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Abstract. The main objective of this work is to prove that every Clifford
algebra C`p,q is R-isomorphic to a quotient of a group algebra R[Gp,q]
modulo an ideal J = (1 + τ) where τ is a central element of order 2.
Here, Gp,q is a 2-group of order 2p+q+1 belonging to one of Salingaros
isomorphism classes N2k−1, N2k, Ω2k−1, Ω2k or Sk. Thus, Clifford al-
gebras C`p,q can be classified by Salingaros classes. Since the group
algebras R[Gp,q] are Z2-graded and the ideal J is homogeneous, the
quotient algebras R[G]/J are Z2-graded. In some instances, the isomor-
phism R[G]/J ∼= C`p,q is also Z2-graded. By Salingaros Theorem, the
groups Gp,q in the classes N2k−1 and N2k are iterative central products
of the dihedral group D8 and the quaternion group Q8, and so they
are extra-special. The groups in the classes Ω2k−1 and Ω2k are central
products of N2k−1 and N2k with C2 × C2, respectively. The groups in
the class Sk are central products of N2k or N2k with C4. Two algorithms
to factor any Gp,q into an internal central product, depending on the
class, are given. A complete table of central factorizations for groups of
order up to 1, 024 is presented.
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1. Introduction

Salingaros [17–19] defined and studied five families N2k−1, N2k, Ω2k−1, Ω2k

and Sk of finite 2-groups related to Clifford algebras C`p,q. For each k ≥ 1,
the group N2k−1 is a central product (D8)◦k of k copies of the dihedral
group D8 while the group N2k is a central product (D8)◦(k−1) ◦Q8 of k − 1
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copies of D8 with the quaternion group Q8
1. The groups N2k−1 and N2k are

extra-special. Salingaros showed that Ω2k−1 ∼= N2k−1 ◦D4, Ω2k
∼= N2k ◦D4,

and Sk ∼= N2k−1 ◦ C4
∼= N2k ◦ C4, where C2 and C4 are cyclic groups of

order 2 and 4, respectively, and D4 = C2 ×C2 (cf. [6]). Chernov [7] observed
that a Clifford algebra C`p,q could be obtained as a homomorphic image of
a group algebra R[G] assuming there exists a suitable finite 2-group with
generators fulfilling certain relations. As an example, he showed that C`0,2 ∼=
R[Q8]/J while C`1,1 ∼= R[D8]/J , where in each case J is an ideal generated
by 1+τ for a central element τ of order 2 and the isomorphisms are R-algebra
isomorphisms. Walley [21] showed that C`2,0 ∼= R[D8]/J , which was to be
expected since C`1,1 ∼= C`2,0 (as R-algebras). Walley also showed that Clifford
algebras of dimension eight in three isomorphism classes can be represented
as C`0,3 ∼= R[G0,3]/J , C`2,1 ∼= R[G2,1]/J , C`1,2 ∼= R[G1,2]/J , and C`3,0 ∼=
R[G3,0]/J where G0,3 ∈ Ω2, G2,1 ∈ Ω1, and G1,2

∼= G3,0 ∈ S1. In each
case, one needs to define a surjective map from one of the group algebras to
the Clifford algebra with kernel equal to the ideal (1 + τ). Furthermore, one
observes that for each p + q ≥ 0, the number of non-isomorphic Salingaros
groups of order 2p+q+1 equals the number of isomorphism classes of universal
Clifford algebras C`p,q (see Periodicity of Eight in [13] and references therein).

Thus, for example, Salingaros groups in two classes N3 and N4 are
sufficient to give two isomorphism classes of Clifford algebras of dimension
sixteen: C`0,4 ∼= C`1,3 ∼= C`4,0 ∼= R[N4]/J , and C`2,2 ∼= C`3,1 ∼= R[N3]/J .

This approach to the Periodicity of Eight of Clifford algebras would
allow us to apply the representation theory of finite groups to explain some
of the properties of Clifford algebras. For example, the fact that, up to an
isomorphism, there are exactly two non-isomorphic non-Abelian groups of
order eight, provides a group-theoretic explanation why there are exactly
two isomorphism classes of Clifford algebras of dimension four. Furthermore,
one observes that a construction of primitive idempotents [4, 13] needed for
spinor representations of Clifford algebra C`p,q is possible due to the central-
product structure of the related group Gp,q in which the subgroups centralize
each other and each subgroup contains at least one element of order 2.

This paper is organized as follows:
In Section 2 we provide three examples of Clifford algebras as projections

of group algebras.
In Section 3 we discuss general properties of Salingaros vee groups Gp,q.
In Section 4, after providing necessary background material from group

theory, we describe the central product structure of Salingaros vee groups. We
recall Salingaros Theorem that classifies these groups into five isomorphism
classes.

In Section 5, we state our Main Theorem. We prove that the group al-
gebras R[Gp,q] are Z2-graded algebra. Then, we prove homogeneity of their
ideals generated by 1 + τ for a central involution τ, and prove that the quo-
tient algebras R[Gp,q]/J are Z2-graded. We prove, using the group theory,

1By a small abuse of notation, we identify the group Gp,q with its Salingaros class.
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that the isomorphism R[Q8]/J ∼= C`0,2 is Z2-graded while only one of two
isomorphisms R[D8]/J ∼= C`1,1 or R[D8]/J ∼= C`2,0 is Z2-graded.

In Appendix B we show two algorithms to represent all Salingaros vee
groups Gp,q for p + q ≤ 9 as internal central products of subgroups. These
algorithms have been implemented in CLIFFORD [1, 2].

Throughout this paper, C2 and C4 are cyclic groups of order 2 and 4,
respectively; D4 = C2×C2; D8 is the dihedral group of a square and Q8 is the
quaternion group, both of order 8. G′, Z(G), and Φ(G) denote the derived
subgroup of G, the center of G, and Frattini subgroup of G, respectively.
Notation H � G means that H is a normal subgroup of G while [G : H]
denotes the index of a subgroup H in G (defined as the number of left cosets
of H in G) [11,16].

2. Three examples of Clifford algebras as projections of group
algebras

Let G be any finite group and let F be a field. Denote the group algebra

of G over F as F[G], thus F[G] =
{∑

g∈G λgg, λg ∈ F
}

with the algebra

multiplication determined by the group product [11]. In this paper, we focus
on real group algebras of finite 2-groups, in particular, Salingaros vee groups.

Definition 1. Let p be a prime. A group G is a p-group if every element in G
is of order pk for some k ≥ 1. So, any finite group G of order pn is a p-group.

There are exactly two non-abelian groups of order eight, namely, the
quaternion group Q8 and the dihedral group D8. The quaternion group has
two convenient presentations:

Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉 (1a)

= 〈I, J, τ | τ2 = 1, I2 = J2 = τ, IJ = τJI〉 (1b)

with I = a, J = b, τ = a2, and |a2| = 2, |a| = |a3| = |b| = |ab| = |a2b| =
|a3b| = 4. The order structure of Q8 is [1, 1, 6] 2 and its center Z(Q8) =
{1, a2} ∼= C2. We present the dihedral group D8 in two ways as well:

D8 = 〈a, b | a4 = b2 = 1, bab−1 = a−1〉 (2a)

= 〈σ, τ | σ4 = τ2 = 1, τστ−1 = σ−1〉 (2b)

with τ = a, σ = b, so |a2| = |b| = |ab| = |a2b| = |a3b| = 2, |a| = |a3| = 4. The
order structure of D8 is [1, 5, 2] and its center Z(D8) = {1, a2} ∼= C2. 3

Recall the following two constructions of H = C`0,2 as R[Q8]/J and
C`1,1 as R[D8]/J due to Chernov [7].

2This means that Q8 has one element of order 1, one element of order 2, and six elements

of order 4.
3It is well known [12, Lemma 2.1.9] that any dihedral group D2n+1 for n ≥ 2 is a split

extension of C2n by C2 whereas any quaternion group Q2n+1 is a non-split extension of

C2n by C2. We do not discuss group extensions in this paper.
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Example 1. Define an R-algebra map ψ from R[Q8]→ H = sp{1, i, j, ij} as:

1 7→ 1, τ 7→ −1, I 7→ i, J 7→ j, (3)

Then, J = kerψ = (1+τ) for a central involution τ = a2 in Q8, so dimR J =
4 and ψ is surjective. Let π : R[Q8]→ R[Q8]/J be the natural map u 7→ u+J .
There exists an isomorphism ϕ : R[Q8]/J → H such that ϕ ◦ π = ψ and

π(I2) = I2 + J = τ + J and ϕ(π(I2)) = ψ(τ) = −1 = (ψ(I))2 = i2,

π(J2) = J2 + J = τ + J and ϕ(π(J2)) = ψ(τ) = −1 = (ψ(J))2 = j2,

π(IJ + JI) = IJ + JI + J = (1 + τ)JI + J = J and

ϕ(π(IJ + JI)) = ψ(0) = 0 = ψ(I)ψ(J) + ψ(J)ψ(I) = ij + ji.

Thus, R[Q8]/J ∼= ψ(R[Q8]) = C`0,2 ∼= H provided the central involution τ is
mapped into −1.

Example 2. Define an R-algebra map ψ from R[D8]→ C`1,1 as:

1 7→ 1, τ 7→ e1, σ 7→ e2, (4)

where C`1,1 is generated by orthonormal generators e1, e2 satisfying relations
(e1)2 = 1, (e2)2 = −1, e1e2 = −e2e1. Then, kerψ = (1 + σ2) where σ2 is a
central involution a2 in D8. Let J = (1 + σ2). Thus, dimR J = 4 and ψ is
surjective. Let π : R[D8] → R[D8]/J be the natural map u 7→ u + J . There
exists an isomorphism ϕ : R[D8]/J → C`1,1 such that ϕ ◦ π = ψ and

π(τ2) = τ2 + J = 1 + J and ϕ(π(τ2)) = ψ(1) = ψ(τ2) = (e1)2 = 1,

π(σ2) = σ2 + J and ϕ(π(σ2)) = ψ(σ2) = ψ(−1) = (e2)2 = −1,

π(τσ + στ) = τσ + στ + J = στ(1 + σ2) + J = J and

ϕ(π(τσ + στ) = ψ(τ)ψ(σ) + ψ(σ)ψ(τ) = ψ(0) = e1e2 + e2e1 = 0.

Thus, R[D8]/J ∼= C`1,1 provided the central involution σ2 is mapped into −1.

Walley [21] extended Chernov’s construction to C`2,0 and represented
it as R[D8]/J as shown in the following example.

Example 3. Define an algebra map ψ from R[D8]→ C`2,0 as:

1 7→ 1, τ 7→ e1, σ 7→ e1e2, (5)

where C`2,0 is generated by orthonormal generators e1, e2 satisfying relations
(e1)2 = (e2)2 = 1, e1e2 = −e2e1. Then, kerψ = (1 + σ2) where σ2 is a
central involution a2 in D8. Let J = (1 + σ2). Thus, dimR J = 4 and ψ is
surjective. Let π : R[D8] → R[D8]/J be the natural map u 7→ u + J . There
exists an isomorphism ϕ : R[D8]/J → C`2,0 such that ϕ ◦ π = ψ and

π(τ2) = τ2 + J = 1 + J and ϕ(π(τ2)) = ψ(τ2) = ψ(1) = (e1)2 = 1,

π(σ2) = σ2 + J so ϕ(π(σ2)) = ψ(−1) = (e1e2)2 = −1, so (e2)2 = 1 since

ϕ(π(τσ + στ)) = ϕ(τσ + στ + J ) = ϕ(στ(1 + σ2) + J ) = ϕ(J ) and

ψ(τ)ψ(σ) + ψ(σ)ψ(τ) = ψ(0) = e1e1e2 + e1e2e1 = 0, so e1e2 + e2e1 = 0.
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Thus, R[D8]/J ∼= C`2,0 provided the central involution σ2 is mapped into −1.

Let us summarize the above three projective constructions. Notice first
that each group N2 = Q8 and N1 = D8 can be written as follows:

1. The quaternion group Q8:

Q8 = {τα0gα1
1 gα2

2 | αk ∈ {0, 1}, k = 0, 1, 2}

where τ = a2 is the central involution in Q8, g1 = a, and g2 = b. Thus,

(g1)2 = a2 = τ, (g2)2 = b2 = a2 = τ, τg1g2 = g2g1.

Observe that |g1| = |g2| = 4 and R[Q8]/J ∼= C`0,2 where J = (1 + τ).

2. The dihedral group D8:

D8 = {τα0gα1
1 gα2

2 | αk ∈ {0, 1}, k = 0, 1, 2}

where τ = a2 is the central involution in D8, g1 = b, and g2 = a. Thus,

(g1)2 = b2 = 1, (g2)2 = a2 = τ, τg1g2 = g2g1.

Observe that |g1| = 2, |g2| = 4 and R[D8]/J ∼= C`1,1 ∼= C`2,0 where
J = (1 + τ).

Examples 1 and 2 illustrate Chernov Theorem [7]. Here is its reformu-
lated version with a proof.

Theorem 1. Let G be a finite 2-group of order 21+n generated by a central
involution τ and additional elements g1, . . . , gn, which satisfy the following
relations:

τ2 = 1, (g1)2 = · · · = (gp)
2 = 1, (gp+1)2 = · · · = (gp+q)

2 = τ, (6a)

τgj = gjτ, gigj = τgjgi, i, j = 1, . . . , n = p+ q, (6b)

Let J = (1 + τ) be an ideal in the group algebra R[G] and let C`p,q be the
universal real Clifford algebra generated by {ek}, k = 1, . . . , n = p+ q, where

e2
i = Q(ei) · 1 = εi · 1 =

{
1 for 1 ≤ i ≤ p;

−1 for p+ 1 ≤ i ≤ p+ q;
(7a)

eiej + ejei = 0, i 6= j, 1 ≤ i, j ≤ n. (7b)

Then, (a) dimR J = 2n; (b) There exists a surjective R-algebra homomor-
phism ψ from the group algebra R[G] to C`p,q with kerψ = J .

Proof. Observe that G = {τα0gα1
1 · · · gαn

n } | αk ∈ {0, 1}, k = 0, 1, . . . , n}. The
existence of a central involution τ is guaranteed by a well-known fact that the
center of any p-group is nontrivial [16]. Define an R-algebra homomorphism
ψ : R[G]→ C`p,q as:

1 7→ 1, τ 7→ −1, gj 7→ ej , j = 1, . . . , n. (8)
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Clearly, J ⊂ kerψ. Let u ∈ R[G]. Then, u =
∑
α λατ

α0gα1
1 · · · gαn

n = u1+τu2

where ui =
∑
α̃ λ

(i)
α̃ gα1

1 · · · gαn
n , i = 1, 2, α = (α0, α1, . . . , αn) ∈ Rn+1 and

α̃ = (α1, . . . , αn) ∈ Rn. Thus, if u ∈ kerψ, then

ψ(u) =
∑
α̃

(λ
(1)
α̃ − λ

(2)
α̃ )eα1

1 · · · eαn
n = 0 (9)

implies λ
(1)
α̃ = λ

(2)
α̃ since {eα1

1 · · · eαn
n | (α1, . . . , αn) ∈ (Z2)n} is a basis in

C`p,q. Hence,

u = (1 + τ)
∑
α̃

λ
(1)
α̃ gα1

1 · · · gαn
n ∈ J .

Thus, dimR kerψ = 2n, kerψ = J , dimR R[G]/J = 21+n − 2n = 2n, so ψ is
surjective. Let ϕ : R[G]/J → C`p,q be such that ϕ ◦ π = ψ where π : R[G]→
R[G]/J is the natural map. Then, since ψ(gj) = ej , π(gj) = gj +J , we have
ϕ(π(gj)) = ϕ(gj + J ) = ψ(gj) = ej and

π(gj)π(gi) + π(gi)π(gj) = (gj + J )(gi + J ) + (gj + J )(gi + J )

= (gjgi + gigj) + J = (1 + τ)gjgi + J = J

for i 6= j since gigj = τgjgi in R[G], τ is central, and J = (1 + τ). Thus,
gj + J , gi + J anticommute in R[G]/J when i 6= j. Also, when i = j,

π(gi)π(gi) = (gi + J )(gi + J ) = (gi)
2 + J =

{
1 + J , 1 ≤ i ≤ p;
τ + J , p+ 1 ≤ i ≤ n;

Observe, that τ+J = (−1)+(1+τ)+J = (−1)+J in R[G]/J . We conclude
that the factor algebra R[G]/J is generated by the cosets gi+J which satisfy
these relations:

(gj + J )(gi + J ) + (gj + J )(gi + J ) = J ,

(gi)
2 + J =

{
1 + J , 1 ≤ i ≤ p;
(−1) + J , p+ 1 ≤ i ≤ n;

Thus, the factor algebra R[G]/J is isomorphic to C`p,q provided J = (1 + τ)
for the central involution τ in G. �

Note that Example 3 shows that the map ψ : R[G]→ C`p,q need not be
defined as in (8). This allows one to define different surjective maps ψ from
the same group algebra R[G] to different but isomorphic Clifford algebras,
e.g., C`1,1 ∼= C`2,0.

3. Salingaros vee groups Gp,q ⊂ C`∗p,q

We begin by recalling a definition of a derived subgroup and its basic prop-
erties [8, 9, 12,16].
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Definition 2. If G is a group and x, y ∈ G, then their commutator [x, y] is
the element x−1y−1xy. If X and Y are subgroups of G, then the commutator
subgroup [X,Y ] of G is defined by [X,Y ] = 〈[x, y] | x ∈ X, y ∈ Y 〉. In
particular, the derived subgroup G′ of G is defined as G′ = [G,G].

Proposition 1 ([16]). Let G be a group.

(i) G′ is a normal subgroup of G, and G/G′ is abelian.
(ii) If H �G and G/H is abelian, then G′ ⊆ H.

Let Gp,q be a finite group of order 2p+q+1 contained in C`∗p,q with a
binary operation being the Clifford algebra product. Gp,q can be presented
as:

Gp,q = 〈−1, e1, . . . , en | [ei, ej ] = −1 for i 6= j,

[ei,−1] = 1, (−1)2 = 1, and e2
i = ±1〉, (10)

where [·, ·] denotes the commutator of two group elements, (ei)
2 = 1 for

1 ≤ i ≤ p and (ei)
2 = −1 for p + 1 ≤ i ≤ n = p + q. In the following, the

elements ei = ei1ei2 · · · eik will be denoted for short as ei1i2···ik for k ≥ 1
while e∅ will be denoted as 1, the identity element of Gp,q (and C`∗p,q).

The groups Gp,q are known as Salingaros vee groups. They have been
classified by Salingaros [17–19] and later discussed by Varlamov [20], Helm-
stetter [10], Ab lamowicz and Fauser [4,5], Maduranga and Ab lamowicz [15],
and most recently by Brown [6] and Walley [21]. Gp,q is a discrete subgroup
of Pin(p, q) ⊂ Γp,q where Γp,q is the Lipschitz group in C`p,q [13].

Let us recall a few basic facts about these groups.

1. |Gp,q| = 21+p+q, |G′p,q| = 2 since G′p,q = {±1}.
2. Gp,q is not simple because as a finite 2-group it has a normal subgroup

of order 2m for every m ≤ p + q + 1. In particular, it has a subgroup of
index 2.

3. The center Z(Gp,q) of Gp,q is non-trivial since 2 | |Z(Gp,q)| and so every
group Gp,q has a central element of order 2. It is well-known that for any
prime p and a finite p-group G 6= {1}, the center of G is non-trivial [16].

4. Every element of Gp,q is of order 1, 2, or 4. This follows directly from
the definition of Gp,q as well as from its central-product structure (to be
discussed below).

5. Since [Gp,q : G′p,q] = |Gp,q|/|G′p,q| = 2p+q, each Gp,q has 2p+q linear
characters [11,14].

6. The number N of conjugacy classes in Gp,q, hence, the number of irre-
ducible inequivalent representations of Gp,q, is 1 + 2p+q (resp. 2 + 2p+q)
when p+ q is even (resp. odd) (cf. [14, 15]).

7. The center Z(Gp,q) is described by the following theorem (see also [20]):
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Theorem 2. Let Gp,q ⊂ C`∗p,q. Then,

Z(Gp,q) =


{±1} ∼= C2 if p− q ≡ 0, 2, 4, 6 (mod 8);

{±1,±β} ∼= C2 × C2 if p− q ≡ 1, 5 (mod 8);

{±1,±β} ∼= C4 if p− q ≡ 3, 7 (mod 8).

(11)

as a consequence of Z(C`p,q) = sp{1} (resp. sp{1, β}) when p+ q is even
(resp. odd) where β = e1e2 · · · en, n = p + q, is the unit pseudoscalar
in C`p,q.

8. Salingaros’ classes N2k−1, N2k, Ω2k−1, Ω2k, and Sk [17–19] are related to
the groups Gp,q as follows:

N2k−1 ↔ Gp,q ⊂ C`∗p,q, p− q ≡ 0, 2 (mod 8), K ∼= R;

N2k ↔ Gp,q ⊂ C`∗p,q, p− q ≡ 4, 6 (mod 8), K ∼= H;

Ω2k−1 ↔ Gp,q ⊂ C`∗p,q, p− q ≡ 1 (mod 8), K ∼= R⊕ R; (12)

Ω2k ↔ Gp,q ⊂ C`∗p,q, p− q ≡ 5 (mod 8), K ∼= H⊕H;

Sk ↔ Gp,q ⊂ C`∗p,q, p− q ≡ 3, 7 (mod 8), K ∼= C.

Table 1. Five isomorphism classes of vee groups Gp,q in C`∗p,q

Group G Z(G) Group order dimC`p,q Z(C`p,q)

N2k−1 C2 22k+1 22k sp{1}
N2k C2 22k+1 22k sp{1}

Ω2k−1 C2 × C2 22k+2 22k+1 sp{1, β}
Ω2k C2 × C2 22k+2 22k+1 sp{1, β}
Sk C4 22k+2 22k+1 sp{1, β}

The first few vee groups Gp,q corresponding to Clifford algebras C`p,q
in dimensions n = p+ q = 1, 2, 3, are:

n = 1 : G0,1
∼= S0

∼= C4, G1,0
∼= Ω0

∼= D4,

n = 2 : G0,2
∼= N2

∼= Q8, G1,1
∼= N1

∼= D8, G2,0
∼= N1

∼= D8,

n = 3 : G0,3
∼= Ω2, G1,2

∼= S1, G2,1
∼= Ω1, G3,0

∼= S1.

See Table 2 for all groups for n ≤ 8.
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Table 2. Isomorphism classes of groups Gp,q for n = p+ q ≤ 8.
HH

HHHn
p-q −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

0 N0

1 S0 Ω0

2 N2 N1 N1

3 Ω2 S1 Ω1 S1

4 N4 N4 N3 N3 N4

5 S2 Ω4 S2 Ω3 S2 Ω4

6 N5 N6 N6 N5 N5 N6 N6

7 Ω5 S3 Ω6 S3 Ω5 S3 Ω6 S3

8 N7 N7 N8 N8 N7 N7 N8 N8 N7

4. Central product structure of Gp,q

In this section we review basic results on extra-special p-groups from [8,9,12]
that lead to Salingaros Theorem for the groups Gp,q.

Definition 3 ([9]). A finite abelian p-group is elementary abelian if every non-
trivial element has order p.

For example, (Cp)
k = Cp × · · · × Cp (k-times) is elementary abelian. In

particular, D4 = C2 × C2 and C2 are elementary abelian.
We adopt the following definition of extra-special p-group. 4

Definition 4 ([8]). A finite p-group P is extra-special if

(i) Z(P ) = P ′,
(ii) |Z(P )| = |P ′| = p, and

(iii) P/P ′ is elementary abelian.

The groups D8 and Q8 are extra-special and non-isomorphic.

Example 4 (D8 is extra-special). D8 = 〈a, b | a4 = b2 = 1, bab−1 = a−1〉 is
extra-special because:

(i) Z(D8) = D′8 = [D8, D8] = 〈a2〉, |Z(D8)| = |D′8| = 2,
(ii) D8/D

′
8 = D8/Z(D8) = 〈D′8, aD′8, bD′8, abD′8〉 ∼= C2 × C2.

(iii) Order structure: [1, 5, 2]
(iv) D8

∼= C4 o C2
∼= (C2 × C2)o C2 (semi-direct products)

Example 5 (Q8 is extra-special). Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉
is extra-special because:

(i) Z(Q8) = Q′8 = [Q8, Q8] = 〈a2〉, |Z(Q8)| = |Q′8| = 2,
(ii) Q8/Q

′
8 = Q8/Z(Q8) = 〈Q′8, aQ′8, bQ′8, abQ′8〉 ∼= C2 × C2.

(iii) Order structure: [1, 1, 6]
(iv) Q8 is not a semi-direct product of any of its subgroups (cf. Brown [6])

4An equivalent definition of extra-special p-group is as follows: An extra-special group is

a finite p-group G such that Z(G) = G′ = Φ(G) is of order p. Here, Φ(G) is Frattini
subgroup of G defined as an intersection of all the maximal subgroups of G (cf. [12]).
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We adopt the following definition from [8] of a group being a central
product of its subgroups. However, some authors define the central product
differently (cf. [9, 12]).

Definition 5 ([8]). A finite group G is a central product of subgroups H1, . . . ,Hn

if G = H1 · · ·Hn and, for any x ∈ Hi, y ∈ Hj , i 6= j implies [x, y] = 1. Then,
we will write G = H1 ◦ · · · ◦ Hn. In particular, when n = 2, we have: (a)
[H,K] = 〈1〉 and (b) G = HK.

Note that the central product is commutative and associative, and when
G = H1 ◦ · · · ◦Hn, we have ∩ni=1Hi ≤ Z(G), Hi �G, and Z(Hi) ≤ Z(G) for
each i.

The following group-theoretic results provide a foundation for Salingaros
Theorem. Here, p is a prime.

Lemma 1 ([8]). Let P1, . . . , Pn be extra-special p-groups of order p3. Then
there is one and up to isomorphism only one central product of P1, . . . , Pn
with center of order p. It is extra special of order p2n+1 denoted by P1◦· · ·◦Pn,
and called the central product of P1, . . . , Pn.

Remark 1. An important consequence of Lemma 1 is the following observa-
tion: Suppose that H and K are extra-special groups of order p3 and G is
their internal central product. Then, Z(H) = Z(K) = Z(G). In particular,

let p = 2 and suppose G = D
(2)
8 ◦D(1)

8 or G = D
(2)
8 ◦ Q8 where the dihedral

and the quaternion groups have the standard presentations as follows 5:

D
(i)
8 = 〈ai, bi | (ai)4 = (bi)

2 = 1, (bi)
−1aibi = (ai)

−1〉, i = 1, 2;

Q8 = 〈a3, b3 | (a3)4 = 1, (a3)2 = (b3)2, (b3)−1a3b3 = (a3)−1〉.

Since Z(D
(i)
8 ) = {1, (ai)2}, i = 1, 2, and Z(Q8) = {1, (a3)2}, the equality of

the centers Z(D
(1)
8 ) = Z(D

(2)
8 ) = Z(Q8) implies that (a1)2 = (a2)2 = (a3)2.

Lemma 2 ([8]). The groups Q8 ◦Q8 and D8 ◦D8 are isomorphic of order 32,
not isomorphic to D8 ◦Q8. If C is a cyclic 2-group of order at least 4, then
C ◦Q8

∼= C ◦D8.

The following two results tell us that for any prime p, there are exactly
two isomorphism classes of extra-special p-groups.

Lemma 3 ([12]). An extra-special p-group has order p2n+1 for some positive
integer n, and is the iterated central product of non-abelian groups of order p3.

Theorem 3 ([12]). There are exactly two isomorphism classes of extra-special
groups of order 22n+1 for positive integer n. One isomorphism type arises as
the iterated central product of n copies of D8; the other as the iterated central
product of n groups isomorphic to D8 and Q8, including at least one copy
of Q8. That is, D8 ◦ D8 ◦ · · · ◦ D8, or, D8 ◦ D8 ◦ · · · ◦ D8 ◦ Q8, where it is
understood that these are iterated central products.

5By D
(i)
8 , i = 1, 2, . . . , we denote different yet isomorphic copies of D8.
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In Appendix B we show how to decompose the vee groups Gp,q into
internal central products using this iterative approach.

Theorem 4 (Salingaros Theorem [19]). Let N1 = D8, N2 = Q8, and (G)◦k

be the iterated central product G ◦ · · · ◦G (k times) of G. Then, for k ≥ 1:

1. N2k−1 ∼= (N1)◦k = (D8)◦k,
2. N2k

∼= (N1)◦k ◦N2 = (D8)◦(k−1) ◦Q8,
3. Ω2k−1 ∼= N2k−1 ◦ (C2 × C2) = (D8)◦k ◦ (C2 × C2),
4. Ω2k

∼= N2k ◦ (C2 × C2) = (D8)◦(k−1) ◦Q8 ◦ (C2 × C2),
5. Sk ∼= N2k−1 ◦ C4

∼= N2k ◦ C4 = (D8)◦k ◦ C4
∼= (D8)◦(k−1) ◦Q8 ◦ C4.

Thus, the families N2k−1 and N2k are the two isomorphism classes of extra-
special groups of order 22k+1 predicted by Theorem 3 while the three classes
Ω2k−1,Ω2k, Sk contain non extra-special groups of order 22k+2.

As a follow up to Remark 1, we make the following observations.

Remark 2. Let G = Gp,q.

(i) When G ∼= N2k−1 or G ∼= N2k, the centers of the dihedral and the
quaternion groups in the central product factorization of G are equal to
Z(G) with order 2. This implies that the squares of all their generators
ai of order 4 equal τ , the single central involution in G which in turn is
just −1.

(ii) When G ∼= Ω2k−1 or G ∼= Ω2k, then Z(G) ∼= C2 × C2. Thus, from the
Product Formula [16],

|G| = 22k+2 =
|N2k−1||C2 × C2|
|N2k−1 ∩ (C2 × C2)|

=
22k+3

|N2k−1 ∩ (C2 × C2)|
,

we find that |N2k−1 ∩ (C2 × C2)| = 2. Since

Z(N2k−1) � Z(C2 × C2) = C2 × C2,

(and similarly for Z(N2k)) we conclude that the squares of the gen-
erators ai must equal one of three central involutions in C2 × C2

∼=
{1, β,−1,−β} where β is the unit pseudoscalar in Gp,q ⊂ C`∗p,q of or-
der 2. However, since each generator ai is a basis monomial in C`p,q,
its square is invariant under the grade involution automorphism α of
C`p,q, that is, α((ai)

2) = (ai)
2, yet, α(±β) = ∓β since p + q is odd.

Like in (i), we conclude that the squares of all the generators ai of or-
der 4 equal τ = −1, the central involution in G.

(iii) When G ∼= Sk, we recall that Z(G) ∼= C4
∼= 〈β〉 and so Z(G) contains

exactly one element of order 2, namely, β2 = −1. Thus, Z(N2k−1) ∩
Z(G) ∼= Z(N2k) ∩ Z(G) ∼= C2, and again, the squares of all the genera-
tors ai of order 4 equal τ = −1.

As an example of application of Algorithms 1 and 2 presented in Ap-
pendix B, we show how the groups Gp,q of order 16 can be written as internal
central products.
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Example 6. Let p+ q = 3. The central-product factorizations of groups Gp,q
may be given as follows:

G0,3
∼= Ω2

∼= N2 ◦ (C2 × C2) ∼= 〈e1, e2〉 ◦ 〈β,−β〉,

G1,2
∼= S1

∼= N1 ◦ C4
∼= 〈e2, e1〉 ◦ 〈β〉 ∼= N2 ◦ C4

∼= 〈e2, e3〉 ◦ 〈β〉,

G2,1
∼= Ω1

∼= N1 ◦ (C2 × C2) ∼= 〈e3, e1〉 ◦ 〈β,−β〉,

G3,0
∼= S1

∼= N1 ◦ C4
∼= 〈e12, e1〉 ◦ 〈β〉 ∼= N2 ◦ C4

∼= 〈e12, e3〉 ◦ 〈β〉,

where β is a unit pseudoscalar, N1 = D8, N2 = Q8, and we have shortened
our notation to only show generators for all the subgroups 6.

5. Clifford algebras C`p,q as images of group algebras R[Gp,q]

Since the relations defining Gp,q shown in (10) are the same as relations (6)
assumed in Theorem 1 (with −1 being a central involution), we have the
following result.

Main Theorem. Every Clifford algebra C`p,q, p + q ≥ 2, is R-isomorphic to
a quotient of the group algebra R[Gp,q] of Salingaros vee group Gp,q of order
2p+q+1 modulo an ideal J = (1+τ) generated by 1+τ for a central element τ
of order 2.

The above theorem allows us to classify Clifford algebras through the
groups Gp,q. Notice from Table 2 that for each n = p+ q, there is a bijective
correspondence between the isomorphism classes of the groups Gp,q, hence,
the group algebras R[Gp,q] and their quotients, and the isomorphism classes
of Clifford algebras C`p,q (check Periodicity of Eight in [13, Table 1, p. 217]).
For example, for n = 4, we have two isomorphism classes:

R[N4]/J ∼= C`0,4 ∼= C`1,3 ∼= C`4,0 and R[N3]/J ∼= C`2,2 ∼= C`3,1.

5.1. Z2-gradation of R[Gp,q]

Recall the following well-known theorem in group theory.

Proposition 2 ([16]). If G is a p-group of order pn, then G has a normal
subgroup of order pk for every k ≤ n.

The following result is an immediate consequence of this proposition.

Proposition 3. Let G be Salingaros vee group Gp,q. Then,

(i) G has a normal subgroup H of index 2.

(ii) G = H
·
∪Hb for some element b 6∈ H such that b2 ∈ H.

(iii) The group algebra R[G] is Z2-graded.

Proof of (i): Follows from Proposition 2.

6For example, N2 = Q8
∼= 〈e1, e2〉 means that a = e1, b = e2, a4 = 1, a2 = b2, and

b−1ab = a−1 in agreement with (1a).
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Proof of (ii): Since [G : H] = 2, we have G/H ∼= C2 and so G = H
·
∪ Hb

where b 6∈ H yet b2 ∈ H.

Proof of (iii): Since G = H
·
∪Hb, we have

R[G] =

{∑
h∈H

xhh+
∑
h∈H

yhhb | xh, yh ∈ R

}
.

Let

(R[G])(0) =

{∑
h∈H

xhh | xh ∈ R

}
, (R[G])(1) =

{∑
h∈H

yhhb | yh ∈ R

}
. (13)

Then, since H �G, b 6∈ H, and b2 ∈ H, we have

R[G] = (R[G])(0) ⊕ (R[G])(1),

(R[G])(i) (R[G])(j) ⊆ (R[G])(i+j mod 2), i, j = 0, 1. �

For the given group Gp,q, there are usually several choices for the maxi-
mal subgroup H in the above proposition. In the following we will show that
our results do not depend on that choice.

5.2. Homogeneity of the ideal J = (1 + τ)

We recall the following result from group theory (cf. [11, 16]).

Lemma 4. Let G be a group of order pn with n ≥ 1. If {1} 6= H � G then
H ∩ Z(G) 6= {1}. In particular, Z(G) 6= {1}.

When G = Gp,q and {1} 6= H � G, we have 2 | |H ∩ Z(Gp,q)|. In
particular, when [G : H] = 2, the central involution τ ∈ H. In fact, in that
case, |H ∩ Z(Gp,q)| = 2.

Lemma 5. Let G = Gp,q, p+ q ≥ 2, 7 and let H �G such that [G : H] = 2.

(i) If the isomorphism class of G is N2k−1 or N2k, and τ is the central
involution in Z(G), then τ ∈ H.

(ii) If the isomorphism class of G is Ω2k−1 or Ω2k, then there exits a central
involution τ in Z(G) which is contained in H.

(ii) If the isomorphism class of G is Sk, and τ is the central involution in
Z(G), then τ ∈ H.

Proof of (i): Since H�G and [G : H] = 2, the quotient group G/H is abelian
and so by part (b) of Proposition 1, G′ = {1,−1} ⊂ H. Thus, τ = −1 ∈ H.

Proof of (ii): Since Z(G) ∼= C2×C2, the center of G contains three elements
of order 2. Note that since

Ω2k−1 ∼= N2k−1 ◦ (C2 × C2) and Ω2k
∼= N2k ◦ (C2 × C2),

7For the special case when p + q = 1, see Appendix A.
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and [Ω2k−1 : N2k−1] = [Ω2k : N2k] = 2, from the Product Formula we find
that |N2k−1∩Z(G)| = |N2k∩Z(G)| = 2. Thus, one of the central involutions,
call it τ , belongs to Z(N2k−1) or Z(N2k), respectively, and so it must again
equal a2 where a is a generator of order 4 of any subgroup N1 or N2. If H
is any subgroup in Gp,q of index 2, it must contain an element of order 4,
hence, it will contain the central element −1. Thus, again, τ = a2 = −1.

Proof of (iii): In this case, since Z(G) ∼= C4, there is a single central involu-
tion τ in Z(G). Thus, τ ∈ H. We can also observe from Sk ∼= N2k−1 ◦ C4

∼=
N2k ◦ C4 that the normal subgroups N2k−1 and N2k are of index 2. Thus,
τ = a2 = −1 as well. �

Proposition 4. Let G = Gp,q. Ideal J = (1 + τ) in R[G] is homogeneous.

Proof. Let J = (1 + τ) ⊂ R[G] = (R[G])(0) ⊕ (R[G])(1) where τ = a2 ∈
Z(G). Let H be as in Proposition 3. Then, τ ∈ (R[G])(0) and the ideal J is
homogeneous. �

As a consequence of being homogeneous, the ideal J , as a subalgebra
of R[G], is also Z2-graded. Let j = u(1 + τ) ∈ J where u ∈ R[G]. Then, J is
homogeneous because the homogeneous parts of j belong to J :

J 3 j = u(1 + τ) = u(0)(1 + τ)︸ ︷︷ ︸
j(0)∈J (0)

+u(1)(1 + τ)︸ ︷︷ ︸
j(1)∈J (1)

(14)

where u(i) ∈ (R[G])(i), J (i) = (1 + τ)(R[G])(i). Clearly, J = J (0)⊕J (1) and
J (i)J (j) ⊆ J (i+j mod 2), i, j = 0, 1.

5.3. Z2-gradation of R[Gp,q]/J
We have the following result.

Proposition 5. Let G = Gp,q and J = (1 + τ) be the homogeneous ideal in
R[G] where τ is a central involution in G. Let H be normal in G of index 2,
b ∈ G \H, b2 ∈ H. Then, the quotient algebra R[G]/J is Z2-graded:

R[G]/J = (R[G]/J )
(0) ⊕ (R[G]/J )

(1)
with (15a)

(R[G]/J )
(0)

= sp{h+ J | h ∈ H}, and (15b)

(R[G]/J )
(1)

= sp{hb+ J | h ∈ H}. (15c)

Proof. From Proposition 3, we know that R[G] is Z2-graded. Then, if we de-

fine (R[G]/J )
(i)

as in (15b) and (15c), then clearly (15a) holds. Furthermore,

(h+ J )(h′ + J ) = hh′ + J ∈ (R[G]/J )
(0)
, (16a)

(hb+ J )(h′b+ J ) = hbh′b+ J = h(bh′b−1)b2 + J ∈ (R[G]/J )
(0)
, (16b)

(h+ J )(h′b+ J ) = hh′b+ J ∈ (R[G]/J )
(1)
, (16c)

(h′b+ J )(h+ J ) = h′bh+ J = h′(bhb−1)b+ J ∈ (R[G]/J )
(1)
. (16d)

Thus, (R[G]/J )
(i)

(R[G]/J )
(j) ⊆ (R[G]/J )

(i+j mod 2)
, i, j = 0, 1. �
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Example 7. Consider the group algebra R[Q8] from Example 1. Then,

R[Q8] = (R[Q8])(0) ⊕ (R[Q8])(1) (17)

where (R[Q8])(0) = sp{1, I, τ, τI} and (R[Q8])(1) = sp{J, IJ, τJ, τIJ}. Fur-
thermore, J = J (0) ⊕ J (1) where J (0) = sp{1 + τ, (1 + τ)I} and J (1) =
sp{(1 + τ)J, (1 + τ)IJ}. The quotient algebra decomposes as

R[Q8]/J = (R[Q8]/J )
(0) ⊕ (R[Q8]/J )

(1)
(18)

where

(R[Q8]/J )
(0)

= sp{1 + J , IJ + J }, (19)

(R[Q8]/J )
(1)

= sp{I + J , J + J }. (20)

It can also be verified that the following R-algebra map

R[Q8]/J = (R[Q8]/J )
(0) ⊕ (R[Q8]/J )

(1) ϕ−→

(R[Q8])(0)/J (0) ⊕ (R[Q8])(1)/J (1) (21)

defined as

1 + J 7→ 1 + J (0), 1 + J 7→ 1 + J (0), (22a)

I + J 7→ J + J (1), J + J 7→ IJ + J (1) (22b)

is a Z2-graded isomorphism. Here, the codomain of ϕ is a Z2-graded algebra
with multiplication defined as

(a+ J (i))(b+ J (j)) = ab+ J (i+j mod 2), i, j = 0, 1. (23)

See Appendix C for multiplication tables in R[Q8]/J and (R[Q8])(0)/J (0) ⊕
(R[Q8])(1)/J (1).

5.4. On the Z2-graded isomorphism R[Gp,q]/J ∼= C`p,q

Our Main Theorem in Section 5 states that each Clifford algebra C`p,q is
R-isomorphic to the quotient algebra R[Gp,q]/J where Gp,q is Salingaros vee
group contained in C`∗p,q. However, both algebras are Z2-graded. Thus, a nat-
ural question is to ask whether the R-isomorphism R[Gp,q]/J ∼= C`p,q is also
Z2-graded (or, just graded, for short). Of course, not all such isomorphisms
may be graded. This is because Clifford algebras belonging to the same iso-
morphism class –as predicted by the Periodicity of Eight Theorem– are only
R-isomorphic. For example, since the two algebras C`1,1 and C`2,0 are R-
isomorphic to Mat(2,R), they are not graded-isomorphic. Hence, for one, we
cannot expect both isomorphisms R[G1,1]/J ∼= C`1,1 and R[G2,0]/J ∼= C`2,0
to be simultaneously graded. For two, when the isomorphism R[Gp,q]/J ∼=
C`p,q is graded, we would expect it to remain graded regardless which max-
imal subgroup H of Gp,q has been used to exhibit the Z2-gradation of the
group algebra R[Gp,q], the ideal J , and, in the end, the quotient algebra
R[Gp,q]/J .

Our goal for this section is to investigate these issues on two examples.
In the end, we will conjecture a general result.
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5.5. Is the isomorphism R[Q8]/J ∼= C`0,2 graded?

Recall presentation (1a) of Q8 and a multiplication Table 18 of Q8 in Appen-
dix D. Q8 has three maximal subgroups, each isomorphic to C4:

H1 = 〈a〉 = {1, τ, a, τa}, H2 = 〈b〉 = {1, b, τ, τb}, H3 = 〈ab〉 = {1, τ, ab, τab}.

Each subgroup is of index 2, hence it is normal, and their intersection, as
expected, is Φ(Q8) = Q′8 = Z(Q8) = {1, τ} since Q8 is extra-special. Let H
be any of these three subgroups. In the following, we will base the graded
structure of R[Q8], J and R[Q8]/J on H, and show that the isomorphism
R[Q8]/J ∼= C`0,2 is graded.

5.5.1. Case H = H1: Since Q8 = H1

·
∪ H1b = {1, τ, a, τa}

·
∪ {b, ab, τbτab},

R[Q8] = sp{1, τ, a, τa}︸ ︷︷ ︸
(R[Q8])(0)

⊕ sp{b, ab, τb, τab}︸ ︷︷ ︸
(R[Q8])(1)

(24)

and (R[Q8])(i)(R[Q8])(j) ⊆ (R[Q8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)a}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)b, (1 + τ)ab}︸ ︷︷ ︸
J (1)

(25)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[Q8]/J = sp{1 + J , a+ J }︸ ︷︷ ︸
(R[Q8]/J )(0)

⊕ sp{b+ J , ab+ J }︸ ︷︷ ︸
(R[Q8]/J )(1)

, (26)

and it has the following multiplication table:

Table 3. Multiplication table for R[Q8]/J based on H1

1 + J a+ J b+ J ab+ J
1 + J 1 + J a+ J b+ J ab+ J
a+ J a+ J −1 + J ab+ J −b+ J
b+ J b+ J −ab+ J −1 + J a+ J
ab+ J ab+ J b+ J −a+ J −1 + J

Thus, (R[Q8]/J )
(i)

(R[Q8]/J )
(j) ⊆ (R[Q8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[Q8]/J → C`0,2 as

1 + J 7→ 1, a+ J 7→ e1e2, b+ J 7→ e1, ab+ J 7→ e2. (27)

So, ϕ is a graded algebra isomorphism since ϕ
(

(R[Q8]/J )
(i)
)
⊆ (C`0,2)

(i)
.

Notice that in order to properly define ϕ, we must have equality of orders of
the group elements: |a| = |e1e2| = 4, |b| = |e1| = 4, and |ab| = |e2| = 4 in Q8

and G0,2, respectively.
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5.5.2. Case H = H2: Since Q8 = H2

·
∪ H2a = {1, τ, b, τb}

·
∪ {a, τa, ab, τab},

R[Q8] = sp{1, τ, b, τb}︸ ︷︷ ︸
(R[Q8])(0)

⊕ sp{a, τa, ab, τab}︸ ︷︷ ︸
(R[Q8])(1)

(28)

and (R[Q8])(i)(R[Q8])(j) ⊆ (R[Q8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)b}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)a, (1 + τ)ab}︸ ︷︷ ︸
J (1)

(29)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[Q8]/J = sp{1 + J , b+ J }︸ ︷︷ ︸
(R[Q8]/J )(0)

⊕ sp{a+ J , ab+ J }︸ ︷︷ ︸
(R[Q8]/J )(1)

, (30)

and it has the following multiplication table:

Table 4. Multiplication table for R[Q8]/J based on H2

1 + J b+ J a+ J ab+ J
1 + J 1 + J b+ J a+ J ab+ J
b+ J b+ J −1 + J −ab+ J a+ J
a+ J a+ J ab+ J −1 + J −b+ J
ab+ J ab+ J −a+ J b+ J −1 + J

Thus, (R[Q8]/J )
(i)

(R[Q8]/J )
(j) ⊆ (R[Q8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[Q8]/J → C`0,2 as

1 + J 7→ 1, b+ J 7→ e1e2, a+ J 7→ e2, ab+ J 7→ e1. (31)

So, again ϕ is a graded isomorphism and |b| = |e1e2| = 4, |a| = |e2| = 4, and
|ab| = |e1| = 4 in Q8 and G0,2, respectively.

5.5.3. Case H = H3: Since Q8 = H3

·
∪ H3a = {1, τ, ab, τab}

·
∪ {a, τa, b, τb},

R[Q8] = sp{1, τ, ab, τab}︸ ︷︷ ︸
(R[Q8])(0)

⊕ sp{a, τa, b, τb}︸ ︷︷ ︸
(R[Q8])(1)

(32)

and (R[Q8])(i)(R[Q8])(j) ⊆ (R[Q8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)ab}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)a, (1 + τ)b}︸ ︷︷ ︸
J (1)

(33)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[Q8]/J = sp{1 + J , b+ J }︸ ︷︷ ︸
(R[Q8]/J )(0)

⊕ sp{a+ J , ab+ J }︸ ︷︷ ︸
(R[Q8]/J )(1)

, (34)

and it has the following multiplication table:
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Table 5. Multiplication table for R[Q8]/J based on H3

1 + J ab+ J a+ J b+ J
1 + J 1 + J ab+ J a+ J b+ J
ab+ J ab+ J −1 + J b+ J −a+ J
a+ J a+ J −b+ J −1 + J ab+ J
ab+ J b+ J a+ J −ab+ J −1 + J

Thus, (R[Q8]/J )
(i)

(R[Q8]/J )
(j) ⊆ (R[Q8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[Q8]/J → C`0,2 as

1 + J 7→ 1, ab+ J 7→ e1e2, a+ J 7→ e1, b+ J 7→ e2. (35)

Again, ϕ is graded and |ab| = |e1e2| = 4, |a| = |e1| = 4, and |b| = |e2| = 4 in
Q8 and G0,2, respectively.

In conclusion, we have proven the following.

Theorem 5. There is a graded algebra isomorphism R[Q8]/J ∼= C`0,2. The
isomorphism does not depend on the choice of a maximal subgroup H in Q8

used to define the graded algebra structure in R[Q8]/J .

5.6. Are the isomorphisms R[D8]/J ∼= C`1,1 and R[D8]/J ∼= C`2,0 graded?

Recall presentation (2a) of D8 and a multiplication Table 19 of D8 in Ap-
pendix D. D8 has three maximal subgroups:

H1 = 〈τ, b〉 = {1, τ, b, τb} ∼= D4, H2 = 〈τ, ab〉 = {1, τ, ab, τab} ∼= D4,

H3 = 〈a〉 = {1, τ, a, τa} ∼= C4.

Each subgroup is of index 2, hence it is normal, and their intersection is
Φ(D8) = D′8 = Z(D8) = {1, τ} since D8 is extra-special. Let H be any of
these three subgroups. In the following, we will base the graded structure
of R[D8], J and R[D8]/J on H, and consider whether the isomorphisms
R[D8]/J ∼= C`2,0 and R[D8]/J ∼= C`1,1 are graded.

5.6.1. Case H = H1: Since D8 = H1

·
∪ H1a = {1, τ, b, τb}

·
∪ {a, τa, ab, τab},

R[D8] = sp{1, τ, b, τb}︸ ︷︷ ︸
(R[D8])(0)

⊕ sp{a, τa, ab, τab}︸ ︷︷ ︸
(R[D8])(1)

(36)

and (R[D8])(i)(R[D8])(j) ⊆ (R[D8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)b}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)a, (1 + τ)ab}︸ ︷︷ ︸
J (1)

(37)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[D8]/J = sp{1 + J , b+ J }︸ ︷︷ ︸
(R[D8]/J )(0)

⊕ sp{a+ J , ab+ J }︸ ︷︷ ︸
(R[D8]/J )(1)

, (38)

and it has the following multiplication table:
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Table 6. Multiplication table for R[D8]/J based on H1

1 + J b+ J a+ J ab+ J
1 + J 1 + J b+ J a+ J ab+ J
b+ J b+ J 1 + J −ab+ J −a+ J
a+ J a+ J ab+ J −1 + J −b+ J
ab+ J ab+ J a+ J b+ J 1 + J

Thus, (R[D8]/J )
(i)

(R[D8]/J )
(j) ⊆ (R[D8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[D8]/J → C`2,0 as

1 + J 7→ 1, b+ J 7→ e1, a+ J 7→ e1e2, ab+ J 7→ −e2. (39)

So, while ϕ is an R-isomorphism, it is not graded since the even element b+J
is mapped into the odd element e1. Notice that in order to properly define
ϕ as the R-isomorphism, we must have equality of orders: |b| = |e1| = 2,
|a| = |e1e2| = 4, and |ab| = | − e2| = 2 in D8 and G2,0, respectively. Thus,
a + J cannot be mapped to e1 or e2 for that reason. The only flexibility in
defining ϕ is to switch e1 and e2 in (39) (modulo −1). Thus, the isomorphism
R[D8]/J ∼= C`2,0 is not graded when H = H1.

However, the isomorphism R[D8]/J ∼= C`1,1 is graded. Define an R-
algebra map ϕ : R[D8]/J → C`1,1 as

1 + J 7→ 1, b+ J 7→ e1e2, a+ J 7→ e2, ab+ J 7→ e1. (40)

So, ϕ is graded since ϕ
(

(R[D8]/J )
(i)
)
⊆ (C`1,1)

(i)
and |b| = |e1e2| = 2,

|a| = |e2| = 4, and |ab| = |e1| = 2 in D8 and G1,1, respectively.

5.6.2. Case H = H2: Since D8 = H2

·
∪ H2a = {1, τ, ab, τab}

·
∪ {a, τa, b, τb},

R[D8] = sp{1, τ, ab, τab}︸ ︷︷ ︸
(R[D8])(0)

⊕ sp{a, τa, b, τb}︸ ︷︷ ︸
(R[D8])(1)

(41)

and (R[D8])(i)(R[D8])(j) ⊆ (R[D8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)ab}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)a, (1 + τ)b}︸ ︷︷ ︸
J (1)

(42)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[D8]/J = sp{1 + J , ab+ J }︸ ︷︷ ︸
(R[D8]/J )(0)

⊕ sp{a+ J , b+ J }︸ ︷︷ ︸
(R[D8]/J )(1)

, (43)

and it has the following multiplication table:
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Table 7. Multiplication table for R[D8]/J based on H2

1 + J ab+ J a+ J b+ J
1 + J 1 + J ab+ J a+ J b+ J
ab+ J ab+ J 1 + J b+ J a+ J
a+ J a+ J −b+ J −1 + J ab+ J
b+ J b+ J −a+ J −ab+ J 1 + J

Thus, (R[D8]/J )
(i)

(R[D8]/J )
(j) ⊆ (R[D8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[D8]/J → C`2,0 as

1 + J 7→ 1, ab+ J 7→ e1, a+ J 7→ e1e2, b+ J 7→ e2. (44)

So, while ϕ is an R-isomorphism of algebras, it is not graded since the even
element ab+ J is mapped into the odd element e1. The orders of the group
elements must match: |ab| = |e1| = 2, |a| = |e1e2| = 4, and |b| = |e2| = 2
in D8 and G2,0, respectively. Thus, a+ J cannot be mapped to e1 or e2 for
that reason. Thus, the isomorphism R[D8]/J ∼= C`2,0 is not graded when
H = H2.

However, the isomorphism R[D8]/J ∼= C`1,1 is graded. Define an R-
algebra map ϕ : R[D8]/J → C`1,1 as

1 + J 7→ 1, ab+ J 7→ e1e2, a+ J 7→ e2, b+ J 7→ −e1. (45)

So, ϕ is a graded algebra isomorphism and |ab| = |e1e2| = 2, |a| = |e2| = 4,
and |b| = | − e1| = 2 in D8 and G1,1, respectively.

5.6.3. Case H = H3: Since D8 = H3

·
∪ H3b = {1, τ, a, τa}

·
∪ {b, ab, τb, τab},

R[D8] = sp{1, τ, a, τa}︸ ︷︷ ︸
(R[D8])(0)

⊕ sp{b, ab, τb, τab}︸ ︷︷ ︸
(R[D8])(1)

(46)

and (R[D8])(i)(R[D8])(j) ⊆ (R[D8])(i+j mod 2). Then,

J = sp{1 + τ, (1 + τ)a}︸ ︷︷ ︸
J (0)

⊕ sp{(1 + τ)b, (1 + τ)ab}︸ ︷︷ ︸
J (1)

(47)

and J (i)J (j) ⊆ J (i+j mod 2). The quotient algebra decomposes as

R[D8]/J = sp{1 + J , a+ J }︸ ︷︷ ︸
(R[D8]/J )(0)

⊕ sp{b+ J , ab+ J }︸ ︷︷ ︸
(R[D8]/J )(1)

, (48)

and it has the following multiplication table:
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Table 8. Multiplication table for R[D8]/J based on H3

1 + J a+ J b+ J ab+ J
1 + J 1 + J a+ J b+ J ab+ J
a+ J a+ J −1 + J ab+ J −b+ J
b+ J b+ J −ab+ J 1 + J −a+ J
ab+ J ab+ J b+ J a+ J 1 + J

Thus, (R[D8]/J )
(i)

(R[D8]/J )
(j) ⊆ (R[D8]/J )

(i+j mod 2)
, i, j = 0, 1. Define

an R-algebra map ϕ : R[D8]/J → C`2,0 as

1 + J 7→ 1, a+ J 7→ e1e2, b+ J 7→ e1, ab+ J 7→ −e2. (49)

So, ϕ is graded and |a| = |e1e2| = 4, |b| = |e1| = 2, and |ab| = | − e2| = 2 in
D8 and G2,0, respectively.

However, the isomorphism R[D8]/J ∼= C`1,1 is not graded. Define an
R-algebra map ϕ : R[D8]/J → C`1,1 as

1 + J 7→ 1, a+ J 7→ e2, b+ J 7→ e1, ab+ J 7→ −e1e2. (50)

So, ϕ must preserve orders of group elements namely |a| = |e2| = 4, |b| =
|e1| = 2, and |ab| = | − e1e2| = 2 in D8 and G1,1, respectively. Thus, it must
map an even element a into the odd element e2 (or −e2).

In conclusion, we have proven the following.

Theorem 6. For each of the three maximal subgroups H in D8 used to define
the graded algebra structure in R[D8]J , exactly one of the two R-algebra
isomorphisms R[D8]/J ∼= C`2,0 or R[D8]/J ∼= C`1,1 is graded.

We conclude this section with a conjecture.

Conjecture. Let C be any of the five Salingaros isomorphism classes.

(i) If there is a single group Gp,q in C, then the isomorphism R[Gp,q]/J ∼=
C`p,q is Z2-graded.

(ii) When there is more than one group Gp,q in C, there exists exactly one
group Gp,q in C such that the isomorphism R[Gp,q/J ∼= C`p,q is Z2-
graded while for all other groups in C, the isomorphism is not graded.

6. Conclusions and questions

We can summarize our results as follows:

(a) Every Clifford algebra C`p,q is R-isomorphic to one of the quotient al-
gebras:

(i) R[Neven]/J , R[Nodd]/J , R[Sk]/J when C`p,q is simple, and

(ii) R[Ωeven]/J , R[Ωodd]/J when C`p,q is semisimple,
of Salingaros vee groups Neven, Nodd, Sk, Ωeven, and Ωodd modulo the
ideal J = (1 + τ) for a central element τ of order 2.
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(b) The group algebra R[Gp,q] is Z2-graded and the ideal J = (1 + τ),
where τ is a central involution, is homogeneous and Z2-graded.

(c) In some cases, there is a graded algebra isomorphism between R[Gp,q]/J
and C`p,q. We conjecture that each Clifford algebra C`p,q is graded-
isomorphic with R[Gp,q]/J .

(d) We have presented two algorithms that allow one to factor each Salin-
garos vee group into a central product of its subgroups.

The following questions remain:

(a) How does the group structure of Gp,q, e.g., presence of normal subgroups
and the central product structure, carry over to the algebra structure
of C`p,q? If so, how?

(b) Apply the character theory and representation theory methods of 2-
groups to the group algebras R[Gp,q] and their quotients R[Gp,q]/J ,
and hence to the Clifford algebras C`p,q. In particular, relate, if possible,
primitive idempotents in C`p,q to the irreducible characters of Gp,q.

Appendix A. Two special cases: G0,1
∼= S0 and G1,0

∼= Ω0

In the Main Theorem in Section 5 and later in Lemma 5, we excluded two
Clifford algebras when p+ q = 1: C`0,1 and C`1,0. However,

G0,1
∼= S0

∼= 〈g1, τ | (g1)2 = τ, τ2 = 1, g1τ = τg1〉 ∼= C4, (51)

G1,0
∼= Ω0

∼= 〈g1, τ | (g1)2 = 1, τ2 = 1, g1τ = τg1〉 ∼= C2 × C2, (52)

where, in both cases, the group elements are 1, g1, τ, g1τ. Let G denote either
group and let H = 〈τ〉 = {1, τ} < G. It is easy to show that both group
algebras are graded with the following two homogeneous parts:

R[G] = (R[G])(0) ⊕ (R[G])(1) = sp{1, τ} ⊕ sp{g1, g1τ} (53)

Define a homogeneous ideal J = (1 + τ) in R[G]. Then, in both cases,

J = J (0) ⊕ J (1) = sp{1 + τ} ⊕ sp{g1(1 + τ)}. (54)

Furthermore, the quotient algebra R[G]/J is also graded:

R[G]/J = (R[G]/J )
(0) ⊕ (R[G]/J )

(1)
= sp{1 + J } ⊕ sp{g1 + J } (55)

with

(g1 + J )2 = (g1)2 + J =

{
−1 + J , when G = G0,1;

1 + J , when G = G1,0.
(56)

We can now define two R-algebra isomorphisms

ϕ1 : R[G0,1]/J → C`0,1 and ϕ2 : R[G1,0]/J → C`1,0 as

1 + J 7→ 1, g1 + J 7→ e1, τ + J 7→ −1 (57)

which happen to be graded algebra isomorphisms.
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Appendix B. Groups Gp,q as central products

In this appendix we write Salingaros vee groups Gp,q as internal central prod-
ucts for 3 ≤ p + q ≤ 9. In particular, we show generators for all subgroups
appearing in the central products.

We present two algorithms by which we can factor any vee group into a
central product of subgroups. Recall that the central product is commutative
and associative, and that the subgroups appearing in the factorization are
unique up to an isomorphism. Our standard presentations for D8 and Q8 is
as follows:

N1
∼= D8 = 〈a, b〉 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉, (58)

N2
∼= Q8 = 〈a, b〉 = 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉. (59)

Recall also that the centralizer CG(H) of a subgroup of G is defined as

CG(H) = {x ∈ G | xh = hx for all h ∈ H}. (60)

Note that CG(H) is a subgroup of G, CG(G) = Z(G), and CG(H) ≤ NG(H),
the normalizer of H in G [16].

Algorithm 1: Algorithm to factor N2k−1 as central product, k ≥ 2.

1. Data: G = Gp,q, p+ q ≥ 3

2. Result: Factorization G ∼= N2k−1
∼= N◦k1 = D

(k)
8 ◦ · · · ◦D(2)

8 ◦D
(1)
8 .

3. Find order structure of G:
L2 = list of elements in G of order 2,
L4 = list of elements in G of order 4.

4. Choose generators a and b for D
(1)
8 from L4 and L2.

5. Generate D
(1)
8 = 〈a, b〉.

6. Compute centralizer K = CG(D
(1)
8 ).

7. for i← 2 to k do
Find order structure of K;

L2 = list of elements in K of order 2;

L4 = list of elements in K of order 4;

Choose generators a and b for D
(i)
8 from L4 and L2;

Generate D
(i)
8 = 〈a, b〉;

Compute D
(i)
8 ◦D

(i−1)
8 ◦ · · · ◦D(1)

8 as D
(i)
8 (D

(i−1)
8 · · ·D(1)

8 );

Find centralizer K = CG(D
(i)
8 ◦D

(i−1)
8 ◦ · · · ◦D(1)

8 );

end

return generators for D
(k)
8 , . . . , D

(1)
8 .

Example 8 (Factoring in N5). Let G = G0,6 so |G0,6| = 128 and

G = G0,6
∼= N5

∼= N◦31 = D
(3)
8 ◦D

(2)
8 ◦D

(1)
8 , k = 3. (61)

where D
(i)
8 , i = 1, 2, 3, are subgroups in G0,6, each isomorphic to D8. We

execute steps 3-6 in Algorithm 1:
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3. The order structure of G is [1, 71, 56] and lists L2 and L4 contain all
elements of G of order 2 and 4 respectively:

L2 = (e123, e124, e125, . . . , e234, . . .), L4 = (e1, e2, e3, . . .). (62)

4. We let a = e1, b = e234 so that relations (58) are satisfied.

5. We generate D
(1)
8 as 〈a, b〉.

6. We compute the centralizer K = CG(D
(1)
8 ). The order of K, as expected,

is 32.

Next, we perform the do–loop in step 7 twice for i = 2, 3 and find generators

for D
(2)
8 and D

(3)
8 .

7. The order structure of K is [1, 19, 12] and lists L2 and L4 contain all
elements of K of order 2 and 4 respectively:

L2 = (e125, e126, e135, . . .), L4 = (e23, e24, e34, . . .). (63)

We let a = e23, b = e125 so that relations (58) are satisfied.

We generate D
(2)
8 = 〈a, b〉.

We compute D
(2)
8 ◦D(1)

8 as the product D
(2)
8 D

(1)
8 due to the definition of

the central product.

We compute the centralizer K = CG(D
(2)
8 ◦D

(1)
8 ). The order of K is 8, as

expected.

In fact, this last centralizer K is already our third dihedral group D
(3)
8 and it

can be generated, as the second iteration of this do–loop confirms, by choosing
a = e12345 and b = e146. Thus, we conclude, that

G0,6
∼= N5

∼= N◦31 = D
(3)
8 ◦D

(2)
8 ◦D

(1)
8

= 〈e12345, e146〉 ◦ 〈e23, e125〉 ◦ 〈e1, e234〉. (64)

It is easy to check that the three sets of generators {e12345, e146}, {e23, e125},
and {e1, e234} centralize each other and generate three copies of the dihedral
group D8 in G0,6. Notice also that the Product Formula gives

25 = |N3| = |D(2)
8 ◦D

(1)
8 | =

|D(2)
8 ||D

(2)
8 |

|D(2)
8 ∩D

(1)
8 |

, (65)

so, as expected, |D(2)
8 ∩D

(1)
8 | = 2. Furthermore,

27 = |N5| = |D(2)
8 ◦ (D

(2)
8 ◦D

(1)
8 )| = |D(3)

8 ||D
(2)
8 ◦D

(1)
8 |

|D(3)
8 ∩ (D

(2)
8 ◦D

(1)
8 )|

, (66)

so, again as expected, |D(2)
8 ∩ (D

(2)
8 ◦D

(1)
8 )| = 2. This implies that

D
(3)
8 ∩D

(2)
8 ∩D

(1)
8 = Z(G0,6) ∼= C2. (67)
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Algorithm 2 is a small modification of Algorithm 1. The modification is
in the steps 4–6.

Algorithm 2: Algorithm to factor N2k as central product, k ≥ 2.

1. Data: G = Gp,q, p+ q ≥ 3

2. Result: Factorization G ∼= N2k
∼= N

◦(k−1)
1 ◦N2 = D

(k)
8 ◦ · · · ◦D(2)

8 ◦Q8.

3. Find order structure of G:
L2 = list of elements in G of order 2,
L4 = list of elements in G of order 4.

4. Choose generators a and b for Q8 from L4 subject to (59).

5. Generate Q8 = 〈a, b〉.
6. Compute centralizer K = CG(Q8).

7. for i← 2 to k do
Find order structure of K;

L2 = list of elements in K of order 2;

L4 = list of elements in K of order 4;

Choose generators a and b for D
(i)
8 from L4 and L2;

Generate D
(i)
8 = 〈a, b〉;

Compute D
(i)
8 ◦D

(i−1)
8 ◦ · · · ◦D(2)

8 ◦Q8 as D
(i)
8 (D

(i−1)
8 · · ·D(2)

8 Q8);

Find centralizer K = CG(D
(i)
8 ◦D

(i−1)
8 ◦ · · · ◦D(2)

8 ◦Q8;

end

return generators for D
(k)
8 , . . . , D

(2)
8 , Q8.

Example 9 (Factoring in N8). We apply Algorithm 2 to G = G2,6 of order
512. So, we are seeking the following factorization:

G = G2,6
∼= N8

∼= N◦41 ◦Q8 = D
(4)
8 ◦D

(3)
8 ◦D

(2)
8 ◦Q8, k = 4. (68)

where D
(i)
8 , i = 2, 3, 4, are subgroups in G2,6, each isomorphic to D8. We

execute steps 3-6 in Algorithm 2:

3. The order structure of G is [1, 239, 272] and lists L2 and L4 contain all
elements of G of order 2 and 4 respectively:

L2 = (e1, e2, e13, . . .), L4 = (e3, e4, e5, . . .). (69)

4. We let a = e3, b = e4 so that relations (59) are satisfied.

5. We generate Q8 as 〈a, b〉.
6. We compute the centralizer K = CG(Q8). The order of K is 128, as

expected.

The do-loop in step 7 is performed three times for i = 2, 3, 4. In the end,
we find generators for the three subgroups of G2,6 isomorphic to D8 that
centralize each other and the subgroup isomorphic to Q8. Thus, we conclude,
that

G2,6
∼= N8

∼= N◦31 ◦N2

= D
(4)
8 ◦D

(3)
8 ◦D

(2)
8 ◦Q8

= 〈e34678, e1258〉 ◦ 〈e67, e346〉 ◦ 〈e12, e15〉 ◦ 〈e3, e4〉. (70)
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Obviously, D
(4)
8 ∩D

(3)
8 ∩D

(2)
8 ∩Q8 = Z(G2,6) as a direct consequence of the

fact that Z(D8) ∼= Z(Q8) ∼= Z(G2,6) ∼= C2.

Algorithms 1 and 2 allow us to factor vee groups Gp,q in the remaining
three classes Ω2k−1, Ω2k and Sk as well. The right-most group is always
the center Z(Gp,q), which is either isomorphic to D4 = C2 × C2 or C4. Of
course, the centralizer of each center is the whole group, thus, knowing that
D4
∼= 〈β,−β〉 while C4

∼= 〈β〉, where β is the unit pseudoscalar in C`p,q,
one can begin by finding generators for the second-rightmost group, either
N1 = D8 or N2 = Q8, as needed. Notice that since

|Ω2k−1| = |N2k−1 ◦D4| =
|N2k−1||D4|
|N2k−1 ∩D4|

, (71a)

|Ω2k| = |N2k ◦D4| =
|N2k||D4|
|N2k ∩D4|

, (71b)

|Sk| = |N2k−1 ◦ C4| =
|N2k−1||C4|
|N2k−1 ∩ C4|

, (71c)

= |N2k ◦ C4| =
|N2k||C4|
|N2k ∩ C4|

, (71d)

and |N2k−1| = |N2k| = 22k+1 and |Ω2k−1| = |Ω2k| = |Sk| = 22k+2, we find
that the orders of all group intersections in (71) equal to 2. This implies, as
expected, that the central involution τ belongs to N2k or |N2k−1, respectively.
We illustrate this process in our next example.

Example 10 (Factoring in Ω1,Ω4, S2).
(a) To factor a group of class Ω2k−1, for example Ω1, we use Algorithm 1:

G2,1
∼= Ω1

∼= N1 ◦D4
∼= D8 ◦D4. (72)

The order structure of G2,1 is [1, 11, 4] with elements of order 2 and 4 as

L2 = (e1, e2, e13, . . .) and L4 = (e3, e12, . . .). (73)

Thus, we let D8 = 〈e3, e1〉 and verify that G2,1 = 〈e3, e1〉 ◦ 〈β,−β〉 where
β = e123 is central of order 2.

(b) To factor a group of class Ω2k, for example Ω4, we use Algorithm 2:

G1,4
∼= Ω4

∼= N4 ◦D4
∼= N1 ◦N2 ◦D4

∼= D8 ◦Q8 ◦D4. (74)

The order structure of G = G1,4 is [1, 23, 40] with elements of order 2 and 4
as

L2 = (e1, e12, e13, . . .) and L4 = (e2, e3, e4, . . .). (75)

Thus, we let Q8 = 〈e2, e3〉, verify that |Q8 ◦ D4| = 16, as expected, and
compute the centralizer

K = CG(Q8 ◦D4) = {±1,±e14,±e15,±e45,

± e123,±e234,±e235,±e12345}. (76)
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The do-loop needs to be executed once. The order structure of K is [1, 11, 4]
with elements of order 2 and 4 as

L2 = (e14, e15, e234, . . .) and L4 = (e45, e123, . . .). (77)

We let D8 = 〈e45, e14〉 and conclude that D8 ◦ (Q8 ◦D4) = G1,4 with

D8 = {±1,±e14,±e15,±e45}, Q8 = {±1,±e2,±e3,±e23}, (78)

and D4 = {±1,±β} where β = e12345 is central of order 2.

(c) To factor a group of class Sk, we use either algorithm depending on which
factorization we seek. For example, the two ways to factor S2 are:

G0,5
∼= S2

∼= N3 ◦ C4
∼= N1 ◦N1 ◦ C4

∼= D
(2)
8 ◦D

(1)
8 ◦ C4, or, (79a)

G0,5
∼= S2

∼= N4 ◦ C4
∼= N1 ◦N2 ◦ C4

∼= D8 ◦Q8 ◦ C4. (79b)

Let us find factorization (79a) with Algorithm 1. Recall that Z(Sk) = 〈β〉 ∼=
C4 since |β| = 4 in every group Sk. The order structure of G0,5 is [1, 31, 32]
with elements of order 2 and 4 as

L2 = (e123, e124, e125, . . .) and L4 = (e1, e2, e3, . . .). (80)

Thus, we let D
(1)
8 = 〈e1, e234〉, verify that |D(1)

8 ◦ C4| = 16, and compute the
centralizer

K = CG(D
(1)
8 ◦ C4) = {±1,±e23,±e24,±e34,

± e125,±e135,±e145,±e12345}. (81)

The order structure of K is [1, 7, 8] with elements of order 2 and 4 as

L2 = (e125, e135, e145, . . .) and L4 = (e23, e24, e34, . . .). (82)

We let D
(2)
8 = 〈e23, e125〉 and conclude that D

(2)
8 ◦ (D

(1)
8 ◦ C4) = G0,5 with

D
(2)
8 = {±1,±e23,±e125,±e135}, D

(1)
8 = {±1,±e1,±e234,±e1234}, (83)

and C4 = 〈β〉 = {±1,±β} where β = e12345 is central of order 4. Similarly,
factorization (79b) can be found with Algorithm 2.

In the following, we collect results of our factorization algorithms. To
simplify our notation, we present copies of the dihedral group N1 = D8 and
the quaternion group N2 = Q8 just by listing their generators as in 〈a, b〉. All
central products are written by juxtaposition, (N1)◦k denotes the internal
central product of k copies of N1, and D4 = C2 × C2. Depending on the
order of a pseudoscalar β, the center Z(Gp,q) of order 4 is either elementary
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abelian 〈β,−β〉 or cyclic 〈β〉. All computations have been implemented in
CLIFFORD [1, 2] and an additional package for handling groups.

Table 9. p+ q = 3 : Groups Gp,q of order 24, β = e123

Group Class Group factorization

G0,3 Ω2
∼= N2D4 〈e1, e2〉〈β,−β〉

G1,2 S1
∼= N1C4 〈e2, e1〉〈β〉

S1
∼= N2C4 〈e2, e3〉〈β〉

G2,1 Ω1
∼= N1D4 〈e3, e1〉〈β,−β〉

G3,0 S1
∼= N1C4 〈e12, e1〉〈β〉

S1
∼= N2C4 〈e12, e13〉〈β〉

Table 10. p+ q = 4 : Groups Gp,q of order 25

Group Class Group factorization

G0,4 N4
∼= N1N2 〈e34, e123〉〈e1, e2〉

G1,3 N4
∼= N1N2 〈e123, e14〉〈e2, e3〉

G2,2 N3
∼= N1N1 〈e134, e24〉〈e3, e1〉

N3
∼= N2N2 〈e12, e134〉〈e3, e4〉

G3,1 N3
∼= N1N1 〈e23, e1234〉〈e4, e1〉

N3
∼= N2N2 〈e12, e13〉〈e4, e123〉

G4,0 N4
∼= N1N2 〈e123, e4〉〈e12, e13〉

Table 11. p+ q = 5: Groups Gp,q of order 26, β = e12345

Group Class Group factorization

G0,5 S2
∼= (N1)◦2C4 〈e23, e125〉〈e1, e234〉〈β〉

S2
∼= N1N2C4 〈e34, e123〉〈e1, e2〉〈β〉

G1,4 Ω4
∼= N1N2D4 〈e45, e14〉〈e2, e3〉〈β,−β〉

G2,3 S2
∼= (N1)◦2C4 〈e45, e24〉〈e3, e1〉〈β〉

S2
∼= N1N2C4 〈e12, e15〉〈e3, e4〉〈β〉

G3,2 Ω3
∼= (N1)◦2D4 〈e23, e25〉〈e4, e1〉〈β,−β〉

G4,1 S2
∼= (N1)◦2C4 〈e23, e125〉〈e5, e1〉〈β〉

S2
∼= N1N2C4 〈e12, e145〉〈e5, e123〉〈β〉

G5,0 Ω4
∼= N1N2D4 〈e45, e4〉〈e12, e13〉〈β,−β〉

Table 12. p+ q = 6: Groups Gp,q of order 27

Group Class Group factorization

G0,6 N5
∼= (N1)◦3 〈e12345, e146〉〈e23, e125〉〈e1, e234〉

G1,5 N6
∼= (N1)◦2N2 〈e1456, e236〉〈e45, e14〉〈e2, e3〉

G2,4 N6
∼= (N1)◦2N2 〈e12345, e346〉〈e12, e15〉〈e3, e4〉

G3,3 N5
∼= (N1)◦3 〈e146, e2356〉〈e23, e25〉〈e4, e1〉

G4,2 N5
∼= (N1)◦3 〈e2346, e145〉〈e23, e26〉〈e5, e1〉

G5,1 N6
∼= (N1)◦2N2 〈e12346, e356〉〈e12, e146〉〈e6, e123〉

G6,0 N6
∼= (N1)◦2N2 〈e456, e1236〉〈e45, e4〉〈e12, e13〉
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Table 13. p+ q = 7: Groups Gp,q of order 28, β = e1234567

Group Class Group factorization

G0,7 Ω5
∼= (N1)◦3D4 〈e67, e146〉〈e23, e125〉〈e1, e234〉〈β,−β〉

G1,6 S3
∼= (N1)◦3C4 〈e56, e12345〉〈e34, e3567〉〈e2, e1〉〈β〉

S3
∼= (N1)◦2N2C4 〈e67, e236〉〈e45, e14〉〈e2, e3〉〈β〉

G2,5 Ω6
∼= (N1)◦2N2D4 〈e67, e346〉〈e12, e15〉〈e3, e4〉〈β,−β〉

G3,4 S3
∼= (N1)◦3C4 〈e67, e2356〉〈e23, e25〉〈e4, e1〉〈β〉

S3
∼= (N1)◦2N2C4 〈e345, e37〉〈e12, e16〉〈e4, e5〉〈β〉

G4,3 Ω5
∼= (N1)◦3D4 〈e157, e47〉〈e23, e26〉〈e5, e1〉〈β,−β〉

G5,2 S3
∼= (N1)◦3C4 〈e45, e146〉〈e23, e27〉〈e6, e1〉〈β〉

S3
∼= (N1)◦2N2C4 〈e34, e12367〉〈e12, e1345〉〈e6, e7〉〈β〉

G6,1 Ω6
∼= (N1)◦2N2D4 〈e56, e357〉〈e12, e147〉〈e7, e123〉〈β,−β〉

G7,0 S3
∼= (N1)◦3C4 〈e56, e12345〉〈e34, e3567〉〈e12, e1〉〈β〉

S3
∼= (N1)◦2N2C4 〈e67, e1236〉〈e45, e4〉〈e12, e13〉〈β〉

Table 14. p+ q = 8: Groups Gp,q of order 29

Group Class Group factorization

G0,8 N7
∼= (N1)◦4 〈e14678, e2358〉〈e67, e146〉〈e23, e125〉〈e1, e234〉

G1,7 N7
∼= (N1)◦4 〈e345678, e12347〉〈e56, e3458〉〈e34, e3567〉〈e2, e1〉

G2,6 N8
∼= (N1)◦3N2 〈e34678, e1258〉〈e67, e346〉〈e12, e15〉〈e3, e4〉

G3,5 N8
∼= (N1)◦3N2 〈e12456, e34578〉〈e78, e37〉〈e12, e16〉〈e4, e5〉

G4,4 N7
∼= (N1)◦4 〈e14578, e12356〉〈e78, e47〉〈e23, e26〉〈e5, e1〉

G5,3 N7
∼= (N1)◦4 〈e234578, e12367〉〈e45, e48〉〈e23, e27〉〈e6, e1〉

G6,2 N8
∼= (N1)◦3N2 〈e123456, e12578〉〈e34, e1236〉〈e12, e1345〉〈e7, e8〉

G7,1 N8
∼= (N1)◦3N2 〈e35678, e1247〉〈e56, e358〉〈e12, e148〉〈e8, e123〉

G8,0 N7
∼= (N1)◦4 〈e345678, e12347〉〈e56, e3458〉〈e34, e3567〉〈e12, e1〉
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Table 15. p+ q = 9: Groups Gp,q of order 210, β = e123456789

Group Class Group factorization

G0,9 S4
∼= (N1)◦4C4 〈e89, e2358〉〈e67, e146〉〈e23, e125〉〈e1, e234〉〈β〉

S4
∼= (N1)◦3N2C4 〈e78, e1234567〉〈e56, e5789〉〈e34, e123〉〈e1, e2〉〈β〉

G1,8 Ω7
∼= (N1)◦4D4 〈e129, e3479〉〈e56, e3458〉〈e34, e3567〉〈e2, e1〉〈β,−β〉

G2,7 S4
∼= (N1)◦4C4 〈e89, e245678〉〈e67, e13689〉〈e45, e24〉〈e3, e1〉〈β〉

S4
∼= (N1)◦3N2C4 〈e89, e1258〉〈e67, e346〉〈e12, e15〉〈e3, e4〉〈β〉

G3,6 Ω8
∼= (N1)◦3N2D4 〈e3789, e459〉〈e78, e37〉〈e12, e16〉〈e4, e5〉〈β,−β〉

G4,5 S4
∼= (N1)◦4C4 〈e159, e2369〉〈e78, e47〉〈e23, e26〉〈e5, e1〉〈β〉

S4
∼= (N1)◦3N2C4 〈e12567, e569〉〈e34, e38〉〈e12, e17〉〈e5, e6〉〈β〉

G5,4 Ω7
∼= (N1)◦4D4 〈e169, e2379〉〈e45, e48〉〈e23, e27〉〈e6, e1〉〈β,−β〉

G6,3 S4
∼= (N1)◦4C4 〈e2368, e167〉〈e45, e49〉〈e23, e28〉〈e7, e1〉〈β〉

S4
∼= (N1)◦3N2C4 〈e56, e123459〉〈e34, e35678〉〈e12, e19〉〈e7, e8〉〈β〉

G7,2 Ω8
∼= (N1)◦3N2D4 〈e789, e1257〉〈e34, e1236〉〈e12, e1345〉〈e8, e9〉〈β,−β〉

G8,1 S4
∼= (N1)◦4C4 〈e67, e1234569〉〈e45, e4678〉〈e23, e129〉〈e9, e1〉〈β〉

S4
∼= (N1)◦3N2C4 〈e78, e1247〉〈e56, e359〉〈e12, e149〉〈e9, e123〉〈β〉

G9,0 Ω7
∼= (N1)◦4D4 〈e129, e3479〉〈e56, e3458〉〈e34, e3567〉〈e12, e1〉〈β,−β〉

Appendix C. Multiplication tables for Example 7

Table 16. Multiplication table for R[Q8]/J
1 + J IJ + J I + J J + J

1 + J 1 + J IJ + J I + J J + J
IJ + J IJ + J −1 + J J + J −I + J
I + J I + J −J + J −1 + J IJ + J
J + J J + J I + J −IJ + J −1 + J

Table 17. Multiplication table for (R[Q8])(0)/J (0) ⊕ (R[Q8])(1)/J (1)

1 + J (0) I + J (0) J + J (1) IJ + J (1)

1 + J (0) 1 + J (0) I + J (0) J + J (1) IJ + J (1)

I + J (0) I + J (0) −1 + J (0) IJ + J (1) −J + J (1)

J + J (1) J + J (1) −IJ + J (1) −1 + J (0) I + J (0)

IJ + J (1) IJ + J (1) J + J (1) −I + J (0) −1 + J (0)
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Appendix D. Multiplication tables for Q8 and D8

Based on the presentation of Q8 shown in (1a), let τ be the central involu-
tion a2. Then, Q8 = {1, a, τ, τa, b, ab, τb, τab}. A multiplication table for Q8

may be arranged as follows:

Table 18. A multiplication table for Q8

1 τ a τa b ab τb τab

1 1 τ a τa b ab τb τab

τ τ 1 τa a τb τab b ab

a a τa τ 1 ab τb τab b

τa τa a 1 τ τab b ab τb

b b τb τab ab τ a 1 τa

ab ab τab b τb τa τ a 1

τb τb b ab τab 1 τa τ a

τab τab ab τb b a 1 τa τ

Table 18 exhibits a coset decomposition Q8 = H1

·
∪ H1b where H1 is a max-

imal subgroup with elements H1 = {1, τ, a, τa} while H1b = {b, τb, ab, τab}.
Based on this decomposition, we have a Z2-graded structure on the group
algebra R[Q8] = (R[Q8])(0) ⊕ (R[Q8])(1) where (R[Q8])(0) = sp{h | h ∈ H1}
and (R[Q8])(1) = sp{hb | h ∈ H1}.

Based on the presentation of D8 shown in (2a), let τ be the central
involution a2. Then, D8 = {1, a, τ, τa, b, ab, τb, τab}. A multiplication table
for D8 may be arranged as follows:

Table 19. A multiplication table for D8

1 τ b τb a τa ab τab

1 1 τ b τb a τa ab τab

τ τ 1 τb b τa a τab ab

b b τb 1 τ τab ab τa a

τb τb b τ 1 ab τab a τa

a a τa ab τab τ 1 τb b

τa τa a τab ab 1 τ b τb

ab ab τab a τa b τb 1 τ

τab τab ab τa a τb b τ 1

Table 19 exhibits a coset decomposition D8 = H1

·
∪ H1b where H1 is a max-

imal subgroup with elements H1 = {1, τ, b, τb} while H1a = {a, τa, ab, τab}.
Based on this decomposition, we have the Z2-graded structure on the group
algebra R[D8] = (R[D8])(0) ⊕ (R[D8])(1) where (R[D8])(0) = sp{h | h ∈ H1}
and (R[D8])(1) = sp{ha | h ∈ H1}.
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