

students is beneficial actions they do not take, such as writing a proof 

framework, as well as detrimental actions they do take [9, 10]. Indeed, 

students often want to write proofs from the “top-down”. But, this detrimental 

action can divert students away from unpacking the conclusion and focusing 

on what is to be proved. 

To illustrate, we describe the behavior of Willy11, a student in our graduate 

“proofs course”.  Willy was trying to prove, toward the end of the course, the 

following: Theorem:  Let X  and Y  be topological spaces and :f X Y  be 

a homeomorphism of X onto Y .  If X  is a Hausdorff space, then so is Y .  

Willy had indicated that he had not yet proved the theorem. Thus, because 

only a little class time remained, we asked Willy to go to the board and write a 

proof framework. We thought this would be an easy task because, early on in 

the course, Willy had developed some ability to write proof frameworks.   

On the left side of the board, Willy wrote:  

Proof.  Let X  and Y  be topological spaces.   

                                                           
11 Willy’s behavior was described previously in Selden, McKee, and Selden [10] and we have 

adapted that description here. 
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Let :f X Y  be a homeomorphism of X onto Y .   

Suppose X  is a Hausdorff space.    

. . . 

Then Y  is a Hausdorff space.   

Then, on the right side of the board, he listed: 

homeomorphism 

one-to-one 

onto 

continuous ( f is open mapping)  

and then looked perplexedly back at the left side of the board.  Even after two 

hints to look at the final line of his proof, Willy said, “And, I was just trying to 

just think, homeomorphism means one-to-one, onto, …”  After some discussion 

about the meaning of homeomorphism, the first author said, “There is no harm in 

analysing what stuff you might want to use, but there is more to do before you can 

use any of that stuff”, meaning that the conclusion should be examined and 

unpacked first. The final quoted sentence was an implicit expectation of what we 

hoped Willy would eventually do. While it would have been convenient to tell 

Willy this explicitly, we did not. This is because our expectation is that all 

students will learn to work autonomously, and we thought that Willy, given time, 

could figure out what to do. Willy did not make further progress that day. 

We inferred that Willy was focusing on the meaning and potential uses of 

the hypotheses before examining and unpacking the conclusion.  This behaviour 
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can often lead to difficulties, as it did for Willy.  We conjectured that Willy and 

other students, who are reluctant to look at and unpack the conclusion feel 

uncomfortable about this, or perhaps feel it more appropriate to begin with the 

hypotheses and work forward.   

We also conjectured that, had Willy not been distracted by focusing on the 

meaning of homeomorphism, he might have written the second-level proof 

framework. That is, he might have filled in the blank space of his proof with 

something like: 

Let 
1y  and 

2y  be two elements of Y .  

     . . .  

Thus there are disjoint open sets U  and V  contained in Y so that 

1y U and 
2y V .   

As in Willy’s case, writing the first- and second-level proof frameworks 

exposes the “real problem” to be solved to complete the proof.  Indeed, by the 

next class meeting, Willy had constructed a proof in the way we had expected.  Of 

course, in addition to writing the first- and second-level proof frameworks, Willy 

needed to invoke some conceptual knowledge about homeomorphisms and the 

Hausdorff property. 

One might ask where the tendency of students to write proofs from the top-

down comes from.  According to Nachlieli and Herbst [8], it is the norm among 

U.S. high school geometry teachers to require students, when doing two-column 
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geometry proofs, to follow every statement immediately by a reason, and hence 

write from the top-down. However, given sufficient experience with writing proof 

frameworks, the initial tendency of many university students to write proofs in a 

top-down fashion tends to fade. In addition, we think that automating the actions 

required to write a proof framework eventually resolves the top-down difficulty 

and exposes the “real problem” to be solved in order to complete the proof [14]. 

Of course, the students have to remain attentive to the course long enough for this 

to happen.  

8. TEACHING IMPLICATONS 

Because students, when faced with a theorem to prove, often look at a blank 

piece of paper and don’t know where to start, we suggest that perhaps a good 

place to start is with explicitly teaching proof frameworks. Indeed, one can spend 

the first day or two of class, whether a regular lecture class or an inquiry-based 

class like ours, just having students write first- and second-level proof 

frameworks for proofs of theorems, without having to complete their proofs.  

Unfortunately, we have found that at first students tend to resist writing the 

second-level proof framework. We think this is because it involves writing in a 

way that is not from the “top-down”. We conjecture that, in most of their past 

experience, students have read proofs, and perhaps written them, from the top-

down. We suggest there should be enough practice exercises for students, not only 

to understand the rationale for writing proof frameworks, but also to form the 

habit of consistently writing proof frameworks to structure proofs. That is, they 
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should overcome their feeling of reluctance to write second-level proof 

frameworks. To accomplish this in a reasonable amount of time, it would 

probably be better to ask students to practice constructing only proof frameworks, 

not entire proofs, for practice problems. Early on, one might also consider giving 

very brief short-answer quizzes asking students to write both first- and second-

level proof frameworks.  

But there is the other difficulty, mentioned above, that occurs fairly often, 

namely, that of not using mathematical definitions correctly. Here we suggest that 

it might be a good idea to explicitly teach operable interpretations of definitions, 

perhaps by using our idea of two-column handouts. Alternatively, one might 

consider occasional brief small group discussions whose purpose is to develop 

operable interpretations for recently introduced definitions. At the end of such 

group discussions, the teacher might certify which interpretations are acceptable 

to the mathematical community. One might also consider very brief short-answer 

quizzes on operable interpretations of definitions.  
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