A CLASSIFICATION OF CLIFFORD ALGEBRAS AS IMAGES OF GROUP ALGEBRAS OF SALINGAROS VEE GROUPS

R. Abłamowicz, M. Varahagiri, A. M. Walley

November 2017
No. 2017-3

A Classification of Clifford Algebras as Images of Group Algebras of Salingaros Vee Groups

Rafał Abłamowicz, Manisha Varahagiri and Anne Marie Walley

Abstract

The main objective of this work is to prove that every Clifford algebra $C \ell_{p, q}$ is \mathbb{R}-isomorphic to a quotient of a group algebra $\mathbb{R}\left[G_{p, q}\right]$ modulo an ideal $\mathcal{J}=(1+\tau)$ where τ is a central element of order 2 . Here, $G_{p, q}$ is a 2 -group of order 2^{p+q+1} belonging to one of Salingaros isomorphism classes $N_{2 k-1}, N_{2 k}, \Omega_{2 k-1}, \Omega_{2 k}$ or S_{k}. Thus, Clifford algebras $C \ell_{p, q}$ can be classified by Salingaros classes. Since the group algebras $\mathbb{R}\left[G_{p, q}\right]$ are \mathbb{Z}_{2}-graded and the ideal \mathcal{J} is homogeneous, the quotient algebras $\mathbb{R}[G] / \mathcal{J}$ are \mathbb{Z}_{2}-graded. In some instances, the isomorphism $\mathbb{R}[G] / \mathcal{J} \cong C \ell_{p, q}$ is also \mathbb{Z}_{2}-graded. By Salingaros Theorem, the groups $G_{p, q}$ in the classes $N_{2 k-1}$ and $N_{2 k}$ are iterative central products of the dihedral group D_{8} and the quaternion group Q_{8}, and so they are extra-special. The groups in the classes $\Omega_{2 k-1}$ and $\Omega_{2 k}$ are central products of $N_{2 k-1}$ and $N_{2 k}$ with $C_{2} \times C_{2}$, respectively. The groups in the class S_{k} are central products of $N_{2 k}$ or $N_{2 k}$ with C_{4}. Two algorithms to factor any $G_{p, q}$ into an internal central product, depending on the class, are given. A complete table of central factorizations for groups of order up to 1,024 is presented.

Mathematics Subject Classification (2010). Primary 15A66, 16W50, 20C05, 20C40, 20D15; Secondary 68W30.
Keywords. 2-group, central product, Clifford algebra, cyclic group, elementary abelian group, extra-special group, \mathbb{Z}_{2}-graded algebra, graded algebra morphism, group algebra, homogeneous ideal, quotient algebra, Salingaros vee group.

1. Introduction

Salingaros [17-19] defined and studied five families $N_{2 k-1}, N_{2 k}, \Omega_{2 k-1}, \Omega_{2 k}$ and S_{k} of finite 2-groups related to Clifford algebras $C \ell_{p, q}$. For each $k \geq 1$, the group $N_{2 k-1}$ is a central product $\left(D_{8}\right)^{\circ k}$ of k copies of the dihedral group D_{8} while the group $N_{2 k}$ is a central product $\left(D_{8}\right)^{\circ(k-1)} \circ Q_{8}$ of $k-1$
copies of D_{8} with the quaternion group $Q_{8}{ }^{1}$. The groups $N_{2 k-1}$ and $N_{2 k}$ are extra-special. Salingaros showed that $\Omega_{2 k-1} \cong N_{2 k-1} \circ D_{4}, \Omega_{2 k} \cong N_{2 k} \circ D_{4}$, and $S_{k} \cong N_{2 k-1} \circ C_{4} \cong N_{2 k} \circ C_{4}$, where C_{2} and C_{4} are cyclic groups of order 2 and 4 , respectively, and $D_{4}=C_{2} \times C_{2}$ (cf. [6]). Chernov [7] observed that a Clifford algebra $C \ell_{p, q}$ could be obtained as a homomorphic image of a group algebra $\mathbb{R}[G]$ assuming there exists a suitable finite 2 -group with generators fulfilling certain relations. As an example, he showed that $C \ell_{0,2} \cong$ $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ while $C \ell_{1,1} \cong \mathbb{R}\left[D_{8}\right] / \mathcal{J}$, where in each case \mathcal{J} is an ideal generated by $1+\tau$ for a central element τ of order 2 and the isomorphisms are \mathbb{R}-algebra isomorphisms. Walley [21] showed that $C \ell_{2,0} \cong \mathbb{R}\left[D_{8}\right] / \mathcal{J}$, which was to be expected since $C \ell_{1,1} \cong C \ell_{2,0}$ (as \mathbb{R}-algebras). Walley also showed that Clifford algebras of dimension eight in three isomorphism classes can be represented as $C \ell_{0,3} \cong \mathbb{R}\left[G_{0,3}\right] / \mathcal{J}, C \ell_{2,1} \cong \mathbb{R}\left[G_{2,1}\right] / \mathcal{J}, C \ell_{1,2} \cong \mathbb{R}\left[G_{1,2}\right] / \mathcal{J}$, and $C \ell_{3,0} \cong$ $\mathbb{R}\left[G_{3,0}\right] / \mathcal{J}$ where $G_{0,3} \in \Omega_{2}, G_{2,1} \in \Omega_{1}$, and $G_{1,2} \cong G_{3,0} \in S_{1}$. In each case, one needs to define a surjective map from one of the group algebras to the Clifford algebra with kernel equal to the ideal $(1+\tau)$. Furthermore, one observes that for each $p+q \geq 0$, the number of non-isomorphic Salingaros groups of order 2^{p+q+1} equals the number of isomorphism classes of universal Clifford algebras $C \ell_{p, q}$ (see Periodicity of Eight in [13] and references therein).

Thus, for example, Salingaros groups in two classes N_{3} and N_{4} are sufficient to give two isomorphism classes of Clifford algebras of dimension sixteen: $C \ell_{0,4} \cong C \ell_{1,3} \cong C \ell_{4,0} \cong \mathbb{R}\left[N_{4}\right] / \mathcal{J}$, and $C \ell_{2,2} \cong C \ell_{3,1} \cong \mathbb{R}\left[N_{3}\right] / \mathcal{J}$.

This approach to the Periodicity of Eight of Clifford algebras would allow us to apply the representation theory of finite groups to explain some of the properties of Clifford algebras. For example, the fact that, up to an isomorphism, there are exactly two non-isomorphic non-Abelian groups of order eight, provides a group-theoretic explanation why there are exactly two isomorphism classes of Clifford algebras of dimension four. Furthermore, one observes that a construction of primitive idempotents $[4,13]$ needed for spinor representations of Clifford algebra $C \ell_{p, q}$ is possible due to the centralproduct structure of the related group $G_{p, q}$ in which the subgroups centralize each other and each subgroup contains at least one element of order 2.

This paper is organized as follows:
In Section 2 we provide three examples of Clifford algebras as projections of group algebras.

In Section 3 we discuss general properties of Salingaros vee groups $G_{p, q}$.
In Section 4, after providing necessary background material from group theory, we describe the central product structure of Salingaros vee groups. We recall Salingaros Theorem that classifies these groups into five isomorphism classes.

In Section 5, we state our Main Theorem. We prove that the group algebras $\mathbb{R}\left[G_{p, q}\right]$ are \mathbb{Z}_{2}-graded algebra. Then, we prove homogeneity of their ideals generated by $1+\tau$ for a central involution τ, and prove that the quotient algebras $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$ are \mathbb{Z}_{2}-graded. We prove, using the group theory,

[^0]that the isomorphism $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong C \ell_{0,2}$ is \mathbb{Z}_{2}-graded while only one of two isomorphisms $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ or $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ is \mathbb{Z}_{2}-graded.

In Appendix B we show two algorithms to represent all Salingaros vee groups $G_{p, q}$ for $p+q \leq 9$ as internal central products of subgroups. These algorithms have been implemented in CLIFFORD [1,2].

Throughout this paper, C_{2} and C_{4} are cyclic groups of order 2 and 4, respectively; $D_{4}=C_{2} \times C_{2} ; D_{8}$ is the dihedral group of a square and Q_{8} is the quaternion group, both of order 8. $G^{\prime}, Z(G)$, and $\Phi(G)$ denote the derived subgroup of G, the center of G, and Frattini subgroup of G, respectively. Notation $H \triangleleft G$ means that H is a normal subgroup of G while $[G: H]$ denotes the index of a subgroup H in G (defined as the number of left cosets of H in $G)[11,16]$.

2. Three examples of Clifford algebras as projections of group algebras

Let G be any finite group and let \mathbb{F} be a field. Denote the group algebra of G over \mathbb{F} as $\mathbb{F}[G]$, thus $\mathbb{F}[G]=\left\{\sum_{g \in G} \lambda_{g} g, \lambda_{g} \in \mathbb{F}\right\}$ with the algebra multiplication determined by the group product [11]. In this paper, we focus on real group algebras of finite 2 -groups, in particular, Salingaros vee groups.

Definition 1. Let p be a prime. A group G is a p-group if every element in G is of order p^{k} for some $k \geq 1$. So, any finite group G of order p^{n} is a p-group.

There are exactly two non-abelian groups of order eight, namely, the quaternion group Q_{8} and the dihedral group D_{8}. The quaternion group has two convenient presentations:

$$
\begin{align*}
Q_{8} & =\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b a b^{-1}=a^{-1}\right\rangle \tag{1a}\\
& =\left\langle I, J, \tau \mid \tau^{2}=1, I^{2}=J^{2}=\tau, I J=\tau J I\right\rangle \tag{1b}
\end{align*}
$$

with $I=a, J=b, \tau=a^{2}$, and $\left|a^{2}\right|=2,|a|=\left|a^{3}\right|=|b|=|a b|=\left|a^{2} b\right|=$ $\left|a^{3} b\right|=4$. The order structure of Q_{8} is $[1,1,6]^{2}$ and its center $Z\left(Q_{8}\right)=$ $\left\{1, a^{2}\right\} \cong C_{2}$. We present the dihedral group D_{8} in two ways as well:

$$
\begin{align*}
D_{8} & =\left\langle a, b \mid a^{4}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle \tag{2a}\\
& =\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle \tag{2b}
\end{align*}
$$

with $\tau=a, \sigma=b$, so $\left|a^{2}\right|=|b|=|a b|=\left|a^{2} b\right|=\left|a^{3} b\right|=2,|a|=\left|a^{3}\right|=4$. The order structure of D_{8} is $[1,5,2]$ and its center $Z\left(D_{8}\right)=\left\{1, a^{2}\right\} \cong C_{2} .{ }^{3}$

Recall the following two constructions of $\mathbb{H}=C \ell_{0,2}$ as $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ and $C \ell_{1,1}$ as $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ due to Chernov [7].

[^1]Example 1. Define an \mathbb{R}-algebra map ψ from $\mathbb{R}\left[Q_{8}\right] \rightarrow \mathbb{H}=\operatorname{sp}\{1, \mathbf{i}, \mathbf{j}, \mathbf{i j}\}$ as:

$$
\begin{equation*}
1 \mapsto 1, \quad \tau \mapsto-1, \quad I \mapsto \mathbf{i}, \quad J \mapsto \mathbf{j}, \tag{3}
\end{equation*}
$$

Then, $\mathcal{J}=\operatorname{ker} \psi=(1+\tau)$ for a central involution $\tau=a^{2}$ in Q_{8}, so $\operatorname{dim}_{\mathbb{R}} \mathcal{J}=$ 4 and ψ is surjective. Let $\pi: \mathbb{R}\left[Q_{8}\right] \rightarrow \mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ be the natural map $u \mapsto u+\mathcal{J}$. There exists an isomorphism $\varphi: \mathbb{R}\left[Q_{8}\right] / \mathcal{J} \rightarrow \mathbb{H}$ such that $\varphi \circ \pi=\psi$ and

$$
\begin{gathered}
\pi\left(I^{2}\right)=I^{2}+\mathcal{J}=\tau+\mathcal{J} \text { and } \varphi\left(\pi\left(I^{2}\right)\right)=\psi(\tau)=-1=(\psi(I))^{2}=\mathbf{i}^{2} \\
\pi\left(J^{2}\right)=J^{2}+\mathcal{J}=\tau+\mathcal{J} \text { and } \varphi\left(\pi\left(J^{2}\right)\right)=\psi(\tau)=-1=(\psi(J))^{2}=\mathbf{j}^{2} \\
\pi(I J+J I)=I J+J I+\mathcal{J}=(1+\tau) J I+\mathcal{J}=\mathcal{J} \text { and } \\
\varphi(\pi(I J+J I))=\psi(0)=0=\psi(I) \psi(J)+\psi(J) \psi(I)=\mathbf{i j}+\mathbf{j i}
\end{gathered}
$$

Thus, $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong \psi\left(\mathbb{R}\left[Q_{8}\right]\right)=C \ell_{0,2} \cong \mathbb{H}$ provided the central involution τ is mapped into -1 .
Example 2. Define an \mathbb{R}-algebra map ψ from $\mathbb{R}\left[D_{8}\right] \rightarrow C \ell_{1,1}$ as:

$$
\begin{equation*}
1 \mapsto 1, \quad \tau \mapsto \mathbf{e}_{1}, \quad \sigma \mapsto \mathbf{e}_{2} \tag{4}
\end{equation*}
$$

where $C \ell_{1,1}$ is generated by orthonormal generators $\mathbf{e}_{1}, \mathbf{e}_{2}$ satisfying relations $\left(\mathbf{e}_{1}\right)^{2}=1,\left(\mathbf{e}_{2}\right)^{2}=-1, \mathbf{e}_{1} \mathbf{e}_{2}=-\mathbf{e}_{2} \mathbf{e}_{1}$. Then, $\operatorname{ker} \psi=\left(1+\sigma^{2}\right)$ where σ^{2} is a central involution a^{2} in D_{8}. Let $\mathcal{J}=\left(1+\sigma^{2}\right)$. Thus, $\operatorname{dim}_{\mathbb{R}} \mathcal{J}=4$ and ψ is surjective. Let $\pi: \mathbb{R}\left[D_{8}\right] \rightarrow \mathbb{R}\left[D_{8}\right] / \mathcal{J}$ be the natural map $u \mapsto u+\mathcal{J}$. There exists an isomorphism $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{1,1}$ such that $\varphi \circ \pi=\psi$ and

$$
\begin{gathered}
\pi\left(\tau^{2}\right)=\tau^{2}+\mathcal{J}=1+\mathcal{J} \text { and } \varphi\left(\pi\left(\tau^{2}\right)\right)=\psi(1)=\psi\left(\tau^{2}\right)=\left(\mathbf{e}_{1}\right)^{2}=1 \\
\pi\left(\sigma^{2}\right)=\sigma^{2}+\mathcal{J} \text { and } \varphi\left(\pi\left(\sigma^{2}\right)\right)=\psi\left(\sigma^{2}\right)=\psi(-1)=\left(\mathbf{e}_{2}\right)^{2}=-1 \\
\pi(\tau \sigma+\sigma \tau)=\tau \sigma+\sigma \tau+\mathcal{J}=\sigma \tau\left(1+\sigma^{2}\right)+\mathcal{J}=\mathcal{J} \text { and } \\
\varphi\left(\pi(\tau \sigma+\sigma \tau)=\psi(\tau) \psi(\sigma)+\psi(\sigma) \psi(\tau)=\psi(0)=\mathbf{e}_{1} \mathbf{e}_{2}+\mathbf{e}_{2} \mathbf{e}_{1}=0\right.
\end{gathered}
$$

Thus, $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ provided the central involution σ^{2} is mapped into -1 .

Walley [21] extended Chernov's construction to $C \ell_{2,0}$ and represented it as $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ as shown in the following example.

Example 3. Define an algebra map ψ from $\mathbb{R}\left[D_{8}\right] \rightarrow C \ell_{2,0}$ as:

$$
\begin{equation*}
1 \mapsto 1, \quad \tau \mapsto \mathbf{e}_{1}, \quad \sigma \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \tag{5}
\end{equation*}
$$

where $C \ell_{2,0}$ is generated by orthonormal generators $\mathbf{e}_{1}, \mathbf{e}_{2}$ satisfying relations $\left(\mathbf{e}_{1}\right)^{2}=\left(\mathbf{e}_{2}\right)^{2}=1, \mathbf{e}_{1} \mathbf{e}_{2}=-\mathbf{e}_{2} \mathbf{e}_{1}$. Then, ker $\psi=\left(1+\sigma^{2}\right)$ where σ^{2} is a central involution a^{2} in D_{8}. Let $\mathcal{J}=\left(1+\sigma^{2}\right)$. Thus, $\operatorname{dim}_{\mathbb{R}} \mathcal{J}=4$ and ψ is surjective. Let $\pi: \mathbb{R}\left[D_{8}\right] \rightarrow \mathbb{R}\left[D_{8}\right] / \mathcal{J}$ be the natural map $u \mapsto u+\mathcal{J}$. There exists an isomorphism $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{2,0}$ such that $\varphi \circ \pi=\psi$ and

$$
\begin{gathered}
\pi\left(\tau^{2}\right)=\tau^{2}+\mathcal{J}=1+\mathcal{J} \text { and } \varphi\left(\pi\left(\tau^{2}\right)\right)=\psi\left(\tau^{2}\right)=\psi(1)=\left(\mathbf{e}_{1}\right)^{2}=1 \\
\pi\left(\sigma^{2}\right)=\sigma^{2}+\mathcal{J} \text { so } \varphi\left(\pi\left(\sigma^{2}\right)\right)=\psi(-1)=\left(\mathbf{e}_{1} \mathbf{e}_{2}\right)^{2}=-1, \text { so }\left(\mathbf{e}_{2}\right)^{2}=1 \text { since } \\
\varphi(\pi(\tau \sigma+\sigma \tau))=\varphi(\tau \sigma+\sigma \tau+\mathcal{J})=\varphi\left(\sigma \tau\left(1+\sigma^{2}\right)+\mathcal{J}\right)=\varphi(\mathcal{J}) \text { and } \\
\psi(\tau) \psi(\sigma)+\psi(\sigma) \psi(\tau)=\psi(0)=\mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2}+\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{1}=0, \text { so } \mathbf{e}_{1} \mathbf{e}_{2}+\mathbf{e}_{2} \mathbf{e}_{1}=0
\end{gathered}
$$

Thus, $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ provided the central involution σ^{2} is mapped into -1 .

Let us summarize the above three projective constructions. Notice first that each group $N_{2}=Q_{8}$ and $N_{1}=D_{8}$ can be written as follows:

1. The quaternion group Q_{8} :

$$
Q_{8}=\left\{\tau^{\alpha_{0}} g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \mid \alpha_{k} \in\{0,1\}, k=0,1,2\right\}
$$

where $\tau=a^{2}$ is the central involution in $Q_{8}, g_{1}=a$, and $g_{2}=b$. Thus,

$$
\left(g_{1}\right)^{2}=a^{2}=\tau, \quad\left(g_{2}\right)^{2}=b^{2}=a^{2}=\tau, \quad \tau g_{1} g_{2}=g_{2} g_{1} .
$$

Observe that $\left|g_{1}\right|=\left|g_{2}\right|=4$ and $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong C \ell_{0,2}$ where $\mathcal{J}=(1+\tau)$.
2. The dihedral group D_{8} :

$$
D_{8}=\left\{\tau^{\alpha_{0}} g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \mid \alpha_{k} \in\{0,1\}, k=0,1,2\right\}
$$

where $\tau=a^{2}$ is the central involution in $D_{8}, g_{1}=b$, and $g_{2}=a$. Thus,

$$
\left(g_{1}\right)^{2}=b^{2}=1, \quad\left(g_{2}\right)^{2}=a^{2}=\tau, \quad \tau g_{1} g_{2}=g_{2} g_{1}
$$

Observe that $\left|g_{1}\right|=2,\left|g_{2}\right|=4$ and $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1} \cong C \ell_{2,0}$ where $\mathcal{J}=(1+\tau)$.

Examples 1 and 2 illustrate Chernov Theorem [7]. Here is its reformulated version with a proof.

Theorem 1. Let G be a finite 2-group of order 2^{1+n} generated by a central involution τ and additional elements g_{1}, \ldots, g_{n}, which satisfy the following relations:

$$
\begin{gather*}
\tau^{2}=1, \quad\left(g_{1}\right)^{2}=\cdots=\left(g_{p}\right)^{2}=1, \quad\left(g_{p+1}\right)^{2}=\cdots=\left(g_{p+q}\right)^{2}=\tau \tag{6a}\\
\tau g_{j}=g_{j} \tau, \quad g_{i} g_{j}=\tau g_{j} g_{i}, \quad i, j=1, \ldots, n=p+q \tag{6b}
\end{gather*}
$$

Let $\mathcal{J}=(1+\tau)$ be an ideal in the group algebra $\mathbb{R}[G]$ and let $C \ell_{p, q}$ be the universal real Clifford algebra generated by $\left\{\mathbf{e}_{k}\right\}, k=1, \ldots, n=p+q$, where

$$
\begin{gather*}
\mathbf{e}_{i}^{2}=Q\left(\mathbf{e}_{i}\right) \cdot 1=\varepsilon_{i} \cdot 1=\left\{\begin{aligned}
1 & \text { for } 1 \leq i \leq p \\
-1 & \text { for } p+1 \leq i \leq p+q
\end{aligned}\right. \tag{7a}\\
\mathbf{e}_{i} \mathbf{e}_{j}+\mathbf{e}_{j} \mathbf{e}_{i}=0, \quad i \neq j, \quad 1 \leq i, j \leq n \tag{7b}
\end{gather*}
$$

Then, (a) $\operatorname{dim}_{\mathbb{R}} \mathcal{J}=2^{n}$; (b) There exists a surjective \mathbb{R}-algebra homomorphism ψ from the group algebra $\mathbb{R}[G]$ to $C \ell_{p, q}$ with $\operatorname{ker} \psi=\mathcal{J}$.

Proof. Observe that $\left.G=\left\{\tau^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{n}^{\alpha_{n}}\right\} \mid \alpha_{k} \in\{0,1\}, k=0,1, \ldots, n\right\}$. The existence of a central involution τ is guaranteed by a well-known fact that the center of any p-group is nontrivial [16]. Define an \mathbb{R}-algebra homomorphism $\psi: \mathbb{R}[G] \rightarrow C \ell_{p, q}$ as:

$$
\begin{equation*}
1 \mapsto 1, \quad \tau \mapsto-1, \quad g_{j} \mapsto \mathbf{e}_{j}, \quad j=1, \ldots, n \tag{8}
\end{equation*}
$$

Clearly, $\mathcal{J} \subset$ ker ψ. Let $u \in \mathbb{R}[G]$. Then, $u=\sum_{\alpha} \lambda_{\alpha} \tau^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{n}^{\alpha_{n}}=u_{1}+\tau u_{2}$ where $u_{i}=\sum_{\tilde{\alpha}} \lambda_{\tilde{\alpha}}^{(i)} g_{1}^{\alpha_{1}} \cdots g_{n}^{\alpha_{n}}, i=1,2, \alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}$ and $\widetilde{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$. Thus, if $u \in \operatorname{ker} \psi$, then

$$
\begin{equation*}
\psi(u)=\sum_{\widetilde{\alpha}}\left(\lambda_{\widetilde{\alpha}}^{(1)}-\lambda_{\widetilde{\alpha}}^{(2)}\right) \mathbf{e}_{1}^{\alpha_{1}} \cdots \mathbf{e}_{n}^{\alpha_{n}}=0 \tag{9}
\end{equation*}
$$

implies $\lambda_{\tilde{\alpha}}^{(1)}=\lambda_{\tilde{\alpha}}^{(2)}$ since $\left\{\mathbf{e}_{1}^{\alpha_{1}} \cdots \mathbf{e}_{n}^{\alpha_{n}} \mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Z}_{2}\right)^{n}\right\}$ is a basis in $C \ell_{p, q}$. Hence,

$$
u=(1+\tau) \sum_{\widetilde{\alpha}} \lambda_{\overparen{\alpha}}^{(1)} g_{1}^{\alpha_{1}} \cdots g_{n}^{\alpha_{n}} \in \mathcal{J} .
$$

Thus, $\operatorname{dim}_{\mathbb{R}} \operatorname{ker} \psi=2^{n}$, $\operatorname{ker} \psi=\mathcal{J}, \operatorname{dim}_{\mathbb{R}} \mathbb{R}[G] / \mathcal{J}=2^{1+n}-2^{n}=2^{n}$, so ψ is surjective. Let $\varphi: \mathbb{R}[G] / \mathcal{J} \rightarrow C \ell_{p, q}$ be such that $\varphi \circ \pi=\psi$ where $\pi: \mathbb{R}[G] \rightarrow$ $\mathbb{R}[G] / \mathcal{J}$ is the natural map. Then, since $\psi\left(g_{j}\right)=\mathbf{e}_{j}, \pi\left(g_{j}\right)=g_{j}+\mathcal{J}$, we have $\varphi\left(\pi\left(g_{j}\right)\right)=\varphi\left(g_{j}+\mathcal{J}\right)=\psi\left(g_{j}\right)=\mathbf{e}_{j}$ and

$$
\begin{aligned}
\pi\left(g_{j}\right) \pi\left(g_{i}\right)+\pi\left(g_{i}\right) \pi\left(g_{j}\right) & =\left(g_{j}+\mathcal{J}\right)\left(g_{i}+\mathcal{J}\right)+\left(g_{j}+\mathcal{J}\right)\left(g_{i}+\mathcal{J}\right) \\
& =\left(g_{j} g_{i}+g_{i} g_{j}\right)+\mathcal{J}=(1+\tau) g_{j} g_{i}+\mathcal{J}=\mathcal{J}
\end{aligned}
$$

for $i \neq j$ since $g_{i} g_{j}=\tau g_{j} g_{i}$ in $\mathbb{R}[G], \tau$ is central, and $\mathcal{J}=(1+\tau)$. Thus, $g_{j}+\mathcal{J}, g_{i}+\mathcal{J}$ anticommute in $\mathbb{R}[G] / \mathcal{J}$ when $i \neq j$. Also, when $i=j$,

$$
\pi\left(g_{i}\right) \pi\left(g_{i}\right)=\left(g_{i}+\mathcal{J}\right)\left(g_{i}+\mathcal{J}\right)=\left(g_{i}\right)^{2}+\mathcal{J}= \begin{cases}1+\mathcal{J}, & 1 \leq i \leq p \\ \tau+\mathcal{J}, & p+1 \leq i \leq n\end{cases}
$$

Observe, that $\tau+\mathcal{J}=(-1)+(1+\tau)+\mathcal{J}=(-1)+\mathcal{J}$ in $\mathbb{R}[G] / \mathcal{J}$. We conclude that the factor algebra $\mathbb{R}[G] / \mathcal{J}$ is generated by the cosets $g_{i}+\mathcal{J}$ which satisfy these relations:

$$
\begin{aligned}
& \left(g_{j}+\mathcal{J}\right)\left(g_{i}+\mathcal{J}\right)+\left(g_{j}+\mathcal{J}\right)\left(g_{i}+\mathcal{J}\right)=\mathcal{J}, \\
& \left(g_{i}\right)^{2}+\mathcal{J}= \begin{cases}1+\mathcal{J}, & 1 \leq i \leq p \\
(-1)+\mathcal{J}, & p+1 \leq i \leq n\end{cases}
\end{aligned}
$$

Thus, the factor algebra $\mathbb{R}[G] / \mathcal{J}$ is isomorphic to $C \ell_{p, q}$ provided $\mathcal{J}=(1+\tau)$ for the central involution τ in G.

Note that Example 3 shows that the map $\psi: \mathbb{R}[G] \rightarrow C \ell_{p, q}$ need not be defined as in (8). This allows one to define different surjective maps ψ from the same group algebra $\mathbb{R}[G]$ to different but isomorphic Clifford algebras, e.g., $C \ell_{1,1} \cong C \ell_{2,0}$.

3. Salingaros vee groups $G_{p, q} \subset C \ell_{p, q}^{*}$

We begin by recalling a definition of a derived subgroup and its basic properties $[8,9,12,16]$.

Definition 2. If G is a group and $x, y \in G$, then their commutator $[x, y]$ is the element $x^{-1} y^{-1} x y$. If X and Y are subgroups of G, then the commutator subgroup $[X, Y]$ of G is defined by $[X, Y]=\langle[x, y] \mid x \in X, y \in Y\rangle$. In particular, the derived subgroup G^{\prime} of G is defined as $G^{\prime}=[G, G]$.

Proposition 1 ([16]). Let G be a group.
(i) G^{\prime} is a normal subgroup of G, and G / G^{\prime} is abelian.
(ii) If $H \triangleleft G$ and G / H is abelian, then $G^{\prime} \subseteq H$.

Let $G_{p, q}$ be a finite group of order 2^{p+q+1} contained in $C \ell_{p, q}^{*}$ with a binary operation being the Clifford algebra product. $G_{p, q}$ can be presented as:

$$
\begin{align*}
& G_{p, q}=\left\langle-1, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right|\left[\mathbf{e}_{i}, \mathbf{e}_{j}\right]=-1 \text { for } i \neq j, \\
& {\left.\left[\mathbf{e}_{i},-1\right]=1,(-1)^{2}=1, \text { and } \mathbf{e}_{i}^{2}= \pm 1\right\rangle } \tag{10}
\end{align*}
$$

where $[\cdot, \cdot]$ denotes the commutator of two group elements, $\left(\mathbf{e}_{i}\right)^{2}=1$ for $1 \leq i \leq p$ and $\left(\mathbf{e}_{i}\right)^{2}=-1$ for $p+1 \leq i \leq n=p+q$. In the following, the elements $\mathbf{e}_{\underline{i}}=\mathbf{e}_{i_{1}} \mathbf{e}_{i_{2}} \cdots \mathbf{e}_{i_{k}}$ will be denoted for short as $\mathbf{e}_{i_{1} i_{2} \cdots i_{k}}$ for $k \geq 1$ while \mathbf{e}_{\emptyset} will be denoted as 1 , the identity element of $G_{p, q}$ (and $C \ell_{p, q}^{*}$).

The groups $G_{p, q}$ are known as Salingaros vee groups. They have been classified by Salingaros [17-19] and later discussed by Varlamov [20], Helmstetter [10], Abłamowicz and Fauser [4, 5], Maduranga and Abłamowicz [15], and most recently by Brown [6] and Walley [21]. $G_{p, q}$ is a discrete subgroup of $\operatorname{Pin}(p, q) \subset \boldsymbol{\Gamma}_{p, q}$ where $\boldsymbol{\Gamma}_{p, q}$ is the Lipschitz group in $C \ell_{p, q}$ [13].

Let us recall a few basic facts about these groups.

1. $\left|G_{p, q}\right|=2^{1+p+q},\left|G_{p, q}^{\prime}\right|=2$ since $G_{p, q}^{\prime}=\{ \pm 1\}$.
2. $G_{p, q}$ is not simple because as a finite 2-group it has a normal subgroup of order 2^{m} for every $m \leq p+q+1$. In particular, it has a subgroup of index 2.
3. The center $Z\left(G_{p, q}\right)$ of $G_{p, q}$ is non-trivial since $2\left|\left|Z\left(G_{p, q}\right)\right|\right.$ and so every group $G_{p, q}$ has a central element of order 2 . It is well-known that for any prime p and a finite p-group $G \neq\{1\}$, the center of G is non-trivial [16].
4. Every element of $G_{p, q}$ is of order 1, 2, or 4. This follows directly from the definition of $G_{p, q}$ as well as from its central-product structure (to be discussed below).
5. Since $\left[G_{p, q}: G_{p, q}^{\prime}\right]=\left|G_{p, q}\right| /\left|G_{p, q}^{\prime}\right|=2^{p+q}$, each $G_{p, q}$ has 2^{p+q} linear characters $[11,14]$.
6. The number N of conjugacy classes in $G_{p, q}$, hence, the number of irreducible inequivalent representations of $G_{p, q}$, is $1+2^{p+q}$ (resp. $2+2^{p+q}$) when $p+q$ is even (resp. odd) (cf. [14, 15]).
7. The center $Z\left(G_{p, q}\right)$ is described by the following theorem (see also [20]):

Theorem 2. Let $G_{p, q} \subset C \ell_{p, q}^{*}$. Then,

$$
Z\left(G_{p, q}\right)= \begin{cases}\{ \pm 1\} \cong C_{2} & \text { if } p-q \equiv 0,2,4,6 \quad(\bmod 8) \tag{11}\\ \{ \pm 1, \pm \beta\} \cong C_{2} \times C_{2} & \text { if } p-q \equiv 1,5 \quad(\bmod 8) \\ \{ \pm 1, \pm \beta\} \cong C_{4} & \text { if } p-q \equiv 3,7 \quad(\bmod 8)\end{cases}
$$

as a consequence of $Z\left(C \ell_{p, q}\right)=\operatorname{sp}\{1\}$ (resp. $\left.\operatorname{sp}\{1, \beta\}\right)$ when $p+q$ is even (resp. odd) where $\beta=\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}, n=p+q$, is the unit pseudoscalar in $C \ell_{p, q}$.
8. Salingaros' classes $N_{2 k-1}, N_{2 k}, \Omega_{2 k-1}, \Omega_{2 k}$, and S_{k} [17-19] are related to the groups $G_{p, q}$ as follows:

$$
\begin{align*}
& N_{2 k-1} \leftrightarrow G_{p, q} \subset C \ell_{p, q}^{*}, p-q \equiv 0,2(\bmod 8), \\
& N_{2 k} \leftrightarrow G_{p, q} \cong C \ell_{p, q}^{*}, p-q \equiv 4,6(\bmod 8), \\
& \mathbb{K} \cong \mathbb{H} ; \tag{12}\\
& \Omega_{2 k-1} \leftrightarrow G_{p, q} \subset C \ell_{p, q}^{*}, p-q \equiv 1 \quad(\bmod 8), \\
& \Omega_{2 k} \cong \mathbb{R} \oplus G_{p, q} \subset C \ell_{p, q}^{*}, p-q \equiv 5(\bmod 8), \mathbb{K} \cong \mathbb{H} \oplus \mathbb{H} ; \\
& S_{k} \leftrightarrow G_{p, q} \subset C \ell_{p, q}^{*}, p-q \equiv 3,7(\bmod 8), \\
& \mathbb{K} \cong \mathbb{C} .
\end{align*}
$$

Table 1. Five isomorphism classes of vee groups $G_{p, q}$ in $C \ell_{p, q}^{*}$

Group G	$Z(G)$	Group order	$\operatorname{dim} C \ell_{p, q}$	$Z\left(C \ell_{p, q}\right)$
$N_{2 k-1}$	C_{2}	$2^{2 k+1}$	$2^{2 k}$	$\operatorname{sp}\{1\}$
$N_{2 k}$	C_{2}	$2^{2 k+1}$	$2^{2 k}$	$\operatorname{sp}\{1\}$
$\Omega_{2 k-1}$	$C_{2} \times C_{2}$	$2^{2 k+2}$	$2^{2 k+1}$	$\operatorname{sp}\{1, \beta\}$
$\Omega_{2 k}$	$C_{2} \times C_{2}$	$2^{2 k+2}$	$2^{2 k+1}$	$\operatorname{sp}\{1, \beta\}$
S_{k}	C_{4}	$2^{2 k+2}$	$2^{2 k+1}$	$\operatorname{sp}\{1, \beta\}$

The first few vee groups $G_{p, q}$ corresponding to Clifford algebras $C \ell_{p, q}$ in dimensions $n=p+q=1,2,3$, are:

$$
\begin{array}{ll}
n=1: & G_{0,1} \cong S_{0} \cong C_{4}, \quad G_{1,0} \cong \Omega_{0} \cong D_{4} \\
n=2: & G_{0,2} \cong N_{2} \cong Q_{8}, \quad G_{1,1} \cong N_{1} \cong D_{8}, \quad G_{2,0} \cong N_{1} \cong D_{8} \\
n=3: \quad G_{0,3} \cong \Omega_{2}, \quad G_{1,2} \cong S_{1}, \quad G_{2,1} \cong \Omega_{1}, \quad G_{3,0} \cong S_{1}
\end{array}
$$

See Table 2 for all groups for $n \leq 8$.

TABLE 2. Isomorphism classes of groups $G_{p, q}$ for $n=p+q \leq 8$.

$\sum_{n} \quad p-q$	-8	-7	-6	-5	-4		-2		0	1	2	3	4	5	6	7	8
0									N_{0}								
1								S_{0}		Ω_{0}							
2							N_{2}		N_{1}		N_{1}						
3						Ω_{2}		S_{1}		Ω_{1}		S_{1}					
4					N_{4}		N_{4}		N_{3}		N_{3}		N_{4}				
5				S_{2}		Ω_{4}		S_{2}		Ω_{3}		S_{2}		Ω_{4}			
6			N_{5}		N_{6}		N_{6}		N_{5}		N_{5}		N_{6}		N_{6}		
7		Ω_{5}		S_{3}		Ω_{6}		S_{3}		Ω_{5}		S_{3}		Ω_{6}		S_{3}	
8	N_{7}		N_{7}		N_{8}		N_{8}		N_{7}		N_{7}		N_{8}		N_{8}		N_{7}

4. Central product structure of $G_{p, q}$

In this section we review basic results on extra-special p-groups from [8,9,12] that lead to Salingaros Theorem for the groups $G_{p, q}$.

Definition 3 ([9]). A finite abelian p-group is elementary abelian if every nontrivial element has order p.
For example, $\left(C_{p}\right)^{k}=C_{p} \times \cdots \times C_{p}$ (k-times) is elementary abelian. In particular, $D_{4}=C_{2} \times C_{2}$ and C_{2} are elementary abelian.

We adopt the following definition of extra-special p-group. ${ }^{4}$
Definition 4 ([8]). A finite p-group P is extra-special if
(i) $Z(P)=P^{\prime}$,
(ii) $|Z(P)|=\left|P^{\prime}\right|=p$, and
(iii) P / P^{\prime} is elementary abelian.

The groups D_{8} and Q_{8} are extra-special and non-isomorphic.
Example 4 (D_{8} is extra-special). $D_{8}=\left\langle a, b \mid a^{4}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ is extra-special because:
(i) $Z\left(D_{8}\right)=D_{8}^{\prime}=\left[D_{8}, D_{8}\right]=\left\langle a^{2}\right\rangle,\left|Z\left(D_{8}\right)\right|=\left|D_{8}^{\prime}\right|=2$,
(ii) $D_{8} / D_{8}^{\prime}=D_{8} / Z\left(D_{8}\right)=\left\langle D_{8}^{\prime}, a D_{8}^{\prime}, b D_{8}^{\prime}, a b D_{8}^{\prime}\right\rangle \cong C_{2} \times C_{2}$.
(iii) Order structure: $[1,5,2]$
(iv) $D_{8} \cong C_{4} \rtimes C_{2} \cong\left(C_{2} \times C_{2}\right) \rtimes C_{2}$ (semi-direct products)

Example 5 (Q_{8} is extra-special). $Q_{8}=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b a b^{-1}=a^{-1}\right\rangle$ is extra-special because:
(i) $Z\left(Q_{8}\right)=Q_{8}^{\prime}=\left[Q_{8}, Q_{8}\right]=\left\langle a^{2}\right\rangle,\left|Z\left(Q_{8}\right)\right|=\left|Q_{8}^{\prime}\right|=2$,
(ii) $Q_{8} / Q_{8}^{\prime}=Q_{8} / Z\left(Q_{8}\right)=\left\langle Q_{8}^{\prime}, a Q_{8}^{\prime}, b Q_{8}^{\prime}, a b Q_{8}^{\prime}\right\rangle \cong C_{2} \times C_{2}$.
(iii) Order structure: $[1,1,6]$
(iv) Q_{8} is not a semi-direct product of any of its subgroups (cf. Brown [6])

[^2]We adopt the following definition from [8] of a group being a central product of its subgroups. However, some authors define the central product differently (cf. [9, 12]).
Definition 5 ([8]). A finite group G is a central product of subgroups H_{1}, \ldots, H_{n} if $G=H_{1} \cdots H_{n}$ and, for any $x \in H_{i}, y \in H_{j}, i \neq j$ implies $[x, y]=1$. Then, we will write $G=H_{1} \circ \cdots \circ H_{n}$. In particular, when $n=2$, we have: (a) $[H, K]=\langle 1\rangle$ and (b) $G=H K$.
Note that the central product is commutative and associative, and when $G=H_{1} \circ \cdots \circ H_{n}$, we have $\cap_{i=1}^{n} H_{i} \leq Z(G), H_{i} \triangleleft G$, and $Z\left(H_{i}\right) \leq Z(G)$ for each i.

The following group-theoretic results provide a foundation for Salingaros Theorem. Here, p is a prime.

Lemma 1 ([8]). Let P_{1}, \ldots, P_{n} be extra-special p-groups of order p^{3}. Then there is one and up to isomorphism only one central product of P_{1}, \ldots, P_{n} with center of order p. It is extra special of order $p^{2 n+1}$ denoted by $P_{1} \circ \ldots \circ P_{n}$, and called the central product of P_{1}, \ldots, P_{n}.

Remark 1. An important consequence of Lemma 1 is the following observation: Suppose that H and K are extra-special groups of order p^{3} and G is their internal central product. Then, $Z(H)=Z(K)=Z(G)$. In particular, let $p=2$ and suppose $G=D_{8}^{(2)} \circ D_{8}^{(1)}$ or $G=D_{8}^{(2)} \circ Q_{8}$ where the dihedral and the quaternion groups have the standard presentations as follows ${ }^{5}$:

$$
\begin{aligned}
D_{8}^{(i)} & =\left\langle a_{i}, b_{i} \mid\left(a_{i}\right)^{4}=\left(b_{i}\right)^{2}=1,\left(b_{i}\right)^{-1} a_{i} b_{i}=\left(a_{i}\right)^{-1}\right\rangle, \quad i=1,2 \\
Q_{8} & =\left\langle a_{3}, b_{3} \mid\left(a_{3}\right)^{4}=1,\left(a_{3}\right)^{2}=\left(b_{3}\right)^{2},\left(b_{3}\right)^{-1} a_{3} b_{3}=\left(a_{3}\right)^{-1}\right\rangle .
\end{aligned}
$$

Since $Z\left(D_{8}^{(i)}\right)=\left\{1,\left(a_{i}\right)^{2}\right\}, i=1,2$, and $Z\left(Q_{8}\right)=\left\{1,\left(a_{3}\right)^{2}\right\}$, the equality of the centers $Z\left(D_{8}^{(1)}\right)=Z\left(D_{8}^{(2)}\right)=Z\left(Q_{8}\right)$ implies that $\left(a_{1}\right)^{2}=\left(a_{2}\right)^{2}=\left(a_{3}\right)^{2}$.
Lemma 2 ([8]). The groups $Q_{8} \circ Q_{8}$ and $D_{8} \circ D_{8}$ are isomorphic of order 32, not isomorphic to $D_{8} \circ Q_{8}$. If C is a cyclic 2 -group of order at least 4 , then $C \circ Q_{8} \cong C \circ D_{8}$.

The following two results tell us that for any prime p, there are exactly two isomorphism classes of extra-special p-groups.
Lemma 3 ([12]). An extra-special p-group has order $p^{2 n+1}$ for some positive integer n, and is the iterated central product of non-abelian groups of order p^{3}.

Theorem 3 ([12]). There are exactly two isomorphism classes of extra-special groups of order $2^{2 n+1}$ for positive integer n. One isomorphism type arises as the iterated central product of n copies of D_{8}; the other as the iterated central product of n groups isomorphic to D_{8} and Q_{8}, including at least one copy of Q_{8}. That is, $D_{8} \circ D_{8} \circ \cdots \circ D_{8}$, or, $D_{8} \circ D_{8} \circ \cdots \circ D_{8} \circ Q_{8}$, where it is understood that these are iterated central products.

[^3]In Appendix B we show how to decompose the vee groups $G_{p, q}$ into internal central products using this iterative approach.

Theorem 4 (Salingaros Theorem [19]). Let $N_{1}=D_{8}, N_{2}=Q_{8}$, and $(G)^{\circ k}$ be the iterated central product $G \circ \cdots \circ G$ (k times) of G. Then, for $k \geq 1$:

1. $N_{2 k-1} \cong\left(N_{1}\right)^{\circ k}=\left(D_{8}\right)^{\circ k}$,
2. $N_{2 k} \cong\left(N_{1}\right)^{\circ k} \circ N_{2}=\left(D_{8}\right)^{\circ(k-1)} \circ Q_{8}$,
3. $\Omega_{2 k-1} \cong N_{2 k-1} \circ\left(C_{2} \times C_{2}\right)=\left(D_{8}\right)^{\circ k} \circ\left(C_{2} \times C_{2}\right)$,
4. $\Omega_{2 k} \cong N_{2 k} \circ\left(C_{2} \times C_{2}\right)=\left(D_{8}\right)^{\circ(k-1)} \circ Q_{8} \circ\left(C_{2} \times C_{2}\right)$,
5. $S_{k} \cong N_{2 k-1} \circ C_{4} \cong N_{2 k} \circ C_{4}=\left(D_{8}\right)^{\circ k} \circ C_{4} \cong\left(D_{8}\right)^{\circ(k-1)} \circ Q_{8} \circ C_{4}$.

Thus, the families $N_{2 k-1}$ and $N_{2 k}$ are the two isomorphism classes of extraspecial groups of order $2^{2 k+1}$ predicted by Theorem 3 while the three classes $\Omega_{2 k-1}, \Omega_{2 k}, S_{k}$ contain non extra-special groups of order $2^{2 k+2}$.

As a follow up to Remark 1, we make the following observations.
Remark 2. Let $G=G_{p, q}$.
(i) When $G \cong N_{2 k-1}$ or $G \cong N_{2 k}$, the centers of the dihedral and the quaternion groups in the central product factorization of G are equal to $Z(G)$ with order 2 . This implies that the squares of all their generators a_{i} of order 4 equal τ, the single central involution in G which in turn is just -1 .
(ii) When $G \cong \Omega_{2 k-1}$ or $G \cong \Omega_{2 k}$, then $Z(G) \cong C_{2} \times C_{2}$. Thus, from the Product Formula [16],

$$
|G|=2^{2 k+2}=\frac{\left|N_{2 k-1}\right|\left|C_{2} \times C_{2}\right|}{\left|N_{2 k-1} \cap\left(C_{2} \times C_{2}\right)\right|}=\frac{2^{2 k+3}}{\left|N_{2 k-1} \cap\left(C_{2} \times C_{2}\right)\right|},
$$

we find that $\left|N_{2 k-1} \cap\left(C_{2} \times C_{2}\right)\right|=2$. Since

$$
Z\left(N_{2 k-1}\right) \lesseqgtr Z\left(C_{2} \times C_{2}\right)=C_{2} \times C_{2}
$$

(and similarly for $Z\left(N_{2 k}\right)$) we conclude that the squares of the generators a_{i} must equal one of three central involutions in $C_{2} \times C_{2} \cong$ $\{1, \beta,-1,-\beta\}$ where β is the unit pseudoscalar in $G_{p, q} \subset C \ell_{p, q}^{*}$ of order 2. However, since each generator a_{i} is a basis monomial in $C \ell_{p, q}$, its square is invariant under the grade involution automorphism α of $C \ell_{p, q}$, that is, $\alpha\left(\left(a_{i}\right)^{2}\right)=\left(a_{i}\right)^{2}$, yet, $\alpha(\pm \beta)=\mp \beta$ since $p+q$ is odd. Like in (i), we conclude that the squares of all the generators a_{i} of order 4 equal $\tau=-1$, the central involution in G.
(iii) When $G \cong S_{k}$, we recall that $Z(G) \cong C_{4} \cong\langle\beta\rangle$ and so $Z(G)$ contains exactly one element of order 2 , namely, $\beta^{2}=-1$. Thus, $Z\left(N_{2 k-1}\right) \cap$ $Z(G) \cong Z\left(N_{2 k}\right) \cap Z(G) \cong C_{2}$, and again, the squares of all the generators a_{i} of order 4 equal $\tau=-1$.

As an example of application of Algorithms 1 and 2 presented in Appendix B, we show how the groups $G_{p, q}$ of order 16 can be written as internal central products.

Example 6. Let $p+q=3$. The central-product factorizations of groups $G_{p, q}$ may be given as follows:

$$
\begin{aligned}
& G_{0,3} \cong \Omega_{2} \cong N_{2} \circ\left(C_{2} \times C_{2}\right) \cong\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle \circ\langle\beta,-\beta\rangle, \\
& G_{1,2} \cong S_{1} \cong N_{1} \circ C_{4} \cong\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}\right\rangle \circ\langle\beta\rangle \cong N_{2} \circ C_{4} \cong\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle \circ\langle\beta\rangle, \\
& G_{2,1} \cong \Omega_{1} \cong N_{1} \circ\left(C_{2} \times C_{2}\right) \cong\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle \circ\langle\beta,-\beta\rangle, \\
& G_{3,0} \cong S_{1} \cong N_{1} \circ C_{4} \cong\left\langle\mathbf{e}_{12}, \mathbf{e}_{1}\right\rangle \circ\langle\beta\rangle \cong N_{2} \circ C_{4} \cong\left\langle\mathbf{e}_{12}, \mathbf{e}_{3}\right\rangle \circ\langle\beta\rangle,
\end{aligned}
$$

where β is a unit pseudoscalar, $N_{1}=D_{8}, N_{2}=Q_{8}$, and we have shortened our notation to only show generators for all the subgroups ${ }^{6}$.

5. Clifford algebras $C \ell_{p, q}$ as images of group algebras $\mathbb{R}\left[G_{p, q}\right]$

Since the relations defining $G_{p, q}$ shown in (10) are the same as relations (6) assumed in Theorem 1 (with -1 being a central involution), we have the following result.

Main Theorem. Every Clifford algebra $C \ell_{p, q}, p+q \geq 2$, is \mathbb{R}-isomorphic to a quotient of the group algebra $\mathbb{R}\left[G_{p, q}\right]$ of Salingaros vee group $G_{p, q}$ of order 2^{p+q+1} modulo an ideal $\mathcal{J}=(1+\tau)$ generated by $1+\tau$ for a central element τ of order 2 .

The above theorem allows us to classify Clifford algebras through the groups $G_{p, q}$. Notice from Table 2 that for each $n=p+q$, there is a bijective correspondence between the isomorphism classes of the groups $G_{p, q}$, hence, the group algebras $\mathbb{R}\left[G_{p, q}\right]$ and their quotients, and the isomorphism classes of Clifford algebras $C \ell_{p, q}$ (check Periodicity of Eight in [13, Table 1, p. 217]). For example, for $n=4$, we have two isomorphism classes:

$$
\mathbb{R}\left[N_{4}\right] / \mathcal{J} \cong C \ell_{0,4} \cong C \ell_{1,3} \cong C \ell_{4,0} \quad \text { and } \quad \mathbb{R}\left[N_{3}\right] / \mathcal{J} \cong C \ell_{2,2} \cong C \ell_{3,1}
$$

5.1. \mathbb{Z}_{2}-gradation of $\mathbb{R}\left[G_{p, q}\right]$

Recall the following well-known theorem in group theory.
Proposition 2 ([16]). If G is a p-group of order p^{n}, then G has a normal subgroup of order p^{k} for every $k \leq n$.

The following result is an immediate consequence of this proposition.
Proposition 3. Let G be Salingaros vee group $G_{p, q}$. Then,
(i) G has a normal subgroup H of index 2.
(ii) $G=H \dot{\cup} H b$ for some element $b \notin H$ such that $b^{2} \in H$.
(iii) The group algebra $\mathbb{R}[G]$ is \mathbb{Z}_{2}-graded.

Proof of (i): Follows from Proposition 2.

[^4]Proof of (ii): Since $[G: H]=2$, we have $G / H \cong C_{2}$ and so $G=H \cup H b$ where $b \notin H$ yet $b^{2} \in H$.

Proof of (iii): Since $G=H \dot{\cup} H b$, we have

$$
\mathbb{R}[G]=\left\{\sum_{h \in H} x_{h} h+\sum_{h \in H} y_{h} h b \mid x_{h}, y_{h} \in \mathbb{R}\right\} .
$$

Let

$$
\begin{equation*}
(\mathbb{R}[G])^{(0)}=\left\{\sum_{h \in H} x_{h} h \mid x_{h} \in \mathbb{R}\right\}, \quad(\mathbb{R}[G])^{(1)}=\left\{\sum_{h \in H} y_{h} h b \mid y_{h} \in \mathbb{R}\right\} \tag{13}
\end{equation*}
$$

Then, since $H \triangleleft G, b \notin H$, and $b^{2} \in H$, we have

$$
\begin{gathered}
\mathbb{R}[G]=(\mathbb{R}[G])^{(0)} \oplus(\mathbb{R}[G])^{(1)} \\
(\mathbb{R}[G])^{(i)}(\mathbb{R}[G])^{(j)} \subseteq(\mathbb{R}[G])^{(i+j \bmod 2)}, \quad i, j=0,1
\end{gathered}
$$

For the given group $G_{p, q}$, there are usually several choices for the maximal subgroup H in the above proposition. In the following we will show that our results do not depend on that choice.
5.2. Homogeneity of the ideal $\mathcal{J}=(1+\tau)$

We recall the following result from group theory (cf. [11, 16]).
Lemma 4. Let G be a group of order p^{n} with $n \geq 1$. If $\{1\} \neq H \triangleleft G$ then $H \cap Z(G) \neq\{1\}$. In particular, $Z(G) \neq\{1\}$.

When $G=G_{p, q}$ and $\{1\} \neq H \triangleleft G$, we have $2\left|\left|H \cap Z\left(G_{p, q}\right)\right|\right.$. In particular, when $[G: H]=2$, the central involution $\tau \in H$. In fact, in that case, $\left|H \cap Z\left(G_{p, q}\right)\right|=2$.

Lemma 5. Let $G=G_{p, q}, p+q \geq 2,{ }^{7}$ and let $H \triangleleft G$ such that $[G: H]=2$.
(i) If the isomorphism class of G is $N_{2 k-1}$ or $N_{2 k}$, and τ is the central involution in $Z(G)$, then $\tau \in H$.
(ii) If the isomorphism class of G is $\Omega_{2 k-1}$ or $\Omega_{2 k}$, then there exits a central involution τ in $Z(G)$ which is contained in H.
(ii) If the isomorphism class of G is S_{k}, and τ is the central involution in $Z(G)$, then $\tau \in H$.

Proof of (i): Since $H \triangleleft G$ and $[G: H]=2$, the quotient group G / H is abelian and so by part (b) of Proposition $1, G^{\prime}=\{1,-1\} \subset H$. Thus, $\tau=-1 \in H$.

Proof of (ii): Since $Z(G) \cong C_{2} \times C_{2}$, the center of G contains three elements of order 2. Note that since

$$
\Omega_{2 k-1} \cong N_{2 k-1} \circ\left(C_{2} \times C_{2}\right) \quad \text { and } \quad \Omega_{2 k} \cong N_{2 k} \circ\left(C_{2} \times C_{2}\right),
$$

[^5]and $\left[\Omega_{2 k-1}: N_{2 k-1}\right]=\left[\Omega_{2 k}: N_{2 k}\right]=2$, from the Product Formula we find that $\left|N_{2 k-1} \cap Z(G)\right|=\left|N_{2 k} \cap Z(G)\right|=2$. Thus, one of the central involutions, call it τ, belongs to $Z\left(N_{2 k-1}\right)$ or $Z\left(N_{2 k}\right)$, respectively, and so it must again equal a^{2} where a is a generator of order 4 of any subgroup N_{1} or N_{2}. If H is any subgroup in $G_{p, q}$ of index 2, it must contain an element of order 4, hence, it will contain the central element -1 . Thus, again, $\tau=a^{2}=-1$.

Proof of (iii): In this case, since $Z(G) \cong C_{4}$, there is a single central involution τ in $Z(G)$. Thus, $\tau \in H$. We can also observe from $S_{k} \cong N_{2 k-1} \circ C_{4} \cong$ $N_{2 k} \circ C_{4}$ that the normal subgroups $N_{2 k-1}$ and $N_{2 k}$ are of index 2. Thus, $\tau=a^{2}=-1$ as well.

Proposition 4. Let $G=G_{p, q}$. Ideal $\mathcal{J}=(1+\tau)$ in $\mathbb{R}[G]$ is homogeneous.
Proof. Let $J=(1+\tau) \subset \mathbb{R}[G]=(\mathbb{R}[G])^{(0)} \oplus(\mathbb{R}[G])^{(1)}$ where $\tau=a^{2} \in$ $Z(G)$. Let H be as in Proposition 3. Then, $\tau \in(\mathbb{R}[G])^{(0)}$ and the ideal \mathcal{J} is homogeneous.

As a consequence of being homogeneous, the ideal \mathcal{J}, as a subalgebra of $\mathbb{R}[G]$, is also \mathbb{Z}_{2}-graded. Let $j=u(1+\tau) \in \mathcal{J}$ where $u \in \mathbb{R}[G]$. Then, \mathcal{J} is homogeneous because the homogeneous parts of j belong to \mathcal{J} :

$$
\begin{equation*}
\mathcal{J} \ni j=u(1+\tau)=\underbrace{u^{(0)}(1+\tau)}_{j^{(0)} \in \mathcal{J}^{(0)}}+\underbrace{u^{(1)}(1+\tau)}_{j^{(1)} \in \mathcal{J}^{(1)}} \tag{14}
\end{equation*}
$$

where $u^{(i)} \in(\mathbb{R}[G])^{(i)}, \mathcal{J}^{(i)}=(1+\tau)(\mathbb{R}[G])^{(i)}$. Clearly, $\mathcal{J}=\mathcal{J}^{(0)} \oplus \mathcal{J}^{(1)}$ and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}, i, j=0,1$.

5.3. \mathbb{Z}_{2}-gradation of $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$

We have the following result.
Proposition 5. Let $G=G_{p, q}$ and $\mathcal{J}=(1+\tau)$ be the homogeneous ideal in $\mathbb{R}[G]$ where τ is a central involution in G. Let H be normal in G of index 2, $b \in G \backslash H, b^{2} \in H$. Then, the quotient algebra $\mathbb{R}[G] / \mathcal{J}$ is \mathbb{Z}_{2}-graded:

$$
\begin{gather*}
\mathbb{R}[G] / \mathcal{J}=(\mathbb{R}[G] / \mathcal{J})^{(0)} \oplus(\mathbb{R}[G] / \mathcal{J})^{(1)} \quad \text { with } \tag{15a}\\
(\mathbb{R}[G] / \mathcal{J})^{(0)}=\operatorname{sp}\{h+\mathcal{J} \mid h \in H\}, \quad \text { and } \tag{15b}\\
(\mathbb{R}[G] / \mathcal{J})^{(1)}=\operatorname{sp}\{h b+\mathcal{J} \mid h \in H\} \tag{15c}
\end{gather*}
$$

Proof. From Proposition 3, we know that $\mathbb{R}[G]$ is \mathbb{Z}_{2}-graded. Then, if we define $(\mathbb{R}[G] / \mathcal{J})^{(i)}$ as in (15b) and (15c), then clearly (15a) holds. Furthermore,

$$
\begin{gather*}
(h+\mathcal{J})\left(h^{\prime}+\mathcal{J}\right)=h h^{\prime}+\mathcal{J} \in(\mathbb{R}[G] / \mathcal{J})^{(0)}, \tag{16a}\\
(h b+\mathcal{J})\left(h^{\prime} b+\mathcal{J}\right)=h b h^{\prime} b+\mathcal{J}=h\left(b h^{\prime} b^{-1}\right) b^{2}+\mathcal{J} \in(\mathbb{R}[G] / \mathcal{J})^{(0)}, \tag{16b}\\
(h+\mathcal{J})\left(h^{\prime} b+\mathcal{J}\right)=h h^{\prime} b+\mathcal{J} \in(\mathbb{R}[G] / \mathcal{J})^{(1)} \tag{16c}\\
\left(h^{\prime} b+\mathcal{J}\right)(h+\mathcal{J})=h^{\prime} b h+\mathcal{J}=h^{\prime}\left(b h b^{-1}\right) b+\mathcal{J} \in(\mathbb{R}[G] / \mathcal{J})^{(1)} \tag{16d}
\end{gather*}
$$

Thus, $(\mathbb{R}[G] / \mathcal{J})^{(i)}(\mathbb{R}[G] / \mathcal{J})^{(j)} \subseteq(\mathbb{R}[G] / \mathcal{J})^{(i+j \bmod 2)}, i, j=0,1$.

Example 7. Consider the group algebra $\mathbb{R}\left[Q_{8}\right]$ from Example 1. Then,

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right]=\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)} \tag{17}
\end{equation*}
$$

where $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)}=\operatorname{sp}\{1, I, \tau, \tau I\}$ and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}=\operatorname{sp}\{J, I J, \tau J, \tau I J\}$. Furthermore, $\mathcal{J}=\mathcal{J}^{(0)} \oplus \mathcal{J}^{(1)}$ where $\mathcal{J}^{(0)}=\operatorname{sp}\{1+\tau,(1+\tau) I\}$ and $\mathcal{J}^{(1)}=$ $\mathrm{sp}\{(1+\tau) J,(1+\tau) I J\}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right] / \mathcal{J}=\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)}=\operatorname{sp}\{1+\mathcal{J}, I J+\mathcal{J}\} \tag{19}\\
& \left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)}=\operatorname{sp}\{I+\mathcal{J}, J+\mathcal{J}\} \tag{20}
\end{align*}
$$

It can also be verified that the following \mathbb{R}-algebra map

$$
\begin{align*}
& \mathbb{R}\left[Q_{8}\right] / \mathcal{J}=\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)} \xrightarrow{\varphi} \\
&\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)} / \mathcal{J}^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)} / \mathcal{J}^{(1)} \tag{21}
\end{align*}
$$

defined as

$$
\begin{align*}
1+\mathcal{J} \mapsto 1+\mathcal{J}^{(0)}, & 1+\mathcal{J} \mapsto 1+\mathcal{J}^{(0)} \tag{22a}\\
I+\mathcal{J} \mapsto J+\mathcal{J}^{(1)}, & J+\mathcal{J} \mapsto I J+\mathcal{J}^{(1)} \tag{22b}
\end{align*}
$$

is a \mathbb{Z}_{2}-graded isomorphism. Here, the codomain of φ is a \mathbb{Z}_{2}-graded algebra with multiplication defined as

$$
\begin{equation*}
\left(a+\mathcal{J}^{(i)}\right)\left(b+\mathcal{J}^{(j)}\right)=a b+\mathcal{J}^{(i+j \bmod 2)}, \quad i, j=0,1 \tag{23}
\end{equation*}
$$

See Appendix C for multiplication tables in $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)} / \mathcal{J}^{(0)} \oplus$ $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)} / \mathcal{J}^{(1)}$.

5.4. On the \mathbb{Z}_{2}-graded isomorphism $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J} \cong C \ell_{p, q}$

Our Main Theorem in Section 5 states that each Clifford algebra $C \ell_{p, q}$ is \mathbb{R}-isomorphic to the quotient algebra $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$ where $G_{p, q}$ is Salingaros vee group contained in $C \ell_{p, q}^{*}$. However, both algebras are \mathbb{Z}_{2}-graded. Thus, a natural question is to ask whether the \mathbb{R}-isomorphism $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J} \cong C \ell_{p, q}$ is also \mathbb{Z}_{2}-graded (or, just graded, for short). Of course, not all such isomorphisms may be graded. This is because Clifford algebras belonging to the same isomorphism class -as predicted by the Periodicity of Eight Theorem- are only \mathbb{R}-isomorphic. For example, since the two algebras $C \ell_{1,1}$ and $C \ell_{2,0}$ are \mathbb{R} isomorphic to $\operatorname{Mat}(2, \mathbb{R})$, they are not graded-isomorphic. Hence, for one, we cannot expect both isomorphisms $\mathbb{R}\left[G_{1,1}\right] / \mathcal{J} \cong C \ell_{1,1}$ and $\mathbb{R}\left[G_{2,0}\right] / \mathcal{J} \cong C \ell_{2,0}$ to be simultaneously graded. For two, when the isomorphism $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J} \cong$ $C \ell_{p, q}$ is graded, we would expect it to remain graded regardless which maximal subgroup H of $G_{p, q}$ has been used to exhibit the \mathbb{Z}_{2}-gradation of the group algebra $\mathbb{R}\left[G_{p, q}\right]$, the ideal \mathcal{J}, and, in the end, the quotient algebra $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$.

Our goal for this section is to investigate these issues on two examples. In the end, we will conjecture a general result.

5.5. Is the isomorphism $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong C \ell_{0,2}$ graded?

Recall presentation (1a) of Q_{8} and a multiplication Table 18 of Q_{8} in Appendix D. Q_{8} has three maximal subgroups, each isomorphic to C_{4} :
$H_{1}=\langle a\rangle=\{1, \tau, a, \tau a\}, H_{2}=\langle b\rangle=\{1, b, \tau, \tau b\}, H_{3}=\langle a b\rangle=\{1, \tau, a b, \tau a b\}$.
Each subgroup is of index 2 , hence it is normal, and their intersection, as expected, is $\Phi\left(Q_{8}\right)=Q_{8}^{\prime}=Z\left(Q_{8}\right)=\{1, \tau\}$ since Q_{8} is extra-special. Let H be any of these three subgroups. In the following, we will base the graded structure of $\mathbb{R}\left[Q_{8}\right], \mathcal{J}$ and $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ on H, and show that the isomorphism $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong C \ell_{0,2}$ is graded.
5.5.1. Case $H=H_{1}$: Since $Q_{8}=H_{1} \dot{\cup} H_{1} b=\{1, \tau, a, \tau a\} \dot{\cup}\{b, a b, \tau b \tau a b\}$,

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, a, \tau a\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{b, a b, \tau b, \tau a b\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}} \tag{24}
\end{equation*}
$$

and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) a\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) b,(1+\tau) a b\}}_{\mathcal{J}^{(1)}} \tag{25}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, a+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{b+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)}} \tag{26}
\end{equation*}
$$

and it has the following multiplication table:

Table 3. Multiplication table for $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ based on H_{1}

	$1+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$	$a b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$	$a b+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$-1+\mathcal{J}$	$a b+\mathcal{J}$	$-b+\mathcal{J}$
$b+\mathcal{J}$	$b+\mathcal{J}$	$-a b+\mathcal{J}$	$-1+\mathcal{J}$	$a+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$b+\mathcal{J}$	$-a+\mathcal{J}$	$-1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[Q_{8}\right] / \mathcal{J} \rightarrow C \ell_{0,2}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{2} \tag{27}
\end{equation*}
$$

So, φ is a graded algebra isomorphism since $\varphi\left(\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i)}\right) \subseteq\left(C \ell_{0,2}\right)^{(i)}$. Notice that in order to properly define φ, we must have equality of orders of the group elements: $|a|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4,|b|=\left|\mathbf{e}_{1}\right|=4$, and $|a b|=\left|\mathbf{e}_{2}\right|=4$ in Q_{8} and $G_{0,2}$, respectively.
5.5.2. Case $H=H_{2}$: Since $Q_{8}=H_{2} \dot{\cup} H_{2} a=\{1, \tau, b, \tau b\} \dot{\cup}\{a, \tau a, a b, \tau a b\}$,

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, b, \tau b\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a, \tau a, a b, \tau a b\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}} \tag{28}
\end{equation*}
$$

and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) b\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) a,(1+\tau) a b\}}_{\mathcal{J}^{(1)}} \tag{29}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, b+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)}}, \tag{30}
\end{equation*}
$$

and it has the following multiplication table:

Table 4. Multiplication table for $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ based on H_{2}

	$1+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$
$b+\mathcal{J}$	$b+\mathcal{J}$	$-1+\mathcal{J}$	$-a b+\mathcal{J}$	$a+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$	$-1+\mathcal{J}$	$-b+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$-a+\mathcal{J}$	$b+\mathcal{J}$	$-1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[Q_{8}\right] / \mathcal{J} \rightarrow C \ell_{0,2}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{2}, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{1} \tag{31}
\end{equation*}
$$

So, again φ is a graded isomorphism and $|b|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4,|a|=\left|\mathbf{e}_{2}\right|=4$, and $|a b|=\left|\mathbf{e}_{1}\right|=4$ in Q_{8} and $G_{0,2}$, respectively.
5.5.3. Case $H=H_{3}$: Since $Q_{8}=H_{3} \cup H_{3} a=\{1, \tau, a b, \tau a b\} \cup\{a, \tau a, b, \tau b\}$,

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, a b, \tau a b\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a, \tau a, b, \tau b\}}_{\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}} \tag{32}
\end{equation*}
$$

and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) a b\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) a,(1+\tau) b\}}_{\mathcal{J}^{(1)}} \tag{33}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[Q_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, b+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(1)}}, \tag{34}
\end{equation*}
$$

and it has the following multiplication table:

TABLE 5. Multiplication table for $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$ based on H_{3}

	$1+\mathcal{J}$	$a b+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$a b+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$-1+\mathcal{J}$	$b+\mathcal{J}$	$-a+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$-b+\mathcal{J}$	$-1+\mathcal{J}$	$a b+\mathcal{J}$
$a b+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$-a b+\mathcal{J}$	$-1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[Q_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[Q_{8}\right] / \mathcal{J} \rightarrow C \ell_{0,2}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad b+\mathcal{J} \mapsto \mathbf{e}_{2} \tag{35}
\end{equation*}
$$

Again, φ is graded and $|a b|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4,|a|=\left|\mathbf{e}_{1}\right|=4$, and $|b|=\left|\mathbf{e}_{2}\right|=4$ in Q_{8} and $G_{0,2}$, respectively.

In conclusion, we have proven the following.
Theorem 5. There is a graded algebra isomorphism $\mathbb{R}\left[Q_{8}\right] / \mathcal{J} \cong C \ell_{0,2}$. The isomorphism does not depend on the choice of a maximal subgroup H in Q_{8} used to define the graded algebra structure in $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$.
5.6. Are the isomorphisms $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ and $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ graded?

Recall presentation (2a) of D_{8} and a multiplication Table 19 of D_{8} in Appendix D. D_{8} has three maximal subgroups:

$$
\begin{gathered}
H_{1}=\langle\tau, b\rangle=\{1, \tau, b, \tau b\} \cong D_{4}, \quad H_{2}=\langle\tau, a b\rangle=\{1, \tau, a b, \tau a b\} \cong D_{4} \\
H_{3}=\langle a\rangle=\{1, \tau, a, \tau a\} \cong C_{4}
\end{gathered}
$$

Each subgroup is of index 2, hence it is normal, and their intersection is $\Phi\left(D_{8}\right)=D_{8}^{\prime}=Z\left(D_{8}\right)=\{1, \tau\}$ since D_{8} is extra-special. Let H be any of these three subgroups. In the following, we will base the graded structure of $\mathbb{R}\left[D_{8}\right], \mathcal{J}$ and $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ on H, and consider whether the isomorphisms $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ and $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ are graded.
5.6.1. Case $H=H_{1}$: Since $D_{8}=H_{1} \cup H_{1} a=\{1, \tau, b, \tau b\} \cup\{a, \tau a, a b, \tau a b\}$,

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, b, \tau b\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a, \tau a, a b, \tau a b\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(1)}} \tag{36}
\end{equation*}
$$

and $\left(\mathbb{R}\left[D_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) b\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) a,(1+\tau) a b\}}_{\mathcal{J}^{(1)}} \tag{37}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, b+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(1)}} \tag{38}
\end{equation*}
$$

and it has the following multiplication table:

TABLE 6. Multiplication table for $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ based on H_{1}

	$1+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$
$b+\mathcal{J}$	$b+\mathcal{J}$	$1+\mathcal{J}$	$-a b+\mathcal{J}$	$-a+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$a b+\mathcal{J}$	$-1+\mathcal{J}$	$-b+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$	$1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{2,0}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad a b+\mathcal{J} \mapsto-\mathbf{e}_{2} . \tag{39}
\end{equation*}
$$

So, while φ is an \mathbb{R}-isomorphism, it is not graded since the even element $b+\mathcal{J}$ is mapped into the odd element \mathbf{e}_{1}. Notice that in order to properly define φ as the \mathbb{R}-isomorphism, we must have equality of orders: $|b|=\left|\mathbf{e}_{1}\right|=2$, $|a|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4$, and $|a b|=\left|-\mathbf{e}_{2}\right|=2$ in D_{8} and $G_{2,0}$, respectively. Thus, $a+\mathcal{J}$ cannot be mapped to \mathbf{e}_{1} or \mathbf{e}_{2} for that reason. The only flexibility in defining φ is to switch \mathbf{e}_{1} and \mathbf{e}_{2} in (39) (modulo -1). Thus, the isomorphism $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ is not graded when $H=H_{1}$.

However, the isomorphism $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ is graded. Define an \mathbb{R} algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{1,1}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{2}, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{1} \tag{40}
\end{equation*}
$$

So, φ is graded since $\varphi\left(\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i)}\right) \subseteq\left(C \ell_{1,1}\right)^{(i)}$ and $|b|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=2$, $|a|=\left|\mathbf{e}_{2}\right|=4$, and $|a b|=\left|\mathbf{e}_{1}\right|=2$ in D_{8} and $G_{1,1}$, respectively.
5.6.2. Case $H=H_{2}$: Since $D_{8}=H_{2} \dot{\cup} H_{2} a=\{1, \tau, a b, \tau a b\} \dot{\cup}\{a, \tau a, b, \tau b\}$,

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, a b, \tau a b\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a, \tau a, b, \tau b\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(1)}} \tag{41}
\end{equation*}
$$

and $\left(\mathbb{R}\left[D_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) a b\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) a,(1+\tau) b\}}_{\mathcal{J}^{(1)}} \tag{42}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{a+\mathcal{J}, b+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(1)}} \tag{43}
\end{equation*}
$$

and it has the following multiplication table:

TABLE 7. Multiplication table for $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ based on H_{2}

	$1+\mathcal{J}$	$a b+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$a b+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$1+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$-b+\mathcal{J}$	$-1+\mathcal{J}$	$a b+\mathcal{J}$
$b+\mathcal{J}$	$b+\mathcal{J}$	$-a+\mathcal{J}$	$-a b+\mathcal{J}$	$1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{2,0}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad b+\mathcal{J} \mapsto \mathbf{e}_{2} . \tag{44}
\end{equation*}
$$

So, while φ is an \mathbb{R}-isomorphism of algebras, it is not graded since the even element $a b+\mathcal{J}$ is mapped into the odd element \mathbf{e}_{1}. The orders of the group elements must match: $|a b|=\left|\mathbf{e}_{1}\right|=2,|a|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4$, and $|b|=\left|\mathbf{e}_{2}\right|=2$ in D_{8} and $G_{2,0}$, respectively. Thus, $a+\mathcal{J}$ cannot be mapped to \mathbf{e}_{1} or \mathbf{e}_{2} for that reason. Thus, the isomorphism $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ is not graded when $H=H_{2}$.

However, the isomorphism $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ is graded. Define an \mathbb{R} algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{1,1}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a b+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad a+\mathcal{J} \mapsto \mathbf{e}_{2}, \quad b+\mathcal{J} \mapsto-\mathbf{e}_{1} . \tag{45}
\end{equation*}
$$

So, φ is a graded algebra isomorphism and $|a b|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=2,|a|=\left|\mathbf{e}_{2}\right|=4$, and $|b|=\left|-\mathbf{e}_{1}\right|=2$ in D_{8} and $G_{1,1}$, respectively.
5.6.3. Case $H=H_{3}$: Since $D_{8}=H_{3} \cup H_{3} b=\{1, \tau, a, \tau a\} \cup\{b, a b, \tau b, \tau a b\}$,

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right]=\underbrace{\operatorname{sp}\{1, \tau, a, \tau a\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{b, a b, \tau b, \tau a b\}}_{\left(\mathbb{R}\left[D_{8}\right]\right)^{(1)}} \tag{46}
\end{equation*}
$$

and $\left(\mathbb{R}\left[D_{8}\right]\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right]\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right]\right)^{(i+j \bmod 2)}$. Then,

$$
\begin{equation*}
\mathcal{J}=\underbrace{\operatorname{sp}\{1+\tau,(1+\tau) a\}}_{\mathcal{J}^{(0)}} \oplus \underbrace{\operatorname{sp}\{(1+\tau) b,(1+\tau) a b\}}_{\mathcal{J}^{(1)}} \tag{47}
\end{equation*}
$$

and $\mathcal{J}^{(i)} \mathcal{J}^{(j)} \subseteq \mathcal{J}^{(i+j \bmod 2)}$. The quotient algebra decomposes as

$$
\begin{equation*}
\mathbb{R}\left[D_{8}\right] / \mathcal{J}=\underbrace{\operatorname{sp}\{1+\mathcal{J}, a+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(0)}} \oplus \underbrace{\operatorname{sp}\{b+\mathcal{J}, a b+\mathcal{J}\}}_{\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(1)}}, \tag{48}
\end{equation*}
$$

and it has the following multiplication table:

Table 8. Multiplication table for $\mathbb{R}\left[D_{8}\right] / \mathcal{J}$ based on H_{3}

	$1+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$	$a b+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$a+\mathcal{J}$	$b+\mathcal{J}$	$a b+\mathcal{J}$
$a+\mathcal{J}$	$a+\mathcal{J}$	$-1+\mathcal{J}$	$a b+\mathcal{J}$	$-b+\mathcal{J}$
$b+\mathcal{J}$	$b+\mathcal{J}$	$-a b+\mathcal{J}$	$1+\mathcal{J}$	$-a+\mathcal{J}$
$a b+\mathcal{J}$	$a b+\mathcal{J}$	$b+\mathcal{J}$	$a+\mathcal{J}$	$1+\mathcal{J}$

Thus, $\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i)}\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(j)} \subseteq\left(\mathbb{R}\left[D_{8}\right] / \mathcal{J}\right)^{(i+j \bmod 2)}, i, j=0,1$. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{2,0}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a+\mathcal{J} \mapsto \mathbf{e}_{1} \mathbf{e}_{2}, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad a b+\mathcal{J} \mapsto-\mathbf{e}_{2} . \tag{49}
\end{equation*}
$$

So, φ is graded and $|a|=\left|\mathbf{e}_{1} \mathbf{e}_{2}\right|=4,|b|=\left|\mathbf{e}_{1}\right|=2$, and $|a b|=\left|-\mathbf{e}_{2}\right|=2$ in D_{8} and $G_{2,0}$, respectively.

However, the isomorphism $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ is not graded. Define an \mathbb{R}-algebra map $\varphi: \mathbb{R}\left[D_{8}\right] / \mathcal{J} \rightarrow C \ell_{1,1}$ as

$$
\begin{equation*}
1+\mathcal{J} \mapsto 1, \quad a+\mathcal{J} \mapsto \mathbf{e}_{2}, \quad b+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad a b+\mathcal{J} \mapsto-\mathbf{e}_{1} \mathbf{e}_{2} . \tag{50}
\end{equation*}
$$

So, φ must preserve orders of group elements namely $|a|=\left|\mathbf{e}_{2}\right|=4,|b|=$ $\left|\mathbf{e}_{1}\right|=2$, and $|a b|=\left|-\mathbf{e}_{1} \mathbf{e}_{2}\right|=2$ in D_{8} and $G_{1,1}$, respectively. Thus, it must map an even element a into the odd element \mathbf{e}_{2} (or $-\mathbf{e}_{2}$).

In conclusion, we have proven the following.
Theorem 6. For each of the three maximal subgroups H in D_{8} used to define the graded algebra structure in $\mathbb{R}\left[D_{8}\right] \mathcal{J}$, exactly one of the two \mathbb{R}-algebra isomorphisms $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{2,0}$ or $\mathbb{R}\left[D_{8}\right] / \mathcal{J} \cong C \ell_{1,1}$ is graded.

We conclude this section with a conjecture.
Conjecture. Let C be any of the five Salingaros isomorphism classes.
(i) If there is a single group $G_{p, q}$ in C, then the isomorphism $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J} \cong$ $C \ell_{p, q}$ is \mathbb{Z}_{2}-graded.
(ii) When there is more than one group $G_{p, q}$ in C, there exists exactly one group $G_{p, q}$ in C such that the isomorphism $\mathbb{R}\left[G_{p, q} / \mathcal{J} \cong C \ell_{p, q}\right.$ is \mathbb{Z}_{2} graded while for all other groups in C, the isomorphism is not graded.

6. Conclusions and questions

We can summarize our results as follows:
(a) Every Clifford algebra $C \ell_{p, q}$ is \mathbb{R}-isomorphic to one of the quotient algebras:
(i) $\mathbb{R}\left[N_{\text {even }}\right] / \mathcal{J}, \mathbb{R}\left[N_{\text {odd }}\right] / \mathcal{J}, \mathbb{R}\left[S_{k}\right] / \mathcal{J}$ when $C \ell_{p, q}$ is simple, and
(ii) $\mathbb{R}\left[\Omega_{\text {even }}\right] / \mathcal{J}, \mathbb{R}\left[\Omega_{\text {odd }}\right] / \mathcal{J}$ when $C \ell_{p, q}$ is semisimple,
of Salingaros vee groups $N_{\text {even }}, N_{\text {odd }}, S_{k}, \Omega_{\text {even }}$, and $\Omega_{\text {odd }}$ modulo the ideal $\mathcal{J}=(1+\tau)$ for a central element τ of order 2 .
(b) The group algebra $\mathbb{R}\left[G_{p, q}\right]$ is \mathbb{Z}_{2}-graded and the ideal $\mathcal{J}=(1+\tau)$, where τ is a central involution, is homogeneous and \mathbb{Z}_{2}-graded.
(c) In some cases, there is a graded algebra isomorphism between $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$ and $C \ell_{p, q}$. We conjecture that each Clifford algebra $C \ell_{p, q}$ is gradedisomorphic with $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$.
(d) We have presented two algorithms that allow one to factor each Salingaros vee group into a central product of its subgroups.
The following questions remain:
(a) How does the group structure of $G_{p, q}$, e.g., presence of normal subgroups and the central product structure, carry over to the algebra structure of $C \ell_{p, q}$? If so, how?
(b) Apply the character theory and representation theory methods of 2groups to the group algebras $\mathbb{R}\left[G_{p, q}\right]$ and their quotients $\mathbb{R}\left[G_{p, q}\right] / \mathcal{J}$, and hence to the Clifford algebras $C \ell_{p, q}$. In particular, relate, if possible, primitive idempotents in $C \ell_{p, q}$ to the irreducible characters of $G_{p, q}$.

Appendix A. Two special cases: $G_{0,1} \cong S_{0}$ and $G_{1,0} \cong \Omega_{0}$

In the Main Theorem in Section 5 and later in Lemma 5, we excluded two Clifford algebras when $p+q=1: C \ell_{0,1}$ and $C \ell_{1,0}$. However,

$$
\begin{array}{r}
G_{0,1} \cong S_{0} \cong\left\langle g_{1}, \tau \mid\left(g_{1}\right)^{2}=\tau, \tau^{2}=1, g_{1} \tau=\tau g_{1}\right\rangle \cong C_{4} \\
G_{1,0} \cong \Omega_{0} \cong\left\langle g_{1}, \tau \mid\left(g_{1}\right)^{2}=1, \tau^{2}=1, g_{1} \tau=\tau g_{1}\right\rangle \cong C_{2} \times C_{2}, \tag{52}
\end{array}
$$

where, in both cases, the group elements are $1, g_{1}, \tau, g_{1} \tau$. Let G denote either group and let $H=\langle\tau\rangle=\{1, \tau\}<G$. It is easy to show that both group algebras are graded with the following two homogeneous parts:

$$
\begin{equation*}
\mathbb{R}[G]=(\mathbb{R}[G])^{(0)} \oplus(\mathbb{R}[G])^{(1)}=\operatorname{sp}\{1, \tau\} \oplus \operatorname{sp}\left\{g_{1}, g_{1} \tau\right\} \tag{53}
\end{equation*}
$$

Define a homogeneous ideal $\mathcal{J}=(1+\tau)$ in $\mathbb{R}[G]$. Then, in both cases,

$$
\begin{equation*}
\mathcal{J}=\mathcal{J}^{(0)} \oplus \mathcal{J}^{(1)}=\operatorname{sp}\{1+\tau\} \oplus \operatorname{sp}\left\{g_{1}(1+\tau)\right\} \tag{54}
\end{equation*}
$$

Furthermore, the quotient algebra $\mathbb{R}[G] / \mathcal{J}$ is also graded:

$$
\begin{equation*}
\mathbb{R}[G] / \mathcal{J}=(\mathbb{R}[G] / \mathcal{J})^{(0)} \oplus(\mathbb{R}[G] / \mathcal{J})^{(1)}=\operatorname{sp}\{1+\mathcal{J}\} \oplus \operatorname{sp}\left\{g_{1}+\mathcal{J}\right\} \tag{55}
\end{equation*}
$$

with

$$
\left(g_{1}+\mathcal{J}\right)^{2}=\left(g_{1}\right)^{2}+\mathcal{J}=\left\{\begin{align*}
-1+\mathcal{J}, & \text { when } G=G_{0,1} \tag{56}\\
1+\mathcal{J}, & \text { when } G=G_{1,0}
\end{align*}\right.
$$

We can now define two \mathbb{R}-algebra isomorphisms

$$
\begin{align*}
\varphi_{1}: \mathbb{R}\left[G_{0,1}\right] / \mathcal{J} & \rightarrow C \ell_{0,1} \quad \text { and } \quad \varphi_{2}: \mathbb{R}\left[G_{1,0}\right] / \mathcal{J} \rightarrow C \ell_{1,0} \quad \text { as } \\
1+\mathcal{J} & \mapsto 1, \quad g_{1}+\mathcal{J} \mapsto \mathbf{e}_{1}, \quad \tau+\mathcal{J} \mapsto-1 \tag{57}
\end{align*}
$$

which happen to be graded algebra isomorphisms.

Appendix B. Groups $G_{p, q}$ as central products

In this appendix we write Salingaros vee groups $G_{p, q}$ as internal central products for $3 \leq p+q \leq 9$. In particular, we show generators for all subgroups appearing in the central products.

We present two algorithms by which we can factor any vee group into a central product of subgroups. Recall that the central product is commutative and associative, and that the subgroups appearing in the factorization are unique up to an isomorphism. Our standard presentations for D_{8} and Q_{8} is as follows:

$$
\begin{gather*}
N_{1} \cong D_{8}=\langle a, b\rangle=\left\langle a, b \mid a^{4}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle \tag{58}\\
N_{2} \cong Q_{8}=\langle a, b\rangle=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle . \tag{59}
\end{gather*}
$$

Recall also that the centralizer $C_{G}(H)$ of a subgroup of G is defined as

$$
\begin{equation*}
C_{G}(H)=\{x \in G \mid x h=h x \text { for all } h \in H\} . \tag{60}
\end{equation*}
$$

Note that $C_{G}(H)$ is a subgroup of $G, C_{G}(G)=Z(G)$, and $C_{G}(H) \leq N_{G}(H)$, the normalizer of H in G [16].

```
Algorithm 1: Algorithm to factor \(N_{2 k-1}\) as central product, \(k \geq 2\).
    Data: \(G=G_{p, q}, p+q \geq 3\)
    Result: Factorization \(G \cong N_{2 k-1} \cong N_{1}^{\circ k}=D_{8}^{(k)} \circ \cdots \circ D_{8}^{(2)} \circ D_{8}^{(1)}\).
    Find order structure of \(G\) :
    \(L_{2}=\) list of elements in \(G\) of order 2,
    \(L_{4}=\) list of elements in \(G\) of order 4.
    4. Choose generators \(a\) and \(b\) for \(D_{8}^{(1)}\) from \(L_{4}\) and \(L_{2}\).
    5. Generate \(D_{8}^{(1)}=\langle a, b\rangle\).
    6. Compute centralizer \(K=C_{G}\left(D_{8}^{(1)}\right)\).
    for \(i \leftarrow 2\) to \(k\) do
        Find order structure of \(K\);
        \(L_{2}=\) list of elements in \(K\) of order 2;
        \(L_{4}=\) list of elements in \(K\) of order 4;
        Choose generators \(a\) and \(b\) for \(D_{8}^{(i)}\) from \(L_{4}\) and \(L_{2}\);
        Generate \(D_{8}^{(i)}=\langle a, b\rangle\);
        Compute \(D_{8}^{(i)} \circ D_{8}^{(i-1)} \circ \cdots \circ D_{8}^{(1)}\) as \(D_{8}^{(i)}\left(D_{8}^{(i-1)} \cdots D_{8}^{(1)}\right)\);
        Find centralizer \(K=C_{G}\left(D_{8}^{(i)} \circ D_{8}^{(i-1)} \circ \cdots \circ D_{8}^{(1)}\right)\);
    end
    return generators for \(D_{8}^{(k)}, \ldots, D_{8}^{(1)}\).
```

Example 8 (Factoring in N_{5}). Let $G=G_{0,6}$ so $\left|G_{0,6}\right|=128$ and

$$
\begin{equation*}
G=G_{0,6} \cong N_{5} \cong N_{1}^{\circ 3}=D_{8}^{(3)} \circ D_{8}^{(2)} \circ D_{8}^{(1)}, \quad k=3 \tag{61}
\end{equation*}
$$

where $D_{8}^{(i)}, i=1,2,3$, are subgroups in $G_{0,6}$, each isomorphic to D_{8}. We execute steps 3-6 in Algorithm 1:
3. The order structure of G is $[1,71,56]$ and lists L_{2} and L_{4} contain all elements of G of order 2 and 4 respectively:

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{123}, \mathbf{e}_{124}, \mathbf{e}_{125}, \ldots, \mathbf{e}_{234}, \ldots\right), \quad L_{4}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots\right) \tag{62}
\end{equation*}
$$

4. We let $a=\mathbf{e}_{1}, b=\mathbf{e}_{234}$ so that relations (58) are satisfied.
5. We generate $D_{8}^{(1)}$ as $\langle a, b\rangle$.
6. We compute the centralizer $K=C_{G}\left(D_{8}^{(1)}\right)$. The order of K, as expected, is 32 .
Next, we perform the do-loop in step 7 twice for $i=2,3$ and find generators for $D_{8}^{(2)}$ and $D_{8}^{(3)}$.
7. The order structure of K is $[1,19,12]$ and lists L_{2} and L_{4} contain all elements of K of order 2 and 4 respectively:

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{125}, \mathbf{e}_{126}, \mathbf{e}_{135}, \ldots\right), \quad L_{4}=\left(\mathbf{e}_{23}, \mathbf{e}_{24}, \mathbf{e}_{34}, \ldots\right) \tag{63}
\end{equation*}
$$

We let $a=\mathbf{e}_{23}, b=\mathbf{e}_{125}$ so that relations (58) are satisfied.
We generate $D_{8}^{(2)}=\langle a, b\rangle$.
We compute $D_{8}^{(2)} \circ D_{8}^{(1)}$ as the product $D_{8}^{(2)} D_{8}^{(1)}$ due to the definition of the central product.
We compute the centralizer $K=C_{G}\left(D_{8}^{(2)} \circ D_{8}^{(1)}\right)$. The order of K is 8 , as expected.
In fact, this last centralizer K is already our third dihedral group $D_{8}^{(3)}$ and it can be generated, as the second iteration of this do-loop confirms, by choosing $a=\mathbf{e}_{12345}$ and $b=\mathbf{e}_{146}$. Thus, we conclude, that

$$
\begin{align*}
G_{0,6} \cong N_{5} \cong N_{1}^{\circ 3} & =D_{8}^{(3)} \circ D_{8}^{(2)} \circ D_{8}^{(1)} \\
& =\left\langle\mathbf{e}_{12345}, \mathbf{e}_{146}\right\rangle \circ\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle \circ\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle . \tag{64}
\end{align*}
$$

It is easy to check that the three sets of generators $\left\{\mathbf{e}_{12345}, \mathbf{e}_{146}\right\},\left\{\mathbf{e}_{23}, \mathbf{e}_{125}\right\}$, and $\left\{\mathbf{e}_{1}, \mathbf{e}_{234}\right\}$ centralize each other and generate three copies of the dihedral group D_{8} in $G_{0,6}$. Notice also that the Product Formula gives

$$
\begin{equation*}
2^{5}=\left|N_{3}\right|=\left|D_{8}^{(2)} \circ D_{8}^{(1)}\right|=\frac{\left|D_{8}^{(2)}\right|\left|D_{8}^{(2)}\right|}{\left|D_{8}^{(2)} \cap D_{8}^{(1)}\right|} \tag{65}
\end{equation*}
$$

so, as expected, $\left|D_{8}^{(2)} \cap D_{8}^{(1)}\right|=2$. Furthermore,

$$
\begin{equation*}
2^{7}=\left|N_{5}\right|=\left|D_{8}^{(2)} \circ\left(D_{8}^{(2)} \circ D_{8}^{(1)}\right)\right|=\frac{\left|D_{8}^{(3)}\right|\left|D_{8}^{(2)} \circ D_{8}^{(1)}\right|}{\left|D_{8}^{(3)} \cap\left(D_{8}^{(2)} \circ D_{8}^{(1)}\right)\right|}, \tag{66}
\end{equation*}
$$

so, again as expected, $\left|D_{8}^{(2)} \cap\left(D_{8}^{(2)} \circ D_{8}^{(1)}\right)\right|=2$. This implies that

$$
\begin{equation*}
D_{8}^{(3)} \cap D_{8}^{(2)} \cap D_{8}^{(1)}=Z\left(G_{0,6}\right) \cong C_{2} \tag{67}
\end{equation*}
$$

Algorithm 2 is a small modification of Algorithm 1. The modification is in the steps 4-6.

Algorithm 2: Algorithm to factor $N_{2 k}$ as central product, $k \geq 2$.
Data: $G=G_{p, q}, p+q \geq 3$
Result: Factorization $G \cong N_{2 k} \cong N_{1}^{\circ(k-1)} \circ N_{2}=D_{8}^{(k)} \circ \cdots \circ D_{8}^{(2)} \circ Q_{8}$.
Find order structure of G :
$L_{2}=$ list of elements in G of order 2,
$L_{4}=$ list of elements in G of order 4.
4. Choose generators a and b for Q_{8} from L_{4} subject to (59).
5. Generate $Q_{8}=\langle a, b\rangle$.
6. Compute centralizer $K=C_{G}\left(Q_{8}\right)$.
7. for $i \leftarrow 2$ to k do

Find order structure of K;
$L_{2}=$ list of elements in K of order 2;
$L_{4}=$ list of elements in K of order 4;
Choose generators a and b for $D_{8}^{(i)}$ from L_{4} and L_{2};
Generate $D_{8}^{(i)}=\langle a, b\rangle$;
Compute $D_{8}^{(i)} \circ D_{8}^{(i-1)} \circ \cdots \circ D_{8}^{(2)} \circ Q_{8}$ as $D_{8}^{(i)}\left(D_{8}^{(i-1)} \cdots D_{8}^{(2)} Q_{8}\right)$;
Find centralizer $K=C_{G}\left(D_{8}^{(i)} \circ D_{8}^{(i-1)} \circ \cdots \circ D_{8}^{(2)} \circ Q_{8}\right.$;
end
return generators for $D_{8}^{(k)}, \ldots, D_{8}^{(2)}, Q_{8}$.
Example 9 (Factoring in N_{8}). We apply Algorithm 2 to $G=G_{2,6}$ of order 512. So, we are seeking the following factorization:

$$
\begin{equation*}
G=G_{2,6} \cong N_{8} \cong N_{1}^{\circ 4} \circ Q_{8}=D_{8}^{(4)} \circ D_{8}^{(3)} \circ D_{8}^{(2)} \circ Q_{8}, \quad k=4 \tag{68}
\end{equation*}
$$

where $D_{8}^{(i)}, i=2,3,4$, are subgroups in $G_{2,6}$, each isomorphic to D_{8}. We execute steps 3-6 in Algorithm 2:
3. The order structure of G is $[1,239,272]$ and lists L_{2} and L_{4} contain all elements of G of order 2 and 4 respectively:

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{13}, \ldots\right), \quad L_{4}=\left(\mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{5}, \ldots\right) . \tag{69}
\end{equation*}
$$

4. We let $a=\mathbf{e}_{3}, b=\mathbf{e}_{4}$ so that relations (59) are satisfied.
5. We generate Q_{8} as $\langle a, b\rangle$.
6. We compute the centralizer $K=C_{G}\left(Q_{8}\right)$. The order of K is 128 , as expected.
The do-loop in step 7 is performed three times for $i=2,3,4$. In the end, we find generators for the three subgroups of $G_{2,6}$ isomorphic to D_{8} that centralize each other and the subgroup isomorphic to Q_{8}. Thus, we conclude, that

$$
\begin{align*}
G_{2,6} \cong N_{8} & \cong N_{1}^{\circ 3} \circ N_{2} \\
& =D_{8}^{(4)} \circ D_{8}^{(3)} \circ D_{8}^{(2)} \circ Q_{8} \\
& =\left\langle\mathbf{e}_{34678}, \mathbf{e}_{1258}\right\rangle \circ\left\langle\mathbf{e}_{67}, \mathbf{e}_{346}\right\rangle \circ\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle \circ\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle . \tag{70}
\end{align*}
$$

Obviously, $D_{8}^{(4)} \cap D_{8}^{(3)} \cap D_{8}^{(2)} \cap Q_{8}=Z\left(G_{2,6}\right)$ as a direct consequence of the fact that $Z\left(D_{8}\right) \cong Z\left(Q_{8}\right) \cong Z\left(G_{2,6}\right) \cong C_{2}$.

Algorithms 1 and 2 allow us to factor vee groups $G_{p, q}$ in the remaining three classes $\Omega_{2 k-1}, \Omega_{2 k}$ and S_{k} as well. The right-most group is always the center $Z\left(G_{p, q}\right)$, which is either isomorphic to $D_{4}=C_{2} \times C_{2}$ or C_{4}. Of course, the centralizer of each center is the whole group, thus, knowing that $D_{4} \cong\langle\beta,-\beta\rangle$ while $C_{4} \cong\langle\beta\rangle$, where β is the unit pseudoscalar in $C \ell_{p, q}$, one can begin by finding generators for the second-rightmost group, either $N_{1}=D_{8}$ or $N_{2}=Q_{8}$, as needed. Notice that since

$$
\begin{align*}
\left|\Omega_{2 k-1}\right| & =\left|N_{2 k-1} \circ D_{4}\right|=\frac{\left|N_{2 k-1}\right|\left|D_{4}\right|}{\left|N_{2 k-1} \cap D_{4}\right|}, \tag{71a}\\
\left|\Omega_{2 k}\right| & =\left|N_{2 k} \circ D_{4}\right|=\frac{\left|N_{2 k}\right|\left|D_{4}\right|}{\left|N_{2 k} \cap D_{4}\right|}, \tag{71b}\\
\left|S_{k}\right| & =\left|N_{2 k-1} \circ C_{4}\right|=\frac{\left|N_{2 k-1}\right|\left|C_{4}\right|}{\left|N_{2 k-1} \cap C_{4}\right|}, \tag{71c}\\
& =\left|N_{2 k} \circ C_{4}\right|=\frac{\left|N_{2 k}\right|\left|C_{4}\right|}{\left|N_{2 k} \cap C_{4}\right|}, \tag{71d}
\end{align*}
$$

and $\left|N_{2 k-1}\right|=\left|N_{2 k}\right|=2^{2 k+1}$ and $\left|\Omega_{2 k-1}\right|=\left|\Omega_{2 k}\right|=\left|S_{k}\right|=2^{2 k+2}$, we find that the orders of all group intersections in (71) equal to 2 . This implies, as expected, that the central involution τ belongs to $N_{2 k}$ or $\mid N_{2 k-1}$, respectively. We illustrate this process in our next example.

Example 10 (Factoring in $\Omega_{1}, \Omega_{4}, S_{2}$).
(a) To factor a group of class $\Omega_{2 k-1}$, for example Ω_{1}, we use Algorithm 1:

$$
\begin{equation*}
G_{2,1} \cong \Omega_{1} \cong N_{1} \circ D_{4} \cong D_{8} \circ D_{4} . \tag{72}
\end{equation*}
$$

The order structure of $G_{2,1}$ is $[1,11,4]$ with elements of order 2 and 4 as

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{13}, \ldots\right) \quad \text { and } \quad L_{4}=\left(\mathbf{e}_{3}, \mathbf{e}_{12}, \ldots\right) . \tag{73}
\end{equation*}
$$

Thus, we let $D_{8}=\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle$ and verify that $G_{2,1}=\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle \circ\langle\beta,-\beta\rangle$ where $\beta=\mathbf{e}_{123}$ is central of order 2 .
(b) To factor a group of class $\Omega_{2 k}$, for example Ω_{4}, we use Algorithm 2:

$$
\begin{equation*}
G_{1,4} \cong \Omega_{4} \cong N_{4} \circ D_{4} \cong N_{1} \circ N_{2} \circ D_{4} \cong D_{8} \circ Q_{8} \circ D_{4} \tag{74}
\end{equation*}
$$

The order structure of $G=G_{1,4}$ is $[1,23,40]$ with elements of order 2 and 4 as

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{1}, \mathbf{e}_{12}, \mathbf{e}_{13}, \ldots\right) \quad \text { and } \quad L_{4}=\left(\mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \ldots\right) . \tag{75}
\end{equation*}
$$

Thus, we let $Q_{8}=\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$, verify that $\left|Q_{8} \circ D_{4}\right|=16$, as expected, and compute the centralizer

$$
\begin{align*}
K=C_{G}\left(Q_{8} \circ D_{4}\right)=\left\{ \pm 1, \pm \mathbf{e}_{14}, \pm \mathbf{e}_{15}\right. & , \pm \mathbf{e}_{45} \\
& \left. \pm \mathbf{e}_{123}, \pm \mathbf{e}_{234}, \pm \mathbf{e}_{235}, \pm \mathbf{e}_{12345}\right\} \tag{76}
\end{align*}
$$

The do-loop needs to be executed once. The order structure of K is $[1,11,4]$ with elements of order 2 and 4 as

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{14}, \mathbf{e}_{15}, \mathbf{e}_{234}, \ldots\right) \quad \text { and } \quad L_{4}=\left(\mathbf{e}_{45}, \mathbf{e}_{123}, \ldots\right) . \tag{77}
\end{equation*}
$$

We let $D_{8}=\left\langle\mathbf{e}_{45}, \mathbf{e}_{14}\right\rangle$ and conclude that $D_{8} \circ\left(Q_{8} \circ D_{4}\right)=G_{1,4}$ with

$$
\begin{equation*}
D_{8}=\left\{ \pm 1, \pm \mathbf{e}_{14}, \pm \mathbf{e}_{15}, \pm \mathbf{e}_{45}\right\}, \quad Q_{8}=\left\{ \pm 1, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}, \pm \mathbf{e}_{23}\right\} \tag{78}
\end{equation*}
$$

and $D_{4}=\{ \pm 1, \pm \beta\}$ where $\beta=\mathbf{e}_{12345}$ is central of order 2 .
(c) To factor a group of class S_{k}, we use either algorithm depending on which factorization we seek. For example, the two ways to factor S_{2} are:

$$
\begin{align*}
& G_{0,5} \cong S_{2} \cong N_{3} \circ C_{4} \cong N_{1} \circ N_{1} \circ C_{4} \cong D_{8}^{(2)} \circ D_{8}^{(1)} \circ C_{4}, \quad \text { or }, \tag{79a}\\
& G_{0,5} \cong S_{2} \cong N_{4} \circ C_{4} \cong N_{1} \circ N_{2} \circ C_{4} \cong D_{8} \circ Q_{8} \circ C_{4} . \tag{79b}
\end{align*}
$$

Let us find factorization (79a) with Algorithm 1. Recall that $Z\left(S_{k}\right)=\langle\beta\rangle \cong$ C_{4} since $|\beta|=4$ in every group S_{k}. The order structure of $G_{0,5}$ is $[1,31,32]$ with elements of order 2 and 4 as

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{123}, \mathbf{e}_{124}, \mathbf{e}_{125}, \ldots\right) \quad \text { and } \quad L_{4}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots\right) . \tag{80}
\end{equation*}
$$

Thus, we let $D_{8}^{(1)}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle$, verify that $\left|D_{8}^{(1)} \circ C_{4}\right|=16$, and compute the centralizer

$$
\begin{align*}
K=C_{G}\left(D_{8}^{(1)} \circ C_{4}\right)=\left\{ \pm 1, \pm \mathbf{e}_{23}, \pm \mathbf{e}_{24}\right. & , \pm \mathbf{e}_{34} \\
& \left. \pm \mathbf{e}_{125}, \pm \mathbf{e}_{135}, \pm \mathbf{e}_{145}, \pm \mathbf{e}_{12345}\right\} \tag{81}
\end{align*}
$$

The order structure of K is $[1,7,8]$ with elements of order 2 and 4 as

$$
\begin{equation*}
L_{2}=\left(\mathbf{e}_{125}, \mathbf{e}_{135}, \mathbf{e}_{145}, \ldots\right) \quad \text { and } \quad L_{4}=\left(\mathbf{e}_{23}, \mathbf{e}_{24}, \mathbf{e}_{34}, \ldots\right) . \tag{82}
\end{equation*}
$$

We let $D_{8}^{(2)}=\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle$ and conclude that $D_{8}^{(2)} \circ\left(D_{8}^{(1)} \circ C_{4}\right)=G_{0,5}$ with

$$
\begin{equation*}
D_{8}^{(2)}=\left\{ \pm 1, \pm \mathbf{e}_{23}, \pm \mathbf{e}_{125}, \pm \mathbf{e}_{135}\right\}, \quad D_{8}^{(1)}=\left\{ \pm 1, \pm \mathbf{e}_{1}, \pm \mathbf{e}_{234}, \pm \mathbf{e}_{1234}\right\} \tag{83}
\end{equation*}
$$

and $C_{4}=\langle\beta\rangle=\{ \pm 1, \pm \beta\}$ where $\beta=\mathbf{e}_{12345}$ is central of order 4. Similarly, factorization (79b) can be found with Algorithm 2.

In the following, we collect results of our factorization algorithms. To simplify our notation, we present copies of the dihedral group $N_{1}=D_{8}$ and the quaternion group $N_{2}=Q_{8}$ just by listing their generators as in $\langle a, b\rangle$. All central products are written by juxtaposition, $\left(N_{1}\right)^{\circ k}$ denotes the internal central product of k copies of N_{1}, and $D_{4}=C_{2} \times C_{2}$. Depending on the order of a pseudoscalar β, the center $Z\left(G_{p, q}\right)$ of order 4 is either elementary
abelian $\langle\beta,-\beta\rangle$ or cyclic $\langle\beta\rangle$. All computations have been implemented in CLIFFORD $[1,2]$ and an additional package for handling groups.

TABLE 9. $p+q=3:$ Groups $G_{p, q}$ of order $2^{4}, \beta=\mathbf{e}_{123}$

Group	Class	Group factorization
$G_{0,3}$	$\Omega_{2} \cong N_{2} D_{4}$	$\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle\langle\beta,-\beta\rangle$
$G_{1,2}$	$S_{1} \cong N_{1} C_{4}$	$\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{1} \cong N_{2} C_{4}$	$\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\langle\beta\rangle$
$G_{2,1}$	$\Omega_{1} \cong N_{1} D_{4}$	$\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$
$G_{3,0}$	$S_{1} \cong N_{1} C_{4}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{1} \cong N_{2} C_{4}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle\langle\beta\rangle$

TABLE 10. $p+q=4:$ Groups $G_{p, q}$ of order 2^{5}

Group	Class	Group factorization
$G_{0,4}$	$N_{4} \cong N_{1} N_{2}$	$\left\langle\mathbf{e}_{34}, \mathbf{e}_{123}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle$
$G_{1,3}$	$N_{4} \cong N_{1} N_{2}$	$\left\langle\mathbf{e}_{123}, \mathbf{e}_{14}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$
$G_{2,2}$	$N_{3} \cong N_{1} N_{1}$	$\left\langle\mathbf{e}_{134}, \mathbf{e}_{24}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle$
	$N_{3} \cong N_{2} N_{2}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{134}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle$
$G_{3,1}$	$N_{3} \cong N_{1} N_{1}$	$\left\langle\mathbf{e}_{23}, \mathbf{e}_{1234}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{1}\right\rangle$
	$N_{3} \cong N_{2} N_{2}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{123}\right\rangle$
$G_{4,0}$	$N_{4} \cong N_{1} N_{2}$	$\left\langle\mathbf{e}_{123}, \mathbf{e}_{4}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle$

TABLE 11. $p+q=5$: Groups $G_{p, q}$ of order $2^{6}, \beta=\mathbf{e}_{12345}$

Group	Class	Group factorization
$G_{0,5}$	$S_{2} \cong\left(N_{1}\right)^{\circ 2} C_{4}$	$\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle\langle\beta\rangle$
	$S_{2} \cong N_{1} N_{2} C_{4}$	$\left\langle\mathbf{e}_{34}, \mathbf{e}_{123}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle\langle\beta\rangle$
$G_{1,4}$	$\Omega_{4} \cong N_{1} N_{2} D_{4}$	$\left\langle\mathbf{e}_{45}, \mathbf{e}_{14}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\langle\beta,-\beta\rangle$
$G_{2,3}$	$S_{2} \cong\left(N_{1}\right)^{02} C_{4}$	$\left\langle\mathbf{e}_{45}, \mathbf{e}_{24}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{2} \cong N_{1} N_{2} C_{4}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle\langle\beta\rangle$
$G_{3,2}$	$\Omega_{3} \cong\left(N_{1}\right)^{\circ 2} D_{4}$	$\left\langle\mathbf{e}_{23}, \mathbf{e}_{25}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$
$G_{4,1}$	$S_{2} \cong\left(N_{1}\right)^{02} C_{4}$	$\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{2} \cong N_{1} N_{2} C_{4}$	$\left\langle\mathbf{e}_{12}, \mathbf{e}_{145\rangle}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{123}\right\rangle\langle\beta\rangle$
$G_{5,0}$	$\Omega_{4} \cong N_{1} N_{2} D_{4}$	$\left\langle\mathbf{e}_{45}, \mathbf{e}_{4}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle\langle\beta,-\beta\rangle$

TABLE 12. $p+q=6$: Groups $G_{p, q}$ of order 2^{7}

Group	Class	Group factorization
$G_{0,6}$	$N_{5} \cong\left(N_{1}\right)^{\circ 3}$	$\left\langle\mathbf{e}_{12345}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle$
$G_{1,5}$	$N_{6} \cong\left(N_{1}\right)^{\circ 2} N_{2}$	$\left\langle\mathbf{e}_{1456}, \mathbf{e}_{236}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{14}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$
$G_{2,4}$	$N_{6} \cong\left(N_{1}\right)^{\circ 2} N_{2}$	$\left\langle\mathbf{e}_{12345}, \mathbf{e}_{346}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle$
$G_{3,3}$	$N_{5} \cong\left(N_{1}\right)^{\circ 3}$	$\left\langle\mathbf{e}_{146}, \mathbf{e}_{2356}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{25}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{1}\right\rangle$
$G_{4,2}$	$N_{5} \cong\left(N_{1}\right)^{03}$	$\left\langle\mathbf{e}_{2346}, \mathbf{e}_{145}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{26}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{1}\right\rangle$
$G_{5,1}$	$N_{6} \cong\left(N_{1}\right)^{\circ 2} N_{2}$	$\left\langle\mathbf{e}_{12346}, \mathbf{e}_{356}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{6}, \mathbf{e}_{123}\right\rangle$
$G_{6,0}$	$N_{6} \cong\left(N_{1}\right)^{\circ 2} N_{2}$	$\left\langle\mathbf{e}_{456}, \mathbf{e}_{1236}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{4}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle$

TABLE 13. $p+q=7$: Groups $G_{p, q}$ of order $2^{8}, \beta=\mathbf{e}_{1234567}$

Group	Class	Group factorization
$G_{0,7}$	$\Omega_{5} \cong\left(N_{1}\right)^{03} D_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle\langle\beta,-\beta\rangle$
$G_{1,6}$	$S_{3} \cong\left(N_{1}\right)^{03} C_{4}$	$\left\langle\mathbf{e}_{56}, \mathbf{e}_{12345}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{3} \cong\left(N_{1}\right)^{\circ 2} N_{2} C_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{236}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{14}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\langle\beta\rangle$
$G_{2,5}$	$\Omega_{6} \cong\left(N_{1}\right)^{02} N_{2} D_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{346}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle\langle\beta,-\beta\rangle$
$G_{3,4}$	$S_{3} \cong\left(N_{1}\right)^{\circ 3} C_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{2356}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{25}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{3} \cong\left(N_{1}\right)^{02} N_{2} C_{4}$	$\left\langle\mathbf{e}_{345}, \mathbf{e}_{37}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{16}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{5}\right\rangle\langle\beta\rangle$
$G_{4,3}$	$\Omega_{5} \cong\left(N_{1}\right)^{03} D_{4}$	$\left\langle\mathbf{e}_{157}, \mathbf{e}_{47}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{26}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$
$G_{5,2}$	$S_{3} \cong\left(N_{1}\right)^{03} C_{4}$	$\left\langle\mathbf{e}_{45}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{27}\right\rangle\left\langle\mathbf{e}_{6}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{3} \cong\left(N_{1}\right)^{02} N_{2} C_{4}$	$\left\langle\mathbf{e}_{34}, \mathbf{e}_{12367}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1345}\right\rangle\left\langle\mathbf{e}_{6}, \mathbf{e}_{7}\right\rangle\langle\beta\rangle$
$G_{6,1}$	$\Omega_{6} \cong\left(N_{1}\right)^{02} N_{2} D_{4}$	$\left\langle\mathbf{e}_{56}, \mathbf{e}_{357}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{147}\right\rangle\left\langle\mathbf{e}_{7}, \mathbf{e}_{123}\right\rangle\langle\beta \beta,-\beta\rangle$
$G_{7,0}$	$S_{3} \cong\left(N_{1}\right)^{03} C_{4}$	$\left\langle\mathbf{e}_{56}, \mathbf{e}_{12345}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{3} \cong\left(N_{1}\right)^{02} N_{2} C_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{1236}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{4}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{13}\right\rangle\langle\beta\rangle$

Table 14. $p+q=8$: Groups $G_{p, q}$ of order 2^{9}

Group	Class	Group factorization
$G_{0,8}$	$N_{7} \cong\left(N_{1}\right)^{04}$	$\left\langle\mathbf{e}_{14678}, \mathbf{e}_{2358}\right\rangle\left\langle\mathbf{e}_{67}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle$
$G_{1,7}$	$N_{7} \cong\left(N_{1}\right)^{04}$	$\left\langle\mathbf{e}_{345678}, \mathbf{e}_{12347}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{3458}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}\right\rangle$
$G_{2,6}$	$N_{8} \cong\left(N_{1}\right)^{\circ 3} N_{2}$	$\left\langle\mathbf{e}_{34678}, \mathbf{e}_{1258}\right\rangle\left\langle\mathbf{e}_{67}, \mathbf{e}_{346}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle$
$G_{3,5}$	$N_{8} \cong\left(N_{1}\right)^{03} N_{2}$	$\left\langle\mathbf{e}_{12456}, \mathbf{e}_{34578}\right\rangle\left\langle\mathbf{e}_{78}, \mathbf{e}_{37}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{16}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{5}\right\rangle$
$G_{4,4}$	$N_{7} \cong\left(N_{1}\right)^{04}$	$\left\langle\mathbf{e}_{14578}, \mathbf{e}_{12356}\right\rangle\left\langle\mathbf{e}_{78}, \mathbf{e}_{47}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{26}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{1}\right\rangle$
$G_{5,3}$	$N_{7} \cong\left(N_{1}\right)^{04}$	$\left\langle\mathbf{e}_{234578}, \mathbf{e}_{12367}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{48}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{27}\right\rangle\left\langle\mathbf{e}_{6}, \mathbf{e}_{1}\right\rangle$
$G_{6,2}$	$N_{8} \cong\left(N_{1}\right)^{03} N_{2}$	$\left\langle\mathbf{e}_{123456}, \mathbf{e}_{12578}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{1236}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1345}\right\rangle\left\langle\mathbf{e}_{7}, \mathbf{e}_{8}\right\rangle$
$G_{7,1}$	$N_{8} \cong\left(N_{1}\right)^{03} N_{2}$	$\left\langle\mathbf{e}_{35678}, \mathbf{e}_{1247}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{358}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{148}\right\rangle\left\langle\mathbf{e}_{8}, \mathbf{e}_{123}\right\rangle$
$G_{8,0}$	$N_{7} \cong\left(N_{1}\right)^{04}$	$\left\langle\mathbf{e}_{345678}, \mathbf{e}_{12347}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{3458}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1}\right\rangle$

TABLE 15. $p+q=9$: Groups $G_{p, q}$ of order $2^{10}, \beta=\mathbf{e}_{123456789}$

Group	Class	Group factorization
$G_{0,9}$	$S_{4} \cong\left(N_{1}\right)^{04} C_{4}$	$\left\langle\mathbf{e}_{89}, \mathbf{e}_{2358}\right\rangle\left\langle\mathbf{e}_{67}, \mathbf{e}_{146}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{125}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{234}\right\rangle\langle\beta\rangle$
	$S_{4} \cong\left(N_{1}\right)^{\circ 3} N_{2} C_{4}$	$\left\langle\mathbf{e}_{78}, \mathbf{e}_{1234567}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{5789}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{123}\right\rangle\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle\langle\beta\rangle$
$G_{1,8}$	$\Omega_{7} \cong\left(N_{1}\right)^{04} D_{4}$	$\left\langle\mathbf{e}_{129}, \mathbf{e}_{3479}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{3458}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$
$G_{2,7}$	$S_{4} \cong\left(N_{1}\right)^{04} C_{4}$	$\left\langle\mathbf{e}_{89}, \mathbf{e}_{245678}\right\rangle\left\langle\mathbf{e}_{67}, \mathbf{e}_{13689}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{24}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{4} \cong\left(N_{1}\right)^{\circ 3} N_{2} C_{4}$	$\left\langle\mathbf{e}_{89}, \mathbf{e}_{1258}\right\rangle\left\langle\mathbf{e}_{67}, \mathbf{e}_{346}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{15}\right\rangle\left\langle\mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle\langle\beta\rangle$
$G_{3,6}$	$\Omega_{8} \cong\left(N_{1}\right)^{03} N_{2} D_{4}$	$\left\langle\mathbf{e}_{3789}, \mathbf{e}_{459}\right\rangle\left\langle\mathbf{e}_{78}, \mathbf{e}_{37}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{16}\right\rangle\left\langle\mathbf{e}_{4}, \mathbf{e}_{5}\right\rangle\langle\beta,-\beta\rangle$
$G_{4,5}$	$S_{4} \cong\left(N_{1}\right)^{04} C_{4}$	$\left\langle\mathbf{e}_{159}, \mathbf{e}_{2369}\right\rangle\left\langle\mathbf{e}_{78}, \mathbf{e}_{47}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{26}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{4} \cong\left(N_{1}\right)^{03} N_{2} C_{4}$	$\left\langle\mathbf{e}_{12567}, \mathbf{e}_{569}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{38}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{17}\right\rangle\left\langle\mathbf{e}_{5}, \mathbf{e}_{6}\right\rangle\langle\beta\rangle$
$G_{5,4}$	$\Omega_{7} \cong\left(N_{1}\right)^{04} D_{4}$	$\left\langle\mathbf{e}_{169}, \mathbf{e}_{2379}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{48}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{27}\right\rangle\left\langle\mathbf{e}_{6}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$
$G_{6,3}$	$S_{4} \cong\left(N_{1}\right)^{04} C_{4}$	$\left\langle\mathbf{e}_{2368}, \mathbf{e}_{167}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{49}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{28}\right\rangle\left\langle\mathbf{e}_{7}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{4} \cong\left(N_{1}\right)^{03} N_{2} C_{4}$	$\left\langle\mathbf{e}_{56}, \mathbf{e}_{123459\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{35678}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{19}\right\rangle\left\langle\mathbf{e}_{7}, \mathbf{e}_{8}\right\rangle\langle\beta\rangle}\right.$
$G_{7,2}$	$\Omega_{8} \cong\left(N_{1}\right)^{03} N_{2} D_{4}$	$\left\langle\mathbf{e}_{789}, \mathbf{e}_{1257}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{1236}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1345}\right\rangle\left\langle\mathbf{e}_{8}, \mathbf{e}_{9}\right\rangle\langle\beta,-\beta\rangle$
$G_{8,1}$	$S_{4} \cong\left(N_{1}\right)^{04} C_{4}$	$\left\langle\mathbf{e}_{67}, \mathbf{e}_{1234569}\right\rangle\left\langle\mathbf{e}_{45}, \mathbf{e}_{4678}\right\rangle\left\langle\mathbf{e}_{23}, \mathbf{e}_{129}\right\rangle\left\langle\mathbf{e}_{9}, \mathbf{e}_{1}\right\rangle\langle\beta\rangle$
	$S_{4} \cong\left(N_{1}\right)^{03} N_{2} C_{4}$	$\left\langle\mathbf{e}_{78}, \mathbf{e}_{1247\rangle}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{359}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{149}\right\rangle\left\langle\mathbf{e}_{9}, \mathbf{e}_{123}\right\rangle\langle\beta\rangle$
$G_{9,0}$	$\Omega_{7} \cong\left(N_{1}\right)^{04} D_{4}$	$\left\langle\mathbf{e}_{129}, \mathbf{e}_{3479}\right\rangle\left\langle\mathbf{e}_{56}, \mathbf{e}_{3458}\right\rangle\left\langle\mathbf{e}_{34}, \mathbf{e}_{3567}\right\rangle\left\langle\mathbf{e}_{12}, \mathbf{e}_{1}\right\rangle\langle\beta,-\beta\rangle$

Appendix C. Multiplication tables for Example 7

TABLE 16. Multiplication table for $\mathbb{R}\left[Q_{8}\right] / \mathcal{J}$

	$1+\mathcal{J}$	$I J+\mathcal{J}$	$I+\mathcal{J}$	$J+\mathcal{J}$
$1+\mathcal{J}$	$1+\mathcal{J}$	$I J+\mathcal{J}$	$I+\mathcal{J}$	$J+\mathcal{J}$
$I J+\mathcal{J}$	$I J+\mathcal{J}$	$-1+\mathcal{J}$	$J+\mathcal{J}$	$-I+\mathcal{J}$
$I+\mathcal{J}$	$I+\mathcal{J}$	$-J+\mathcal{J}$	$-1+\mathcal{J}$	$I J+\mathcal{J}$
$J+\mathcal{J}$	$J+\mathcal{J}$	$I+\mathcal{J}$	$-I J+\mathcal{J}$	$-1+\mathcal{J}$

Table 17. Multiplication table for $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)} / \mathcal{J}^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)} / \mathcal{J}^{(1)}$

	$1+\mathcal{J}^{(0)}$	$I+\mathcal{J}^{(0)}$	$J+\mathcal{J}^{(1)}$	$I J+\mathcal{J}^{(1)}$
$1+\mathcal{J}^{(0)}$	$1+\mathcal{J}^{(0)}$	$I+\mathcal{J}^{(0)}$	$J+\mathcal{J}^{(1)}$	$I J+\mathcal{J}^{(1)}$
$I+\mathcal{J}^{(0)}$	$I+\mathcal{J}^{(0)}$	$-1+\mathcal{J}^{(0)}$	$I J+\mathcal{J}^{(1)}$	$-J+\mathcal{J}^{(1)}$
$J+\mathcal{J}^{(1)}$	$J+\mathcal{J}^{(1)}$	$-I J+\mathcal{J}^{(1)}$	$-1+\mathcal{J}^{(0)}$	$I+\mathcal{J}^{(0)}$
$I J+\mathcal{J}^{(1)}$	$I J+\mathcal{J}^{(1)}$	$J+\mathcal{J}^{(1)}$	$-I+\mathcal{J}^{(0)}$	$-1+\mathcal{J}^{(0)}$

Appendix D. Multiplication tables for Q_{8} and D_{8}

Based on the presentation of Q_{8} shown in (1a), let τ be the central involution a^{2}. Then, $Q_{8}=\{1, a, \tau, \tau a, b, a b, \tau b, \tau a b\}$. A multiplication table for Q_{8} may be arranged as follows:

Table 18. A multiplication table for Q_{8}

	1	τ	a	τa	b	$a b$	τb	$\tau a b$
1	1	τ	a	τa	b	$a b$	τb	$\tau a b$
τ	τ	1	τa	a	τb	$\tau a b$	b	$a b$
a	a	τa	τ	1	$a b$	τb	$\tau a b$	b
τa	τa	a	1	τ	$\tau a b$	b	$a b$	τb
b	b	τb	$\tau a b$	$a b$	τ	a	1	τa
$a b$	$a b$	$\tau a b$	b	τb	τa	τ	a	1
τb	τb	b	$a b$	$\tau a b$	1	τa	τ	a
$\tau a b$	$\tau a b$	$a b$	τb	b	a	1	τa	τ

Table 18 exhibits a coset decomposition $Q_{8}=H_{1} \dot{\cup} H_{1} b$ where H_{1} is a maximal subgroup with elements $H_{1}=\{1, \tau, a, \tau a\}$ while $H_{1} b=\{b, \tau b, a b, \tau a b\}$. Based on this decomposition, we have a \mathbb{Z}_{2}-graded structure on the group algebra $\mathbb{R}\left[Q_{8}\right]=\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)} \oplus\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}$ where $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(0)}=\operatorname{sp}\left\{h \mid h \in H_{1}\right\}$ and $\left(\mathbb{R}\left[Q_{8}\right]\right)^{(1)}=\operatorname{sp}\left\{h b \mid h \in H_{1}\right\}$.

Based on the presentation of D_{8} shown in (2a), let τ be the central involution a^{2}. Then, $D_{8}=\{1, a, \tau, \tau a, b, a b, \tau b, \tau a b\}$. A multiplication table for D_{8} may be arranged as follows:

Table 19. A multiplication table for D_{8}

	1	τ	b	τb	a	τa	$a b$	$\tau a b$
1	1	τ	b	τb	a	τa	$a b$	$\tau a b$
τ	τ	1	τb	b	τa	a	$\tau a b$	$a b$
b	b	τb	1	τ	$\tau a b$	$a b$	τa	a
τb	τb	b	τ	1	$a b$	$\tau a b$	a	τa
a	a	τa	$a b$	$\tau a b$	τ	1	τb	b
τa	τa	a	$\tau a b$	$a b$	1	τ	b	τb
$a b$	$a b$	$\tau a b$	a	τa	b	τb	1	τ
$\tau a b$	$\tau a b$	$a b$	τa	a	τb	b	τ	1

Table 19 exhibits a coset decomposition $D_{8}=H_{1} \dot{\cup} H_{1} b$ where H_{1} is a maximal subgroup with elements $H_{1}=\{1, \tau, b, \tau b\}$ while $H_{1} a=\{a, \tau a, a b, \tau a b\}$. Based on this decomposition, we have the \mathbb{Z}_{2}-graded structure on the group algebra $\mathbb{R}\left[D_{8}\right]=\left(\mathbb{R}\left[D_{8}\right]\right)^{(0)} \oplus\left(\mathbb{R}\left[D_{8}\right]\right)^{(1)}$ where $\left(\mathbb{R}\left[D_{8}\right]\right)^{(0)}=\operatorname{sp}\left\{h \mid h \in H_{1}\right\}$ and $\left(\mathbb{R}\left[D_{8}\right]\right)^{(1)}=\operatorname{sp}\left\{h a \mid h \in H_{1}\right\}$.

References

[1] R. Abłamowicz and B. Fauser: Mathematics of CLIFFORD: A Maple package for Clifford and Grassmann algebras, Adv. Applied Clifford Algebras 15 (2) (2005), 157-181.
[2] R. Abłamowicz and B. Fauser: CLIFFORD: A Maple package for Clifford and Grassmann algebras, http://math.tntech.edu/rafal/cliff2017/, November 2017.
[3] R. Abłamowicz and B. Fauser: On the transposition anti-involution in real Clifford algebras I: The transposition map, Linear and Multilinear Algebra 59 (12) (2011), 1331-1358.
[4] R. Abłamowicz and B. Fauser: On the transposition anti-involution in real Clifford algebras II: Stabilizer groups of primitive idempotents, Linear and Multilinear Algebra 59 (12) (2011), 1359-1381.
[5] R. Abłamowicz and B. Fauser: On the transposition anti-involution in real Clifford algebras III: The automorphism group of the transposition scalar product on spinor spaces, Linear and Multilinear Algebra 60 (6) (2012), 621-644.
[6] Z. Brown: Group Extensions, Semidirect Products, and Central Products Applied to Salingaros Vee Groups Seen As 2-Groups, Master Thesis, Department of Mathematics, TTU, Cookeville, TN, December 2015.
[7] V. M. Chernov, Clifford Algebras as Projections of Group Algebras, in Geometric Algebra with Applications in Science and Engineering, E. B. Corrochano and G. Sobczyk, eds., Birkhäuser, Boston (2001), 461-476.
[8] L. L. Dornhoff, Group Representation Theory: Ordinary Representation Theory, Marcel Dekker, Inc., New York, 1971.
[9] D. Gorenstein, Finite Groups, 2nd. ed., Chelsea Publishing Company, New York, 1980.
[10] J. Helmstetter: Groupes de Clifford pour de formes quadratiques de rang quelconque. C. R. Acad. Sci. Paris 285 (1977), 175-177.
[11] G. James and M. Liebeck, Representations and Characters of Groups. Cambridge University Press, 2nd ed., 2010.
[12] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, Oxford University Press, Oxford, 2002.
[13] P. Lounesto: Clifford Algebras and Spinors. 2nd ed. Cambridge University Press, Cambridge, 2001.
[14] K. D. G. Maduranga, Representations and Characters of Salingaros' Vee Groups, Master Thesis, Department of Mathematics, TTU, May 2013.
[15] K. D. G. Maduranga and R. Abłamowicz: Representations and characters of Salingaros' vee groups of low order, Bull. Soc. Sci. Lettres Lódź Sér. Rech. Déform. 66 (1) (2016), 43-75.
[16] J. J. Rotman, Advanced Modern Algebra, 2nd. ed., American Mathematical Society, Providence, 2002.
[17] N. Salingaros, Realization, extension, and classification of certain physically important groups and algebras, J. Math. Phys. 22 (1981), 226-232.
[18] N. Salingaros, On the classification of Clifford algebras and their relation to spinors in n dimensions, J. Math. Phys. 23 (1) (1982), 1-7.
[19] N. Salingaros, The relationship between finite groups and Clifford algebras, J. Math. Phys. 25 (4) (1984), 738-742.
[20] V. V. Varlamov, CPT Groups of Spinor Fields in de Sitter and Anti-de Sitter Spaces, Adv. Appl. Clifford Algebras 25 (2) (2015), 487-516.
[21] A. M. Walley, Clifford Algebras as Images of Group Algebras of Salingaros Vee Groups, Master Thesis, Department of Mathematics, TTU, Cookeville, TN, May 2017.

Rafał Abłamowicz
Department of Mathematics
Tennessee Technological University
Cookeville, TN 38505, U.S.A.
e-mail: rablamowicz@tntech.edu
Manisha Varahagiri
Department of Mathematics
Tennessee Technological University
Cookeville, TN 38505, U.S.A.
e-mail: vvarahagi42@students.tntech.edu
Anne Marie Walley
Department of Mathematics
Tennessee Technological University
Cookeville, TN 38505, U.S.A.
e-mail: amparke42@students.tntech.edu

[^0]: ${ }^{1}$ By a small abuse of notation, we identify the group $G_{p, q}$ with its Salingaros class.

[^1]: ${ }^{2}$ This means that Q_{8} has one element of order 1 , one element of order 2 , and six elements of order 4 .
 ${ }^{3}$ It is well known [12, Lemma 2.1.9] that any dihedral group $D_{2^{n+1}}$ for $n \geq 2$ is a split extension of $C_{2^{n}}$ by C_{2} whereas any quaternion group $Q_{2^{n+1}}$ is a non-split extension of $C_{2^{n}}$ by C_{2}. We do not discuss group extensions in this paper.

[^2]: ${ }^{4}$ An equivalent definition of extra-special p-group is as follows: An extra-special group is a finite p-group G such that $Z(G)=G^{\prime}=\Phi(G)$ is of order p. Here, $\Phi(G)$ is Frattini subgroup of G defined as an intersection of all the maximal subgroups of G (cf. [12]).

[^3]: ${ }^{5}$ By $D_{8}^{(i)}, i=1,2, \ldots$, we denote different yet isomorphic copies of D_{8}.

[^4]: ${ }^{6}$ For example, $N_{2}=Q_{8} \cong\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle$ means that $a=\mathbf{e}_{1}, b=\mathbf{e}_{2}, a^{4}=1, a^{2}=b^{2}$, and $b^{-1} a b=a^{-1}$ in agreement with (1a).

[^5]: ${ }^{7}$ For the special case when $p+q=1$, see Appendix A.

