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Alice Slowly Develops Self-Efficacy with Writing Proof Frameworks, but Her Initial 

Progress and Sense of Self-Efficacy Evaporates When She Encounters Unfamiliar 

Concepts: However, It Eventually Returns1 
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We document Alice’s progression with proof-writing over two semesters. We analyzed 

videotapes of her one-on-one sessions working through the course notes for our inquiry-based 

transition-to-proof course. Our theoretical perspective informed our work and includes the view 

that proof construction is a sequence of mental and physical, actions. It also includes the use of 

proof frameworks as a means of getting started. Alice’s early reluctance to use proof 

frameworks, after an initial introduction to them, is documented, as well as her subsequent 

acceptance of and proficiency with them by the end of the real analysis section of the course 

notes, along with a sense of self-efficacy. However, during the second semester, upon first 

encountering semigroups, with which she had no prior experience, her proof writing 

deteriorated, as she coped with understanding the new concepts. But later, she began using 

proof frameworks again and regained a sense of self-efficacy.   

Key words: Transition-to-proof, Proof Construction, Proof Frameworks, Self-efficacy, Coping 

with Abstraction, Working Memory 

This case study focuses on how one non-traditional mature individual, Alice, in one-on-

one sessions, progressed from an initial reluctance to use the technique of proof frameworks 

(Selden & Selden, 1995; Selden, Benkhalti, & Selden, 2014) to a gradual acceptance of, and 

eventual proficiency with, both writing proof frameworks and completing many entire proofs 

with familiar content. We also consider how this approach to proof construction helped this 

individual gain a sense of self-efficacy (Bandura, 1994, 1995) with regard to proving, but later 

evaporated upon encountering unfamiliar abstract concepts. However, after some time she was 

able to return to using the technique of proof frameworks and regained a sense of self-efficacy. 

This study also further illuminates the well-known, documented tendency of students to write 

proofs from the top-down, who consequently are often unable to develop complete proofs.  

Theoretical Perspective 

 In our analysis and in our teaching, we consider proof construction to be a sequence of 

mental and physical actions, some of which do not appear in the final written proof text. Such a 

sequence of actions is related to, and extends, what has been called a “possible construction 

                                                           
1 This paper is based on two presentation on Alice given at the 19th and 20th Conferences on Research in 
Mathematics Education in 2016 and 2017. 
2 Annie Selden is Professor Emerita of Mathematics from Tennessee Technological University. John Selden is 

retired from and also formerly taught mathematics at Tennessee Technological University. The Seldens have 

retired to Las Cruces, New Mexico and are now Adjunct Professors of Mathematics at New Mexico State 

University. Ahmed Benkhalti an interdisciplinary PhD student of theirs at New Mexico State University.  
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path” of a proof, illustrated in Selden and Selden (2009). For example, suppose that in a partly 

completed proof, there is an “or” in the hypothesis of a statement yet to be proved: “If A or B, 

then C.” Here, the situation is having to prove this statement. The interpretation is realizing the 

need to prove C by cases. The resulting action is constructing two independent sub-proofs; one in 

which one supposes A and proves C, the other in which one supposes B and proves C. 

When several similar situations are followed by similar actions, an automated link may 

be learned between such situations and actions. Subsequently, a situation can be followed by an 

action, without the need for any conscious processing between the two (Selden, McKee, & 

Selden, 2010). When a situation occurs together with an action well beyond the simple forming 

of a link through associative leaning, it may be “overlearned” and the action will then occur 

automatically in the presence of the situation (Bargh, 2014). In our course, we have observed 

that, with sufficient practice, many proving actions can become the result of the enactment of 

linked, and sometimes automated, situation-action pairs. We have called these automated 

situation-action pairs behavioral schemas (Selden, McKee, & Selden, 2010; Selden & Selden, 

2008). Linking proving actions to triggering situations and automating those actions can 

considerably reduce the burden on working memory, a very limited resource, and this tends to 

reduce errors (Baddeley, 2000).  

Related Research and Concepts 

While studies of students’ proving have been made before, they have not often focused 

on students’ use of proof frameworks. For example, Selden and Selden (1987) examined errors 

and misconceptions in undergraduate abstract algebra students’ proof attempts. They found 

instances of assuming the conclusion, proving the converse, improper use of symbols, misuse of 

theorems, and trouble with quantifiers. Similarly, Hazzan and Leron (1996) in their study of 

students’ misuse of Lagrange’s Theorem found that students often used the converse of a 

theorem as if it were true or invoked the theorem where it did not apply. Selden, McKee, and 

Selden (2010) reported instances of students’ tendencies to write proofs from the top down and 

their reluctance to unpack and use the conclusion to structure their proofs. (See the case of Willy, 

who focused too soon on the hypothesis in Selden, McKee, & Selden, 2010, pp. 209-211). 

The Formal-Rhetorical and Problem-Centered Parts of Proofs 

Previously, we (Selden & Selden, 2013) introduced the idea of the formal-rhetorical part 

of a proof as the part of a proof that comes from unpacking and using the logical structure of the 

statement of the theorem, associated definitions, and previously proved theorems. In general, this 

part does not depend on a deep understanding of, or intuition about, the concepts involved or on 

genuine problem solving in the sense of Schoenfeld (1985, p .74). However, the problem-

centered part of a proof  does depend on genuine mathematical problem solving, intuition, and a 

deeper understanding of the concepts involved. A major portion of the formal-rhetorical part of a 

proof can consist of a proof framework. 

Proof Frameworks 

An early version of the idea of proof frameworks was introduced by us (Selden & Selden, 

1995):  
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By a proof framework we mean a representation of the “top-level” logical 

structure of a proof, which does not depend on detailed knowledge of the 

relevant mathematical concepts, but which is rich enough to allow the 

reconstruction of the statement to be proved or one equivalent to it. A written 

representation of a proof framework might be a sequence of statements, 

interspersed with blank spaces, with the potential for being expanded into a 

proof by additional argument. (p. 129). 

We went on (Selden & Selden, 1995) to connect the ability to unpack the logical structure 

of mathematical statements with the ability to construct proof frameworks and with proof 

validation. We also pointed out that mental skills were involved. The learning and mastering of 

such mental skills can involve much mental energy and considerable working memory. (p. 132). 

While we did not state this explicitly at the time, in the sample validation in the Appendix, we 

did note that sometimes checking a sufficiently complex part of a proof might overload working 

memory and potentially lead to error. (p. 146). 

The First and Second Levels of a Proof Framework  

Later, we further developed the idea of proof frameworks, including that there are often 

both first-level and second-level proof frameworks. A proof framework is determined by just the 

logical structure of the theorem statement and associated definitions. The most common form of 

a theorem is: “If P, then Q”, where P is the hypothesis and Q is the conclusion. In order to 

construct a proof framework for it, one takes the hypothesis of the theorem, “P”, and writes, 

“Suppose P” to begin the proof. One then skips to the bottom of the page and writes “Therefore 

Q”, leaving enough space for the rest of the proof to emerge in between. This produces the first 

level of a proof framework. At this point, a prover should focus on the conclusion and “unpack” 

its meaning. It may happen that the unpacked meaning of Q has the same logical form as the 

original theorem, that is, a statement with a hypothesis and a conclusion. In that case, one can 

repeat the above process, providing a second-level proof framework in the space between the 

first and last lines of the emerging proof. (For some examples, see Selden, Benkhalti, & Selden, 

2014). 

Finally, we do not claim that mathematicians should write proofs using this technique, 

but only that doing so will be helpful for novice students and that their mathematics professors 

will accept the results. As long as the logical flow and clarity of a proof submission is correct, it 

does not matter (and is impossible to recover) in which order the sentences were written. We 

now return to the problem of overloaded working memory that can occur when a proof 

construction, or a proof validation, is sufficiently complex.  

Working Memory  

  It has been said that the “two major components of our cognitive architecture that are 

critical to [thinking and] learning are long-term memory and working memory” (Kalyuga, 2014). 

Working memory makes cognition possible but has a limited capacity that varies across 

individuals. It is associated with the conscious processing of information within one’s focus of 

attention. However, working memory can only deal with several units, or chunks, of information 

at a time, especially when working with novel information (Cowan, 2001; Miller,1956). In 

contrast, long-term memory can be thought of as a learner-organized knowledge base that has 

essentially unlimited capacity and can be used to help alleviate the limited capacity of working 



4 
 

memory (Ericsson & Kintsch, 1995). However, when working memory capacity is overloaded, 

errors and oversights are likely to occur.  

Coping with Mathematical Abstraction and Formality  

While the mathematics education research literature does not seem to have considered 

working memory overload during learning per se, there are a few studies of coping with 

abstractions. These could be reinterpreted as related to working memory overload causing 

confusion. For example, Hazzan (1999) investigated how Israeli freshman computer science 

students, taking their first course in abstract algebra in a “theorem-proof format”, coped by 

“reducing the level of abstraction”. Specifically, she found that they tended “to work on a lower 

level of abstraction than the one in which the concepts are introduced in class” (p. 75). For 

example, when doing homework on abstract groups, a student might actually be thinking of a 

familiar group like the integers under addition. 

Further, Leron and Hazzan (1997) pointed out that students in mathematical problem-

solving situations “often experience confusion and loss of meaning.” (p. 265), and that students 

attempt to make sense of a problem situation “in order to better cope with it.” (p. 267). While 

this coping perspective occurs at all levels, they stated that “the phenomena of confusion and loss 

of meaning are even more pronounced in college mathematics courses.” (p. 282). They also 

suggested that more work on the coping perspective in mathematics education is needed. Indeed, 

somewhat similarly, Pinto and Tall (1999) considered two different university students’ coping 

mechanisms when confronted with formal definitions and proofs in real analysis. These were the 

ideas of giving meaning to definitions using concept images versus extracting meaning from the 

formal definition via deduction. However, not many university level mathematics education 

studies have specifically considered students’ coping perspectives. 

Methodology: Conduct of the Study 

We met regularly for individual 75-minute sessions with a mature working professional, 

Alice, who wanted to learn how to construct proofs. Alice followed the same course notes 

previously written for our inquiry-based transition-to-proof course3 used with beginning 

mathematics graduate students who wanted extra practice in writing proofs. The sessions were 

almost entirely devoted to having Alice attempt to construct proofs in front of us, often thinking 

aloud, and to giving her feedback and advice on her work. The notes had been designed to 

provide graduate students with as many different kinds of proving experiences as possible and 

included practice writing the kinds of proofs often found in typical proof-based courses, such as 

some abstract algebra and some real analysis. The notes included theorems on some sets, 

functions, real analysis, and algebra, in that order.  

Alice had a good undergraduate background in mathematics from some time ago and also 

had prior teaching experience. She only worked on proofs during the actual times we met. While 

she usually came to see us twice a week to work on constructing proofs. Sometimes, when her 

paid work got a bit overwhelming, she would take a week off. Thus, unlike the graduate students 

                                                           
3 A description of the course and course notes can be found in Selden, McKee, and Selden (2010, p. 207).  
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who took the course as a one-semester 3-credit class, Alice worked with us on our course notes 

for two semesters at her own pace and did not want credit.  

   

We met in a small seminar room with blackboards on three sides, and Alice constructed 

original proofs at the blackboard, eventually using the middle blackboard almost exclusively for 

her evolving proofs. After several meetings, she began to use the left board for definitions and 

the right board for scratch work. She did not seem shy or overly concerned with working at the 

board in front of us, and from the start, we developed a very collegial working relationship. She 

seemed to enjoy our interactions as she worked through the course notes. Thus, we gained 

greater than normal insight into her mode of working. We videotaped every session and took 

field notes on what Alice wrote on the three boards, along with her interactions with us. For this 

study, we reviewed the first and second semester videos and field notes several times, looking 

for progression in Alice’s approach to constructing proofs. 

Alice’s Progression Through the First Semester 

Our First Meeting with Alice 

We introduced Alice to the idea of proof frameworks and explained in detail how and 

why we use them. We also introduced her to the idea of unpacking the conclusion and mentioned 

that proofs are not written from the top down by mathematicians. With guidance, she was able to 

prove “If A B, then AC  BC.” In addition, she worked three exercises on writing proof 

frameworks--one on elementary number theory and two on set equality. Near the end of this 

meeting, Alice produced a proof framework for the next theorem in the notes. We felt that she 

not only understood our rationale for using proof frameworks, but also how to construct them. 

Our Second Meeting with Alice—Her Reluctance to Use Proof Frameworks Surfaces 

At the beginning of the second meeting, Alice went to the middle board and produced the 

same proof framework that she written five days earlier at our first meeting (Figure 1). 

Theorem: Let A, B, and C be sets. If A  B, 

then C – B  C – A. 

Proof: Let A, B, and C be sets.  

Suppose A  B. Suppose x ∈ C – B. So x ∈ C 

and x is not an element of B. 

 

 

 

 

 

 

 

 

Thus x ∈ C and x is not in A.  

Therefore x is in C – A.  

Therefore, C – B  C – A. 

Figure 1. A proof framework that Alice produced on the middle blackboard. 

Then Alice stopped and after a long silence of 65 seconds, much to our surprise, said, “I 

have a question for you. I find it very difficult to see the framework. Let me show you how I do 

it, because somehow I get confused with the framework.” We asked her what it was about the 

framework that was confusing, but she seemingly could not put it into words. So we encouraged 

her to write a proof the way she preferred. Thus, on the left board, Alice began to write the proof 

in her own way in top down fashion (Figure 2).  
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Theorem: Let A, B, and C be sets. If A  B, then C – B  C – A. 

Proof. Let A, B, C be sets.  

Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 

Suppose x ∈ C – B. We need to prove that x ∈ C – A. 

Figure 2. Alice’s attempt at constructing a proof in her own way. 

Then she then paused for 15 seconds, and said, “We need to have one more,” and wrote into her 

proof attempt, “and x ∈ A” immediately below “x ∈ C – B”, indicating with a caret that “and x 

∈ A” was also part of her supposition (Figure 3). Then, after a 35-second pause, she added to her 

proof attempt, “Since x ∈ A and A is a subset B. Then x ∈ B.” Shortly thereafter, Alice quietly 

said, “Oh, a contradiction”. This was followed by, “Yeah, ‘cause x doesn’t belong to B. Yeah, 

problem here.” Then, after a ten second pause, Alice said, “The problem is right here, isn’t it?” 

pointing and underlining “B” and the statement “and x ∈ A.” We asked, “And what do you think 

that problem is?” Alice replied, “I assumed that [pointing to “and x ∈ A”], but I do not know. I 

only know this [pointing to “A is a subset of B”]. We replied, “So that’s a good point you’ve 

made.” 

Theorem: Let A, B, and C be sets. If A  B, then C – B  C – A. 

Proof. Let A, B, C be sets.  

Suppose A is a subset of B. We need to prove that C – B is a subset of C – A. 

Suppose x ∈ C – B. We need to prove that x ∈ C – A. 

              and x ∈ A. 

Figure 3. Alice’s adjustments to her proof attempt, done in her own way. 

After that, for a few minutes, we talked about the structure of proofs, and why we use 

proof frameworks. Then we asked Alice to elaborate on why “and x ∈ A” is a problem. She said, 

“I didn’t write it right. I should have said here [pointing to the blank space to the left of “and     

x ∈ A”] I’m going to make an assumption like ‘Suppose x belongs to the A’, and then since x 

belongs to the A and I know that A is a subset of B, then the x will belong to the B.” She 

continued, “I also know that x belongs in the C – B, because I said it earlier. Then x belongs to 

the C but x does not belong to the B.” To which one of us replied, “And then you said 

something. I thought I heard you say the word ‘contradiction’.” Alice explained, “Yeah, I got a 

contradiction because then I’m saying here [pointing to the board] the x belongs to the B, and the 

x doesn’t belong to the B.” We agreed, and she offered, “That assumption [pointing to “and       

x ∈ A”] was bad.” We then reiterated why proof frameworks are structured the way they are, and 

suggested that we could take Alice’s original framework (Figure 2) and what Alice had written 

on the left board (Figure 3), and change the order to write a proof. We proceeded to help Alice 

do this. For the rest of the semester, Alice seemed more inclined to attempt to use proof 

frameworks. 

Alice’s Way of Working 

By midway through the first semester, Alice had developed her own pattern of working. 

She would:  

1. First write the statement of the theorem to be proved on the middle board.  
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2. Then look up in the course notes the definitions of terms that occurred in the 

theorem statement and write them exactly as stated on the left board.  

3. Next underline the relevant portions of definitions to assist with writing the proof 

framework. However, we did not teach her to use this strategy. (See Figure 4). 

4. Use the right board for scratch work as needed. 

Alice continued this pattern of working into the second semester. 

 

 

Figure 4. Alice’s underlining of relevant parts of a definition. 

Subsequent Meetings with Alice 

As the first semester meetings went on, we observed that Alice became very methodical 

in her approach to proving, and also somewhat more accustomed to writing proof frameworks. 

We hypothesize this was because of her technical work experience and perhaps because of her 

natural tendencies. By the 12th meeting, Alice had developed the following pattern of working: 

She would write the statement of the theorem to be proved on the middle board, then look up in 

the course notes the definitions of terms that occurred in the theorem statement, write them 

exactly as stated on the left board, and use the right board for scratch work. Indeed, during the 

12th meeting, when she got to the theorem, “Let X, Y, and Z be sets. Let f: X→Y and g: Y→Z be 

1-1 functions. Then g○f is 1-1,” she wrote the first- and second-level frameworks ostensibly on 

her own, and with some guidance from us, completed the proof and read it over for herself aloud.  
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By the 19th meeting at the end of the first semester, Alice was more fluent with writing 

proof frameworks than on the 12th meeting, and she had adopted the technique of writing 

definitions on the left board and changing the variable names to agree with those used in the 

theorem statement – all without prompting from us. This is remarkable as our experience has 

been that many students do not change variable names in definitions even when we suggest 

doing so, and this can often lead to difficulties. At this 19th meeting, Alice proved that the sum of 

two continuous functions is continuous (Figure 5). This proof has a rather complicated proof 

framework that necessitates leaving three blanks spaces -- one for using the hypothesis 

appropriately, one for specifying a , and one for showing that the chosen  “works” (by 

showing the relevant distance is less than .) 

 

 

Figure 5. Alice’s proof of that the sum of two continuous function is continuous. 

Alice continued meeting with us and working on the course notes at her own pace during the 

second semester. 

Alice’s Progression through the Second Semester 

Alice Continues Proving Real Analysis Theorems 

Upon resuming in the second semester, Alice continued proving real analysis theorems, 

attempting to prove that the product of two continuous functions, f and g, is continuous in our 

first three meetings (i.e., our 20th-22nd meetings). She set up the proof framework correctly and 

explored the situation in scratch work. During this proving process, Alice made some astute 

observations, for example, having gotten to |fg(x) - fg(a)| = |f(x)g(x) - f(a)g(a)| ≤ |f(x)| |g(x) – g(a)| 

+ |g(a)| |f(x) – f(a)|, and having dealt with term involving |g(a)|, she noted that the former term 

was the “hard part” because |f(x)|, unlike |g(a)|, is not a constant. Somewhat later, Alice exhibited 
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some self-monitoring, noting that she needed to move her sentence about the bound on |f(x)|, 

prior to setting  equal to the “minimum of [the] three” deltas she had found. (See Figure 6). She 

also noted, in the 22nd meeting, that it seemed “weird” to write the restrictions on |f(x) – f(a)| and 

|g(x) – g(a)| without immediately explaining why she had chosen the bounds  
𝜀

2|g(𝑎)|
 and 

𝜀

2𝑀𝑓
 , 

respectively, when applying the definition of continuity at a point to f and g.   

 

 

Figure 6. The first half of Alice’s proof that the product of continuous functions is continuous, 

showing the “minimum of the three deltas”.  

Figure 7 shows the remainder of Alice’s proof that the product of continuous functions is 

continuous, that is, that the her chosen  “works”. 

Alice’s Encounter with Semigroups Begins 

By our 25th meeting, Alice had completed the real analysis section of the notes, and was 

ready to begin the abstract algebra (semigroups) section that starts with the definitions of binary 

operation and semigroup, followed by requests for examples. She provided only the most 

obvious of examples, such as the integers under addition or multiplication, and when asked for 

something “stranger”, she said she could use the real numbers. When asked for another “strange” 

example “with no numbers at all”, she suggested union as the binary operation, and with help, 

wrote up the example of the power set of a set of three elements. Next, when it came to 

providing examples of semigroups, she suggested the natural numbers with subtraction, but had 

to be prodded to check associativity; for this she considered (3 - 7) - 2 versus 3 -  (7 - 2) and 

correctly inferred this was not a semigroup. To provide examples of left and right ideals, Alice 
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needed to come up with a noncommutative semigroup, but she drew a blank. We suggested the 

semigroup of 2 × 2 real matrices under multiplication, and for an ideal, the subset of matrices of 

the form [
𝑥 𝑦
0 0

]. After some calculation, Alice correctly concluded the subset is a right ideal, but 

not a left ideal.  

 

Figure 7. The remainder of Alice’s proof that the product of continuous functions is continuous, 

showing that her chosen 𝛿 “works”. 

Alice Hits a “Brick Wall” with the First Semigroup Theorem 

Alice continued considering examples for the first 35 minutes into the next (26th) 

meeting, after which she came to the first semigroup theorem to prove: “Let S be a semigroup. 

Let L be a left ideal of S and R be a right ideal of S. Then L ⋂ R ≠ ∅.” She first wrote the 

definitions of semigroup, left ideal, right ideal, and ideal on the left-hand board, as she had done 

many times before. Then she wrote the first-level framework on the middle board, after which 

she went to the right-hand board and began doing some scratch work, which included drawing a 

Venn diagram of two overlapping circles, L and R, with an arrow pointing to the intersection. 

She wrote in her scratch work “L ⋂ R = ∅” and “there exists an element a ∊ L ⋂ R”. With this, it 

seemed that Alice was trying to clarify the theorem statement for herself. However, she had not 

yet attended to the second-level framework. We pointed this out.  

During the rest of her proving attempt, we seemed to need to remind Alice of relevant 

actions, such as considering what she knew about ideals (i.e., that they are nonempty), and 

hence, concluding that each of L and R contains an element, which she labeled l and r 

respectively. Then, using those, she tried to “explore” to find an element in L ⋂ R, in order to 

conclude it was not empty. With our guidance, Alice finished the proof, but her sense of self-

efficacy seemed shaken.  
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Indeed, at the next (27th) meeting, Alice wanted to reprove the theorem about the 

intersection of left and right ideals before continuing. (See Figure 8).We now feel that she had 

been somewhat overwhelmed, or confused, by the new content, perhaps causing working 

memory overload. She had tried to cope as best she could by concentrating on the new concepts, 

while “forgetting” her prior proof writing skills. Alice’s hesitant behavior continued for eight 

more meetings. 

 

 

Figure 8. Alice’s proof that the intersection of a left ideal and a right ideal is nonempty. 

Alice Regains Her “Footing” 

Then, during the 35th meeting, Alice considered the theorem, “If S and T are semigroups 

and f: S→T is an onto homomorphism and I is an ideal of S, then f(I) is an ideal of T”. She wrote 

the definition of homomorphism on the left board, wrote “What I know” on the right board, 

constructed the first-level proof framework, unpacked the conclusion, wrote the second-level 

proof framework, and decided to do a two-part proof – one part for left ideals and a second part 

for right ideals. (See Figure 9). With this, Alice seemed to have regained “her footing”. At the 

next meeting, she finished the proof, with some help from us. She continued proving semigroup 

theorems for the rest of the semester, exhibiting increasing proficiency and self-efficacy.  

Discussion 

Working with Proof Frameworks 

Alice came to us with a reasonable undergraduate mathematics background, some of 

which she had forgotten. At the first meeting, we explained the use of proof frameworks and our 

rationale for using them, and she practiced producing several of them. However, at the second 

meeting she told us that she found this way of working confusing. When she attempted her own 

alternative method of proving, she got into difficulty, and as a result, was more willing to try 

using proof frameworks again. Over the course of our subsequent meetings during the first 
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semester, Alice became fluent with writing both first- and second- level proof frameworks and 

adopted her own methodical way of working. As the first semester went on, she was able to 

complete proofs with less guidance from us. Indeed, she often mainly required some help with 

the problem-centered parts of proofs. 

 

Figure 9. Alice’s proof framework for the theorem about homomorphic images of ideals. 

During the second semester, Alice continued meeting with us and working on the course 

notes. She began the second semester with the construction of additional real analysis proofs and 

seemed to be making very considerable progress, both with writing proof frameworks and with 

the harder problem-centered parts of proofs. By the end of the real analysis section of the course 

notes, we felt that she had developed greatly in her proving ability and had developed a sense of 

self-efficacy (Bandura, 1994, 1995) about proving.  

Difficulties Surface When Encountering Unfamiliar Content 

However, the subsequent introduction of unfamiliar, abstract content in the form of 

several definitions and a theorem about semigroups at the 25th meeting seemed to cause her 

confusion. She constructed only the most obvious examples somewhat hesitantly. Also, when 

asked to prove the first theorem about semigroups, she did not begin by producing a proof 

framework, as she had previously consistently done with the real analysis proofs, but rather 

began writing what she knew or could find in the notes, on the right-hand blackboard. Her proof 

construction, while not top-down, seemed to consist of first trying to gather as many semigroup 

ideas as she could, followed by trying to arrange them into a final proof. We feel that 

concentrating on understanding the unfamiliar abstract content was Alice’s initial way of coping, 

that her working memory may have been overloaded, and that she wasn’t able to deal with the 

additional onus of constructing a proof framework. It was not until the 35th meeting, almost at 

the end of the second semester, that Alice seemed to have regained her sense of self-efficacy, and 

she again constructed proofs using the technique of proof frameworks that she had learned and 

perfected previously with real analysis proofs.  
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Implications  

It seems that coping with newly introduced abstract concepts is not easy, even for 

someone as experienced as Alice. It also seems that one cannot expect, having learned the skill 

of constructing proof frameworks in more familiar settings, that this skill will be easily invoked 

while new abstract content is being learned, perhaps due to working memory overload.  

Fragility of Recently Acquired Proving Skills Can Be Overcome 

Amongst other things, this case study illustrates the fragility of recently acquired proving 

skills, in the context of the acquisition of new abstract mathematical concepts. It also suggests 

that, with persistence, the difficulty due to such fragility can be overcome. Our own experiences 

as mathematicians suggests that one can (implicitly) learn not to be greatly disturbed by the 

introduction of several new abstract ideas at once. However, some school curricula avoid certain 

introductions of concepts, such as the Bourbaki definition of function, because they are 

considered too abstract (Tabach & Nachlieli, 2015). Further, as Hazzan (1999) found, students 

sometimes cope by “reducing the level of abstraction.” Yet Alice’s case suggests that, with time, 

effort and persistence, students can learn to cope with abstraction. 

Eventual Successful Use of Proof Frameworks, along with Persistence and Self-efficacy  

The initial tendency of many university students to write proofs in a top-down fashion 

tends to fade after sufficient exposure to writing proof frameworks. One might ask where this 

tendency comes from. According to Nachlieli and Herbst (2009), it is the norm among U.S. high 

school geometry teachers to require students, when doing two-column proofs, to follow every 

statement immediately by a reason. This implies top-down proof construction. However, as 

noted previously (Selden & Selden, 2013), automating the actions required to write the formal-

rhetorical part of a proof (i.e., writing first- and second-level proof frameworks) can allow 

students to “get started” writing a proof and exposes the “real problem” to be solved in order to 

complete the proof. For this, persistence and self-efficacy are needed.  
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