SINGULAR VALUE DECOMPOSITION

Andrew Lounsbury

September 2018
No. 2018-2

Singular Value Decomposition*

Andrew Lounsbury
Department of Mathematics
Tennessee Technological University
Cookeville, TN, 38505
awlounsbur42@students.tntech.edu

September 28, 2018

Abstract

The Singular Value Decomposition (SVD) provides a cohesive summary of a handful of topics introduced in basic linear algebra. SVD may be applied to digital photographs so that they may be approximated and transmitted with a concise computation.

Mathematics Subject Classification. Primary 15A23, 15A24
Keywords. singular value, matrix factorization

Contents

1 Introduction 1
2 Steps for Calculation of SVD 3
3 Theory 5
4 Examples 9
5 Maple 12
6 Conclusions 16
A Appendix 16

1 Introduction

This paper begins with a definition of SVD and instructions on how to compute it, which includes calculating eigenvalues, singular values, eigenvectors, left and right singular vectors, or, alternatively, orthonormal bases for the four fundamental spaces of a matrix. We present two theorems

[^0]that result from SVD with corresponding proofs. We provide examples of matrices and their singular value decompositions. There is also a section involving Maple that includes examples of photographs. It is demonstrated how the inclusion of more and more information from the SVD allows one to construct accurate approximations of a color image.

Definition 1. Let A be an $m \times n$ real matrix of rank $r \leq \min (m, n)$. A Singular Value Decomposition (SVD) is a way to factor A as

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{1}
\end{equation*}
$$

where U and V are orthogonal matrices such that $U^{T} U=I_{m}$ and $V^{T} V=I_{n}$. The Σ matrix contains the singular values of A on its pseudo-diagonal, with zeros elsewhere. Thus,

$$
A=U \Sigma V^{T}=\underbrace{\left[u_{1}\left|u_{2}\right| \cdots \mid u_{m}\right]}_{U(m \times m)} \underbrace{\left[\begin{array}{ccccccc}
\sigma_{1} & 0 & \ldots & \ldots & 0 & \ldots & 0 \tag{2}\\
0 & \ddots & & & \vdots & & \vdots \\
\vdots & & \sigma_{r} & & & \ddots & \\
0 & & & 0 & & \vdots & \\
0 & 0 & \ldots & \ddots & 0 & \ldots & 0
\end{array}\right]}_{\Sigma(m \times n)} \underbrace{\left[\begin{array}{c}
\frac{v_{1}^{T}}{v_{2}^{T}} \\
\vdots \\
v_{n}^{T}
\end{array}\right]}_{V^{T}(n \times n)},
$$

with u_{1}, \ldots, u_{m} being the orthonormal columns of $U, \sigma_{1}, \ldots, \sigma_{r}$ being the singular values of A satisfying $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, and v_{1}, \ldots, v_{n} being the orthonormal columns of V^{T}. Singular values are defined as the positive square roots of the eigenvalues of $A^{T} A$.

Note that since $A^{T} A$ of size $n \times n$ is real and symmetric of rank r, r of its eigenvalues σ_{i}^{2}, $i=1, \ldots, r$, are positive and therefore real, while the remaining $n-r$ eigenvalues are zero. In particular,

$$
\begin{equation*}
A^{T} A=V\left(\Sigma^{T} \Sigma\right) V^{T}, \quad A^{T} A v_{i}=\sigma_{i}^{2} v_{i}, i=1, \ldots, r, \quad A^{T} A v_{i}=0, i=r+1, \ldots, n . \tag{3}
\end{equation*}
$$

Thus, the first r vectors v_{i} are the eigenvectors of $A^{T} A$ with the eigenvalues σ_{i}^{2}. Likewise, we have

$$
\begin{equation*}
A A^{T}=U\left(\Sigma \Sigma^{T}\right) U^{T}, \quad A A^{T} u_{i}=\sigma_{i}^{2} u_{i}, i=1, \ldots, r, \quad A A^{T} u_{i}=0, i=r+1, \ldots, m \tag{4}
\end{equation*}
$$

Thus, the first r vectors u_{i} are the eigenvectors of $A A^{T}$ with the eigenvalues σ_{i}^{2}.
Furthermore, it can be shown (see Lemmas 1 and 2) that

$$
\begin{equation*}
A v_{i}=\sigma_{i} u_{i}, i=1, \ldots, r, \quad \text { and } \quad A v_{i}=0, i=r+1, \ldots, n . \tag{5}
\end{equation*}
$$

If $\operatorname{rank}(A)=r<\min (m, n)$, then there are $n-r$ zero columns and rows in Σ, rendering the
$r+1, \ldots, m$ columns of U and $r+1, \ldots, n$ rows in V^{T} unnecessary to recover A. Therefore,

$$
\begin{align*}
& A=U \Sigma V^{T}=\left[u_{1}|\cdots| u_{r}\left|u_{r+1}\right| \cdots \mid u_{m}\right]\left[\begin{array}{cccccccc}
\sigma_{1} & 0 & \ldots & & \ldots & 0 & \ldots & 0 \\
0 & \ddots & & & \vdots & & \vdots \\
\vdots & & \sigma_{r} & & & \vdots & \\
0 & & & 0 & & \vdots & & \vdots \\
0 & 0 & \ldots & & \ddots & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\frac{v_{1}^{T}}{\vdots} \\
\frac{v_{r}^{T}}{\frac{v_{r+1}^{T}}{\vdots}} \\
\frac{v_{n}^{T}}{}
\end{array}\right] \\
& =\underbrace{\left[u_{1}|\cdots| u_{r}\right]}_{m \times r} \underbrace{\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & & \vdots \\
\vdots & & \ddots & \\
0 & \ldots & & \sigma_{r}
\end{array}\right]}_{r \times r} \underbrace{\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right]}_{r \times n} \\
& =u_{1} \sigma_{1} v_{1}+\cdots+u_{r} \sigma_{r} v_{r} . \tag{6}
\end{align*}
$$

2 Steps for Calculation of SVD

Here, we provide an algorithm to calculate a singular value decomposition of a matrix.

1. Compute $A^{T} A$ of a real $m \times n$ matrix A of rank r.
2. Compute the singular values of $A^{T} A$.

Solve the characteristic equation $\Delta_{A^{T} A}(\lambda)=\left|A^{T} A-\lambda I\right|=0$ of $A^{T} A$ for the eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of $A^{T} A$. These eigenvalues will be positive. Take their square roots to obtain $\sigma_{1}, \ldots, \sigma_{r}$ which are the singular values of A, that is,

$$
\begin{equation*}
\sigma_{i}=+\sqrt{\lambda_{i}}, \quad i=1, \ldots, r . \tag{7}
\end{equation*}
$$

3. Sort the singular values, possibly renaming them, so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$.
4. Construct the Σ matrix of size $m \times n$ such that $\Sigma_{i i}=\sigma_{i}$ for $i=1, \ldots, r$, and $\Sigma_{i j}=0$ when $i \neq j$.
5. Compute the eigenvectors of $A^{T} A$.

Find a basis for $\operatorname{Null}\left(A^{T} A-\lambda_{i} I\right)$. That is, solve $\left(A^{T} A-\lambda_{i} I\right) s_{i}=0$ for s_{i}, an eigenvector of A corresponding to λ_{i}, for each eigenvalue λ_{i}. Since $A^{T} A$ is symmetric, its eigenvectors corresponding to different eigenvalues are already orthogonal (but likely not orthonormal). See Lemma 1.
6. Compute the (right singular) vectors v_{1}, \ldots, v_{r} by normalizing each eigenvector s_{i} by multiplying it by $\frac{1}{\left\|s_{i}\right\|}$. That is, let

$$
\begin{equation*}
v_{i}=\frac{1}{\left\|s_{i}\right\|} s_{i}, \quad i=1, \ldots, r . \tag{8}
\end{equation*}
$$

If $n>r$, the additional $n-r$ vectors v_{r+1}, \ldots, v_{n} need to be chosen as an orthonormal basis in $\operatorname{Null}(A)$. Note that since $A v_{i}=\sigma_{i} u_{i}$ for $i=1, \ldots$, vectors v_{1}, \ldots, v_{r} provide an orthonormal basis for $\operatorname{Row}(A)$ while the vectors u_{1}, \ldots, u_{r} provide an orthonormal basis for $\operatorname{Col}(A)$. In particular,

$$
\begin{equation*}
\mathbb{R}^{n}=\operatorname{Row}(A) \perp \operatorname{Null}(A)=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} \perp \operatorname{span}\left\{v_{r+1}, \ldots, v_{r+(n-r)}\right\} \tag{9}
\end{equation*}
$$

7. Construct the orthogonal matrix $V=\left[v_{1}|\cdots| v_{n}\right]$.
8. Verify $V^{T} V=I$.
9. Compute the (left singular) vectors u_{1}, \ldots, u_{r} as

$$
\begin{equation*}
A v_{i}=\sigma_{i} u_{i} \Longrightarrow u_{i}=\frac{A v_{i}}{\sigma_{i}}, i=1 \ldots r \tag{10}
\end{equation*}
$$

In this method, u_{1}, \ldots, u_{r} are orthogonal by Lemma 5 .
Alternatively,
(i) Note that $A A^{T}=U\left(\Sigma \Sigma^{T}\right) U^{T}$ suggests the vectors of U can be calculated as the eigenvectors of $A A^{T}$. In using this method, the vectors need to be normalized first. Namely, $u_{i}=\frac{1}{\left\|s_{i}\right\|} s_{i}$, where s_{i} is an eigenvector of $A A^{T}$.
(ii) Since $\Delta_{A^{T} A}(\lambda)=\Delta_{A A^{T}}(\lambda)$ by Lemma $8, \sigma_{1}, \ldots, \sigma_{r}$ are also the square roots of the eigenvalues of $A A^{T}$.

If $m>r$, the additional $m-r$ vectors u_{r+1}, \ldots, u_{m} need to be chosen as an orthonormal basis in $\operatorname{Null}\left(A^{T}\right)$. Note that since $A v_{i}=\sigma_{i} u_{i}$ for $i=1, \ldots$, vectors u_{1}, \ldots, u_{r} provide an orthonormal basis for $\operatorname{Col}(A)$ while the vectors u_{r+1}, \ldots, u_{m} provide an orthonormal basis for the left null space $\operatorname{Null}\left(A^{T}\right)$. In particular,

$$
\begin{equation*}
\mathbb{R}^{m}=\operatorname{Col}(A) \perp \operatorname{Null}\left(A^{T}\right)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} \perp \operatorname{span}\left\{u_{r+1}, \ldots, u_{r+(m-r)}\right\} \tag{11}
\end{equation*}
$$

10. Construct $U=\left[u_{1}|\cdots| u_{m}\right]$.
11. Verify $U^{T} U=I$.
12. Verify $A=U \Sigma V^{T}$.
13. Construct the dyadic decomposition ${ }^{1}$ of A, as described in Thm. 13:

$$
\begin{equation*}
A=U \Sigma V^{T}=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+u_{r} \sigma_{r} v_{r}^{T} . \tag{12}
\end{equation*}
$$

[^1]
3 Theory

In this section, we provide the two theorems related to SVD along with their proofs.
Theorem 1. Let $A=U \Sigma V^{T}$ be a singular value decomposition of an $m \times n$ real matrix of rank r.
Then,

1. $A V=U \Sigma$ and

$$
\left\{\begin{array} { l l }
{ A v _ { i } = \sigma _ { i } u _ { i } , } & { i = 1 , \ldots , r } \\
{ A v _ { i } = 0 , } & { i = r + 1 , \ldots , r + (n - r) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\operatorname{Row}(A)=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} \\
\operatorname{Null}(A)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{r+(n-r)}\right\}
\end{array}\right.\right.
$$

2. $A^{T} A=V\left(\Sigma^{T} \Sigma\right) V^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
3. $A^{T} A V=V\left(\Sigma^{T} \Sigma\right)$ and

$$
\left\{\begin{array} { l l }
{ A ^ { T } A v _ { i } = \sigma _ { i } ^ { 2 } v _ { i } , } & { i = 1 , \ldots , r } \\
{ A ^ { T } A v _ { i } = 0 , } & { i = r + 1 , \ldots , r + (n - r) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\operatorname{Row}\left(A^{T} A\right)=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\} \\
\operatorname{Null}\left(A^{T} A\right)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{r+(n-r)}\right\}
\end{array}\right.\right.
$$

4. $U^{T} A=\Sigma V^{T}$ and

$$
\left\{\begin{array} { l l }
{ u _ { i } ^ { T } A = \sigma _ { i } v _ { i } ^ { T } , } & { i = 1 , \ldots , r } \\
{ u _ { i } ^ { T } A = 0 , } & { i = r + 1 , \ldots , r + (m - r) }
\end{array} \Longrightarrow \left\{\begin{array}{rl}
\operatorname{Col}(A)= & \operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} \\
\operatorname{Null}\left(A^{T}\right)= & \operatorname{span}\left\{u_{r+1}, \ldots, u_{r+(m-r)}\right\}
\end{array}\right.\right.
$$

5. $A A^{T}=U\left(\Sigma \Sigma^{T}\right) U^{T}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$
6. $A A^{T} U=U\left(\Sigma \Sigma^{T}\right)$ and

$$
\left\{\begin{array} { l l }
{ A A ^ { T } u _ { i } = \sigma _ { i } ^ { 2 } u _ { i } , } & { i = 1 , \ldots , r } \\
{ A A ^ { T } u _ { i } = 0 , } & { i = r + 1 , \ldots , r + (m - r) }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
\operatorname{Row}\left(A A^{T}\right)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} \\
\operatorname{Null}\left(A A^{T}\right)=\operatorname{span}\left\{u_{r+1}, \ldots, u_{r+(m-r)}\right\}
\end{array}\right.\right.
$$

Proof of (1).

$$
A V=\left(U \Sigma V^{T}\right) V=U \Sigma\left(V^{T} V\right)=U \Sigma
$$

So,

$$
\begin{aligned}
A V & =\left[A v_{1}|\cdots| A v_{r}\left|A v_{r+1}\right| \cdots \mid A v_{n}\right] \\
& =\left[u_{1}|\cdots| u_{r}\left|u_{r+1}\right| \cdots \mid u_{m}\right]\left[\begin{array}{ccccccc}
\sigma_{1} & 0 & \ldots & \ldots & 0 & \ldots & 0 \\
0 & \ddots & & & \vdots & & \vdots \\
\vdots & & \sigma_{r} & & & \ddots & \\
0 & & & 0 & & \vdots & \\
0 & 0 & \ldots & & \ddots & 0 & \ldots \\
0
\end{array}\right] \\
& =\left[\sigma_{1} u_{1}|\cdots| \sigma_{r} u_{r}|0| \cdots \mid 0\right] .
\end{aligned}
$$

Hence,

1. $A v_{1}=\sigma_{1} u_{1}, \ldots, A v_{r}=\sigma_{r} u_{r}$, and
2. $A v_{r+1}=0, \ldots, A v_{r+(n-r)}=0$.

Proof of (2).

$$
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=\left(V \Sigma^{T} U^{T}\right)\left(U \Sigma V^{T}\right)=V \Sigma^{T}\left(U^{T} U\right) \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}
$$

Proof of (3).

$$
A^{T} A V=\left(V \Sigma^{T} U^{T}\right)\left(U \Sigma V^{T}\right) V=V \Sigma^{T}\left(U^{T} U\right) \Sigma\left(V^{T} V\right)=V\left(\Sigma^{T} \Sigma\right)
$$

So,

$$
\begin{aligned}
A^{T} A V & =\left[A^{T} A v_{1}|\cdots| A^{T} A v_{r}\left|A^{T} A v_{r+1}\right| \cdots \mid A^{T} A v_{n}\right] \\
& =\left[\lambda_{1} v_{1}|\cdots| \lambda_{r} v_{r}\left|\lambda_{r+1} v_{r+1}\right| \cdots \mid \lambda_{n} v_{n}\right] \\
& =\left[v_{1}|\cdots| v_{r}\left|v_{r+1}\right| \cdots \mid v_{n}\right]\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & \ldots & 0 \\
0 & \ddots & & & \vdots \\
\vdots & & \lambda_{r} & & \\
0 & & & 0 & \\
0 & 0 & \ldots & & \ddots
\end{array}\right] \\
& =\left[v_{1}|\cdots| v_{r}\left|v_{r+1}\right| \cdots \mid v_{n}\right]\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & \ldots & \ldots & 0 \\
0 & \ddots & & & \vdots \\
\vdots & & \sigma_{r}^{2} & & \\
0 & & & 0 & \\
0 & 0 & \cdots & & \ddots
\end{array}\right] \\
& =\left[\sigma_{1}^{2} v_{1}|\cdots| \sigma_{r}^{2} v_{r}|0| \cdots \mid 0\right] .
\end{aligned}
$$

Hence,

1. $A^{T} A v_{1}=\sigma_{1}^{2} v_{1}, \ldots, A^{T} A v_{r}=\sigma_{r}^{2} v_{r}$, and
2. $A^{T} A v_{r+1}=0, \ldots, A^{T} A v_{r+(n-r)}=0$.

Proof of (4).

$$
U^{T} A=U^{T}\left(U \Sigma V^{T}\right)=\left(U^{T} U\right) \Sigma V^{T}=\Sigma V^{T}
$$

So,

$$
\begin{aligned}
& U^{T} A=\left[\begin{array}{c}
\frac{u_{1}^{T}}{\vdots} \\
\frac{u_{r}^{T}}{u_{r+1}^{T}} \\
\vdots \\
u_{m}^{T}
\end{array}\right] A=\left[\begin{array}{c}
\frac{u_{1}^{T} A}{\vdots} \\
\frac{u_{r}^{T} A}{u_{r+1}^{T} A} \\
\vdots \\
\frac{u_{m}^{T} A}{}
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
\sigma_{1} & 0 & \ldots & & \ldots & 0 & \ldots \\
0 & \ddots & & & & \vdots & \\
\vdots & & \sigma_{r} & & & \vdots & \\
0 & & & 0 & & \vdots & \\
0 & 0 & \ldots & & \ddots & 0 & \ldots \\
\hline
\end{array}\right]\left[\begin{array}{c}
\frac{v_{1}^{T}}{\vdots} \\
\frac{v_{r}^{T}}{v_{r+1}^{T}} \\
\vdots \\
\frac{v_{n}^{T}}{}
\end{array}\right]=\left[\begin{array}{c}
\frac{\sigma_{1} v_{1}^{T}}{\vdots} \\
\frac{\sigma_{r} v_{r}^{T}}{0} \\
\hline \frac{\vdots}{0}
\end{array}\right]
\end{aligned}
$$

Hence,

1. $u_{1}^{T} A=\sigma_{1} v_{1}^{T}, \ldots, u_{r}^{T} A=\sigma_{r} v_{r}^{T}$, and
2. $u_{r+1}^{T} A=0, \ldots, u_{r+(m-r)}^{T} A=0$.

Proof of (5).

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=\left(U \Sigma V^{T}\right)\left(V \Sigma^{T} U^{T}\right)=U \Sigma^{T}\left(V^{T} V\right) \Sigma U^{T}=U \Sigma^{T} \Sigma U^{T}
$$

Proof of (6).

$$
A A^{T} U=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T} U=\left(U \Sigma V^{T}\right)\left(V \Sigma^{T} U^{T}\right) U=U \Sigma\left(V^{T} V\right) \Sigma^{T}\left(U^{T} U\right)=U\left(\Sigma \Sigma^{T}\right)
$$

So,

$$
\begin{aligned}
A A^{T} U & =\left[A A^{T} u_{1}|\cdots| A A^{T} u_{r}\left|A A^{T} u_{r+1}\right| \cdots \mid A A^{T} u_{m}\right] \\
& =\left[\lambda_{1} u_{1}|\cdots| \lambda_{r} u_{r}\left|\lambda_{r+1} u_{r+1}\right| \cdots \mid \lambda_{n} u_{m}\right] \\
& =\left[u_{1}|\cdots| u_{r}\left|u_{r+1}\right| \cdots \mid u_{m}\right]\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & \cdots & 0 \\
0 & \ddots & & & \vdots \\
\vdots & & \lambda_{r} & & \\
0 & & & 0 & \\
0 & 0 & \ldots & & \ddots
\end{array}\right] \\
& =\left[u_{1}|\cdots| u_{r}\left|u_{r+1}\right| \cdots \mid u_{m}\right]\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & \cdots & \cdots & 0 \\
0 & \ddots & & & \vdots \\
\vdots & & \sigma_{r}^{2} & & \\
0 & & & 0 & \\
0 & 0 & \cdots & & \ddots
\end{array}\right] \\
& =\left[\sigma_{1}^{2} u_{1}|\cdots| \sigma_{r}^{2} u_{r}|0| \cdots \mid 0\right] .
\end{aligned}
$$

Hence,

1. $A A^{T} u_{1}=\sigma_{1}^{2} u_{1}, \ldots, A A^{T} u_{r}=\sigma_{r}^{2} u_{r}$, and
2. $A A^{T} u_{r+1}=0, \ldots, A A^{T} u_{r+(m-r)}=0$.

Theorem 2. Let $A=U \Sigma V^{T}$ be a singular value decomposition of an $m \times n$ real matrix of rank r. Then,

$$
\begin{equation*}
A=U \Sigma V^{T}=\sum_{i=1}^{r} u_{i} \sigma_{i} v_{i}^{T}=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T} \tag{13}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& =\left[\begin{array}{cccc}
\sigma_{1} u_{11} & \sigma_{2} u_{12} & \ldots & \sigma_{r} u_{1 r} \\
\sigma_{1} u_{21} & \sigma_{2} u_{22} & \ldots & \sigma_{r} u_{2 r} \\
\vdots & & & \vdots \\
\sigma_{1} u_{(r-1) 1} & & & \\
\sigma_{1} u_{r 1} & \sigma_{2} u_{r 2} & \ldots & \sigma_{r} u_{r r}
\end{array}\right]\left[\begin{array}{cccc}
v_{11}^{T} & v_{12}^{T} & \cdots & v_{1 r}^{T} \\
v_{21}^{T} & \ddots & & \\
\vdots & & & \vdots \\
v_{r 1}^{T} & v_{r 2}^{T} & \cdots & v_{r r}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\left(\sigma_{1} u_{11} v_{11}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r 1}^{T}\right) & \left(\sigma_{1} u_{11} v_{12}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r 2}^{T}\right) & \ldots & \left(\sigma_{1} u_{11} v_{1 r}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r r}^{T}\right) \\
\left(\sigma_{1} u_{21} v_{11}^{T}+\cdots+\sigma_{r} u_{2 r} v_{r 1}^{T}\right) & & & \\
\vdots & & & \\
\left(\sigma_{1} u_{r 1} v_{1}^{T}+\cdots+\sigma_{r} u_{r r} v_{r 1}^{T}\right) & \cdots & \cdots & \left(\sigma_{1} u_{r 1} v_{1 r}^{T}+\cdots+\sigma_{r} u_{r r} v_{r r}^{T}\right)
\end{array}\right] \\
& =\sigma_{1} u_{1} v_{1}^{T}+ \\
& {\left[\begin{array}{cccc}
\left(\sigma_{2} u_{12} v_{21}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r 1}^{T}\right) & \left(\sigma_{2} u_{12} v_{22}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r 2}^{T}\right) & \cdots & \left(\sigma_{2} u_{12} v_{2 r}^{T}+\cdots+\sigma_{r} u_{1 r} v_{r r}^{T}\right) \\
\left(\sigma_{2} u_{22} v_{21}^{T}+\cdots+\sigma_{r} u_{2 r} v_{r 1}^{T}\right) & & & \vdots \\
\vdots & & & \\
\left(\sigma_{2} u_{r 2} v_{21}^{T}+\cdots+\sigma_{r} u_{r r} v_{2 r}^{T}\right) & \cdots & \cdots & \left(\sigma_{2} u_{r r} v_{2 r}^{T}+\cdots+\sigma_{r} u_{r r} v_{r r}^{T}\right)
\end{array}\right]} \\
& =\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T} \\
& =u_{1} \sigma_{1} v_{1}^{T}+u_{2} \sigma_{2} v_{2}^{T}+\cdots+u_{r} \sigma_{r} v_{r}^{T} \\
& =\sum_{i=1}^{r} u_{i} \sigma_{i} v_{i}^{T}
\end{aligned}
$$

4 Examples

In this section we calculate the singular value decomposition of a few matrices.
Example 1. Let $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 1 \\ 4 & 2 & 2 & 2\end{array}\right]$, then $A^{T} A=\left[\begin{array}{cccc}21 & 10 & 11 & 12 \\ 10 & 5 & 5 & 5 \\ 11 & 5 & 6 & 7 \\ 12 & 5 & 7 & 9\end{array}\right]$, and

$$
\begin{aligned}
& \Delta_{A^{T} A}(\lambda)=\left|\begin{array}{cccc}
21-\lambda & 10 & 11 & 12 \\
10 & 5-\lambda & 5 & 5 \\
11 & 5 & 6-\lambda & 7 \\
12 & 5 & 7 & 9-\lambda
\end{array}\right|=\lambda^{4}-41 \lambda^{3}+85 \lambda^{2}
\end{aligned} \Longrightarrow \begin{gathered}
\lambda_{1}=\frac{41+3 \sqrt{149}}{2} \\
\lambda_{2}=\frac{41-3 \sqrt{149}}{2}
\end{gathered} \Longrightarrow
$$

S^{T} contains the transposed eigenvectors of $A^{T} A$.
$V^{T}=\left[\begin{array}{cccc}\frac{71+3 \sqrt{149}}{\sqrt{16,092+45 \sqrt{149}}} & \frac{50}{\sqrt{16,092+456 \sqrt{149}}} & \frac{21+3 \sqrt{149}}{\sqrt{16,092+456 \sqrt{149}}} & \frac{-8+6 \sqrt{149}}{\sqrt{16,092+45 \sqrt{149}}} \\ \frac{71-3 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} & \frac{50}{\sqrt{16,092-456 \sqrt{149}}} & \frac{21-3 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} & \frac{-8-6 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{2}{\sqrt{14}} & \frac{3}{\sqrt{14}} & 0 & \frac{1}{\sqrt{14}}\end{array}\right]$
$u_{1}=\frac{A v_{1}}{\sigma_{1}}=\left(\frac{2}{\sqrt{82+6 \sqrt{149}}}\right)\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 1 \\ 4 & 2 & 2 & 2\end{array}\right]\left[\begin{array}{c}71+3 \sqrt{149} \\ 50 \\ 21+3 \sqrt{149} \\ -8+6 \sqrt{149}\end{array}\right]\left(\frac{1}{\sqrt{16,092+456 \sqrt{149}}}\right)=\left[\begin{array}{c}\frac{152+36 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} \\ \frac{410+30 \sqrt{149}}{\sqrt{1,727,200+133,944 \sqrt{149}}} \\ \frac{80+60 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}}\end{array}\right]$
$u_{2}=\frac{A v_{2}}{\sigma_{2}}=\left(\frac{2}{\sqrt{82-6 \sqrt{149}}}\right)\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 1 \\ 4 & 2 & 2 & 2\end{array}\right]\left[\begin{array}{c}71-3 \sqrt{149} \\ 50 \\ 21-3 \sqrt{149} \\ -8-6 \sqrt{149}\end{array}\right]\left(\frac{1}{\sqrt{16,092-456 \sqrt{149}}}\right)=\left[\begin{array}{c}\frac{152-36 \sqrt{149}}{\sqrt{1,727,208-134,944 \sqrt{149}}} \\ \frac{410-30 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} \\ \frac{820-60 \sqrt{199}}{\sqrt{1,727,208-133,944 \sqrt{149}}}\end{array}\right]$
Since A is 3×4, U should be a 3×3 matrix. However, there is no σ_{3}, so we cannot use $u_{i}=\frac{A v_{i}}{\sigma_{i}}$ to find u_{3}. Instead, we use the left null space of A.

$$
\operatorname{Null}\left(A^{T}\right)=\left[\begin{array}{lll|l}
1 & 2 & 4 & 0 \\
0 & 1 & 2 & 0 \\
1 & 1 & 2 & 0 \\
2 & 1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 2 & 4 & 0 \\
0 & 1 & 2 & 0 \\
0 & -1 & -2 & 0 \\
0 & -3 & -6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 2 & 4 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow
$$

$$
y=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]
$$

Normalizing y to obtain u_{3} :
$u_{3}=\frac{1}{\|y\|} y=\frac{1}{\sqrt{5}}\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]$

So, $U=\left[\begin{array}{ccc}\frac{152+36 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{152-36 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & 0 \\ \frac{410+30 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{410-30 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & \frac{-2}{\sqrt{5}} \\ \frac{820+60 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{820-60 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & \frac{1}{\sqrt{5}}\end{array}\right]$.
Thus, $A=$
$\left[\begin{array}{ccc}\frac{152+36 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{152-36 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & 0 \\ \frac{410+30 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{410-30 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & \frac{-2}{\sqrt{5}} \\ \frac{820+60 \sqrt{149}}{\sqrt{1,727,208+133,944 \sqrt{149}}} & \frac{820-60 \sqrt{149}}{\sqrt{1,727,208-133,944 \sqrt{149}}} & \frac{1}{\sqrt{5}}\end{array}\right]\left[\begin{array}{cccc}\frac{\sqrt{82+6 \sqrt{149}}}{2} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{82-6 \sqrt{149}}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccc}\frac{71+3 \sqrt{149}}{\sqrt{16,092+456 \sqrt{149}}} & \frac{50}{\sqrt{16,092+456 \sqrt{149}}} & \frac{21+3 \sqrt{149}}{\sqrt{16,092+456 \sqrt{149}}} & \frac{-8+6 \sqrt{149}}{\sqrt{16,092+456 \sqrt{149}}} \\ \frac{71-3 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} & \frac{50}{\sqrt{16,092-456 \sqrt{149}}} & \frac{21-3 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} & \frac{-8-6 \sqrt{149}}{\sqrt{16,092-456 \sqrt{149}}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{2}{\sqrt{14}} & \frac{3}{\sqrt{14}} & 0 & \frac{1}{\sqrt{14}}\end{array}\right]=U \Sigma V^{T}$.
Example 2. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
Notice that when A is a symmetric matrix, $A^{T} A=A A^{T}$, so $U=V$. Less work is required. $A^{T} A=A A^{T}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
$\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)=2$
$\Delta_{A^{T} A}(\lambda)=\Delta_{A A^{T}}(\lambda)=\left|A^{T} A-\lambda I\right|=\left|A A^{T}-\lambda I\right|=\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 1-\lambda\end{array}\right|$
$=(2-\lambda)(1-\lambda)-1^{2}=\lambda^{2}-3 \lambda+1 \Longrightarrow \begin{aligned} & \lambda_{1}=\frac{3+\sqrt{5}}{2} \\ & \lambda_{2}=\frac{3-\sqrt{5}}{2}\end{aligned}$
$\begin{aligned} & \sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{\frac{3+\sqrt{5}}{2}}=\frac{\sqrt{6+2 \sqrt{5}}}{2}=\frac{1+\sqrt{5}}{2} \\ & \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{\frac{3-\sqrt{5}}{2}}=\frac{\sqrt{6-2 \sqrt{5}}}{2}=\frac{1-\sqrt{5}}{2}\end{aligned} \Longrightarrow \Sigma=\left[\begin{array}{rr}\frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2}\end{array}\right]$
$v_{1} \& u_{1}:$
$\left[A^{T} A-\lambda_{1} I\right] x_{1}=\left[A A^{T}-\lambda_{1} I\right] s_{1}=\left[\begin{array}{cc|c}2-\frac{3+\sqrt{5}}{2} & 1 & 0 \\ 1 & 1-\frac{3+\sqrt{5}}{2} & 0\end{array}\right]=\left[\begin{array}{cc|c}\frac{1-\sqrt{5}}{2} & 1 & 0 \\ 1 & \frac{-1-\sqrt{5}}{2} & 0\end{array}\right] \rightarrow$
$\left[\begin{array}{cc|c}1 & \frac{-1-\sqrt{5}}{2} & 0 \\ \frac{1-\sqrt{5}}{2} & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & \frac{-1-\sqrt{5}}{2} & 0 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow s_{1}=\left[\begin{array}{c}\frac{1+\sqrt{5}}{2} \\ 1\end{array}\right]$
$\left\|s_{1}\right\|=\sqrt{\frac{6+2 \sqrt{5}}{4}+1}=\sqrt{\frac{10+2 \sqrt{5}}{4}}=\frac{\sqrt{10+2 \sqrt{5}}}{2}$
$v_{1}=u_{1}=\frac{1}{\left\|s_{1}\right\|} s_{1}=\frac{1}{\frac{\sqrt{10+2 \sqrt{5}}}{2}}\left[\begin{array}{c}\frac{1+\sqrt{5}}{2} \\ 1\end{array}\right]=\frac{2}{\sqrt{10+2 \sqrt{5}}}\left[\begin{array}{c}\frac{1+\sqrt{5}}{2} \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} \\ \frac{2}{\sqrt{10+2 \sqrt{5}}}\end{array}\right]$
$v_{2} \& u_{2}:$

$$
\begin{aligned}
& {\left[A^{T} A-\lambda_{2} I\right] s_{2}=\left[A A^{T}-\lambda_{2} I\right] s_{2}=\left[\begin{array}{cc|c}
2-\frac{3-\sqrt{5}}{2} & 1 & 0 \\
1 & 1-\frac{3-\sqrt{5}}{2} & 0
\end{array}\right]=\left[\begin{array}{cc|c}
\frac{1+\sqrt{5}}{2} & 1 & 0 \\
1 & \frac{-1+\sqrt{5}}{2} & 0
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cc|c}
1 & \frac{-1+\sqrt{5}}{2} & 0 \\
\frac{1+\sqrt{5}}{2} & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & \frac{-1+\sqrt{5}}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow s_{2}=\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right]} \\
& \left\|s_{2}\right\|=\sqrt{\frac{6-2 \sqrt{5}}{4}+1}=\sqrt{\frac{10-2 \sqrt{5}}{4}}=\frac{\sqrt{10-2 \sqrt{5}}}{2} \\
& v_{2}=u_{2}=\frac{1}{\left\|s_{2}\right\|} s_{2}=\frac{1}{\frac{\sqrt{10-2 \sqrt{5}}}{2}}\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right]=\frac{2}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} \\
\frac{2}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right] \\
& V^{T}=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} & \frac{2}{\sqrt{10+2 \sqrt{5}}} \\
\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} & \frac{2}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right], U=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} & \frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} \\
\frac{2}{\sqrt{10+2 \sqrt{5}}} & \frac{2}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]
\end{aligned}
$$

To verify that $v_{1}=u_{1}$ and $v_{2}=u_{2}$:

$$
\left.\begin{array}{l}
A v_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} \\
\frac{2}{\sqrt{10+2 \sqrt{5}}}
\end{array}\right]=\left[\begin{array}{l}
\frac{3+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} \\
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}}
\end{array}\right]=\left[\begin{array}{l}
\frac{6+2 \sqrt{5}}{2 \sqrt{10+2 \sqrt{5}}} \\
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}}
\end{array}\right]=\frac{1+\sqrt{5}}{2}\left[\begin{array}{l}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} \\
\frac{2}{\sqrt{10+2 \sqrt{5}}}
\end{array}\right]=\sigma_{1} u_{1}=\sigma_{1} v_{1} \\
A v_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}}\right. \\
\frac{2}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]=\left[\begin{array}{l}
\frac{3-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} \\
\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]=\left[\begin{array}{l}
\frac{6-2 \sqrt{5}}{2 \sqrt{10-2 \sqrt{5}}} \\
\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]=\frac{1-\sqrt{5}}{2}\left[\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} \frac{2}{\sqrt{10-2 \sqrt{5}}}\right]=\sigma_{2} u_{2}=\sigma_{2} v_{2} .
$$

Notice that this implies the eigenvalues of A are equal to the singular values of A. By Lemma 7, every symmetric matrix has this property. Thus,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} & \frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} \\
\frac{2}{\sqrt{10+2 \sqrt{5}}} & \frac{2-2 \sqrt{5}}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]\left[\begin{array}{rr}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{1+\sqrt{5}}{\sqrt{10+2 \sqrt{5}}} & \frac{2}{\sqrt{10+2 \sqrt{5}}} \\
\frac{1-\sqrt{5}}{\sqrt{10-2 \sqrt{5}}} & \frac{2}{\sqrt{10-2 \sqrt{5}}}
\end{array}\right]=U \Sigma V^{T}=U \Lambda V^{T} .
$$

5 Maple

The purpose in subjecting a color photograph to the Singular Value Decomposition is to greatly reduce the amount of data required to transmit the photograph to or from a satellite, for instance.

A digital image is essentially a matrix comprised of three other matrices of identical size. These are the red, green, and blue layers that combine to produce the colors in the original image. Obtain the three layers of the image using the Maple command GetLayers from the ImageTools package. It is on each of these three layers that we perform the SVD. Define each one as img_r,img_g, and img_b. Define the singular values of each matrix using the SingularValues command in the Linear Algebra package. Maple will also calculate U and V^{T}. Simply set the output of SingularValues=['U', 'Vt'].

In the argument of the following procedure, the variable n denotes which approximation the procedure will compute, that is, the number of singular values that it will include. posint indicates that n must be a positive integer.

```
approx:=proc(img_r,img_g,img_b,n::posint)local
Singr,Singg,Singb,Ur,Ug,Ub,Vtr,Vtg,Vtb, singr,
```

```
singg,singb,ur,ug,ub,vr,vg,vb,Mr,Mg,Mb,i,img_rgb;
```

In place of a Σ matrix, we create a list of the σ 's for each red, green and blue layer, as well as the red, green, and blue U and V^{T} matrices. It is important to note that Maple outputs the transpose of V . Hence, it does not need to be transposed.

```
Singr:=SingularValues(img_r,output='list'):
Singg:=SingularValues(img_g,output='list'):
Singb:=SingularValues(img_b,output='list'):
Ur,Vtr:=SingularValues(img_r,output=['U','Vt']);
Ug,Vtg:=SingularValues(img_g,output=['U','Vt']);
Ub,Vtb:=SingularValues(img_b,output=['U','Vt']);
```

Pulling out each individual σ_{i}, u_{i}, and v_{i}^{T} to create the $\sigma_{i} u_{i} v_{i}^{T}$ dyads for $i=1 \ldots r$:

```
for i from 1 to n do
    singr[i]:=Singr[i];
    singg[i]:=Singg[i];
    singb[i]:=Singb[i];
    ur[i]:=LinearAlgebra:-Column(Ur,i..i);
    vr[i]:=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtr),i..i);
    ug[i]:=LinearAlgebra:-Column(Ug,i..i);
    vg[i]:=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtg),i..i);
    ub[i]:=LinearAlgebra:-Column(Ub,i..i);
    vb[i]:=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtb),i..i);
end do;
```

Note that Maple stores data as floating point numbers, so values that would be 0 otherwise are stored as a small decimal number very close to 0 , yet still greater than 0 . This means that, when working with Maple, $\operatorname{rank}(A)=r=\min (m, n)$.

Adding the dyads to produce the approximations of each layer:

```
Mr:=add(singr[i]*ur[i].LinearAlgebra:-Transpose(vr[i]),i=1..n);
Mg:=add(singg[i]*ug[i].LinearAlgebra:-Transpose(vg[i]),i=1..n);
Mb:=add(singb[i]*ub[i].LinearAlgebra:-Transpose(vb[i]),i=1..n);
```

Combining the approximations of each layer:

```
img_rgb:=CombineLayers(Mr,Mg,Mb):
```

Displaying the result in Maple:

```
Embed(img_rgb);
end proc:
```

Application Suppose we have a color photograph that is 100×200 pixels, or entries. That's 20,000 pixels. When we separate it into its red, green, and blue layers, the number of entries becomes $100 \times 200 \times 3$, or 60,000 entries. Apply SVD to each of these matrices and take enough of the dyad decomposition to obtain a meaningful approximation. For the sake of example, suppose two products from the outer product decomposition suffice. In other words, we have $\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}$.

$$
\sigma_{1}\left[u_{1}\right]\left[\begin{array}{ll}
-v_{1}^{T} & -
\end{array}\right]+\sigma_{2}\left[u_{2}\right]\left[\begin{array}{ll}
-v_{2}^{T} & -
\end{array}\right]
$$

The σ 's are just scalars, the u_{i} column vectors are 100×1, and the row vectors v_{i}^{T} are 1×200. So, it follows that $\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}$ has $301+301=602$ entries. Multiply this by three to account for the red, green, and blue layers to obtain 1,806 entries, approximately 3% of the original 60,000 entries that we would have had to send had we not utilized the SVD. Now, when the satellite sends the photograph down to Earth, it sends those σ_{1} and σ_{2}, u_{1} and u_{2}, and v_{1}^{T} and v_{2}^{T} separately. All that needs to be done to recover the approximation is to multiply these together and add them up back on Earth.

Example 3. Here, we show a progression of approximations of a photograph of a galaxy. The picture has dimensions 780×960, and each approximation uses n singular values.

(a) original image

(c) $n=10 ; \sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{10} u_{10} v_{10}^{T}$

With only $\frac{10}{780}$ dyads, or 1.28% of all the data, we can already see the shapes in the original image starting to come together.

(e) $n=500 ; \sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{500} u_{500} v_{500}^{T}$

This is 64.1% of all the information in the original image. The lack of a noticeable difference between this picture and the previous one illustrates the fact that the σ_{i} values are getting much smaller as i increases.

(b) $n=1$. This is merely $\sigma_{1} u_{1} v_{1}^{T}$, the first term in the sum of 780 dyads $\sigma_{i} u_{i} v_{i}^{T}$. Thus, it bares very little resemblance to the original image.

(d) $n=100 ; \sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{100} u_{100} v_{100}^{T}$ Notice that with only $\frac{100}{780}$, or 13%, of the information contained in the original image we have an approximation that is close to being indistinguishable from the original.

(f) $n=780 ; \sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{780} u_{780} v_{780}^{T}$ When we use all singular values, the approximation is the same as the original image.

6 Conclusions

In summary, the application of singular value decomposition we have detailed provides a method of calculating very accurate approximations of photographs so that they may be transmitted from satellites to Earth without requiring large amounts of data. SVD provides bases for the Four Fundamental Subspaces of a matrix, and it gets its versatility from the ordering of the σ values. SVD is also used in the calculation of pseudoinverses, as illustrated in [3], among other things.

A Appendix

In this appendix, we prove a few results related to symmetric matrices.
Lemma 1. Let $A=A^{T}$. Then eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$. We show that $v_{1} \cdot v_{2}=v_{1}^{T} v_{2}=0$. Observe that

$$
\lambda_{1}\left(v_{1}^{T} v_{2}\right)=\left(\lambda_{1} v_{1}\right)^{T} v_{2}=\left(A v_{1}\right)^{T} v_{2}=\left(v_{1}^{T} A^{T}\right) v_{2}=v_{1}^{T}\left(A v_{2}\right)=v_{1}^{T}\left(\lambda_{2} v_{2}\right)=\lambda_{2}\left(v_{1}^{T} v_{2}\right) .
$$

Thus, $\lambda_{1}\left(v_{1}^{T} v_{2}\right)=\lambda_{2}\left(v_{1}^{T} v_{2}\right) \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right)\left(v_{1}^{T} v_{2}\right)=0$, so $v_{1}^{T} v_{2}=0$ since $\lambda_{1} \neq \lambda_{2}$.
Lemma 2. Let $A=A^{T}$ and A be real. Then, eigenvalues of A are non-negative.
Proof. Suppose $A=A^{T}$ and $A=\bar{A}$. Let $A v=\lambda v$, where $v \neq 0$. We show that $\lambda=\bar{\lambda}$. Thus,

$$
A \bar{v}=\bar{\lambda} \bar{v} \quad \text { and } \quad(A \bar{v})^{T} v=\bar{v}^{T}\left(A^{T} v\right)=\bar{v}^{T}(A v)=\bar{v}^{T}(\lambda v)=\lambda\left(\bar{v}^{T} v\right),
$$

and,

$$
\begin{equation*}
\left(\bar{\lambda} \bar{v}^{T}\right) v=\bar{\lambda}\left(\bar{v}^{T} v\right)=\lambda\left(\bar{v}^{T} v\right) . \tag{14}
\end{equation*}
$$

Let $v=\left[\begin{array}{r}z_{1} \\ \vdots \\ z_{n}\end{array}\right]$, where $z_{i} \in \mathbb{C}$. So,

$$
\bar{v}^{T} v=\left[\begin{array}{lll}
\bar{z}_{1}, & \ldots, & \bar{z}_{n}
\end{array}\right]\left[\begin{array}{r}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right]=\bar{z}_{1} z_{1}+\cdots+\bar{z}_{n} z_{n}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}>0 .
$$

From (14) we have $\bar{\lambda}\left(\bar{v}^{T} v\right)-\lambda\left(\bar{v}^{T} v\right)=0$ since $v \neq 0$. Hence, $(\bar{\lambda}-\lambda)\left(\bar{v}^{T} v\right)=0$, so $\bar{\lambda}=\lambda$ since $\bar{v}^{T} v>0$.

Lemma 3. Let A be an $m \times n$ matrix.

1. $\operatorname{Null}(A)=\operatorname{Null}\left(A^{T} A\right)$

Proof of (\subseteq). Let $x \in \operatorname{Null}(A)$. Then $A x=0$ so $A^{T}(A x)=\left(A^{T} A\right) x=0$. $\therefore x \in \operatorname{Null}\left(A^{T} A\right)$.

Proof of (\supseteq). Let $x \in \operatorname{Null}\left(A^{T} A\right)$. Then $\left(A^{T} A\right) x=0$. Thus $A^{T}(A x)=0$, so $A x \in \operatorname{Null}\left(A^{T}\right)$. On the other hand, $A x \in \operatorname{Col}(A)$. Since $\mathbb{R}^{m}=\operatorname{Col}(A) \oplus \operatorname{Null}\left(A^{T}\right)$, we conclude that $A x=0$ since $\operatorname{Col}(A) \cap \operatorname{Null}\left(A^{T}\right)=\{0\}$. Thus, $\operatorname{Null}\left(A^{T} A\right) \subseteq \operatorname{Null}(A)$.
$\therefore \operatorname{Null}(A)=\operatorname{Null}\left(A^{T} A\right)$.
2. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$

Proof. Let $r=\operatorname{rank}(A)$. Thus,

$$
r=n-\operatorname{dim}(\operatorname{Null}(A))=n-\operatorname{dim}\left(\operatorname{Null}\left(A^{T} A\right)\right)=\operatorname{rank}\left(A^{T} A\right) \quad \text { since } \quad A^{T} A \quad \text { is } \quad n \times n
$$

3. $\quad \operatorname{dim}(\operatorname{Null}(A))=n-r=\operatorname{dim}\left(\operatorname{Null}\left(A^{T} A\right)\right)$
$\operatorname{dim}(\operatorname{Col}(A))=r=\operatorname{dim}(\operatorname{Row}(A))$
$\operatorname{dim}\left(\operatorname{Col}\left(A^{T} A\right)\right)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=r$
4. $\operatorname{Null}\left(A^{T}\right)=\operatorname{Null}\left(A A^{T}\right)$

Proof of (\subseteq). Let $x \in \operatorname{Null}\left(A^{T}\right)$, then $A^{T} x=0$ so $A\left(A^{T} x\right)=\left(A A^{T}\right) x=0$.
$\therefore x \in \operatorname{Null}\left(A A^{T}\right)$.
Proof of (\supseteq). Let $x \in \operatorname{Null}\left(A A^{T}\right)$. Then $\left(A A^{T}\right) x=0$. Thus, $A\left(A^{T} x\right)=0$ so $A^{T} x \in \operatorname{Null}(A)$. On the other hand, $A^{T} x \in \operatorname{Col}\left(A^{T}\right)$. Since

$$
\mathbb{R}^{m}=\operatorname{Col}\left(A^{T}\right) \oplus \operatorname{Null}(A)
$$

we conclude that $A^{T} x=0$ since $\operatorname{Col}\left(A^{T}\right) \cap \operatorname{Null}(A)=\{0\}$. Thus, $\operatorname{Null}\left(A A^{T}\right) \subseteq \operatorname{Null}\left(A^{T}\right)$. $\therefore \operatorname{Null}\left(A^{T}\right)=\operatorname{Null}\left(A A^{T}\right)$.
5. $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A), \operatorname{sorank}(A)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A A^{T}\right)$.
6. We have the following:
(i) $\operatorname{dim}\left(\operatorname{Null}\left(A^{T}\right)\right)=m-r=\operatorname{dim}\left(\operatorname{Null}\left(A A^{T}\right)\right)$,
(ii) $\operatorname{dim}\left(\operatorname{Col}\left(A^{T}\right)\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=r=\operatorname{dim}\left(\operatorname{Row}\left(A^{T}\right)\right)$,
(iii) $\operatorname{dim}\left(\operatorname{Col}\left(A A^{T}\right)\right)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=r$.
7. Since $A^{T} A v_{i}=\sigma_{i}^{2} v_{i}, i=1 \ldots r$, and vectors $\left\{v_{1}, \ldots, v_{r}\right\}$ provide a basis for $\operatorname{Row}(A)$, we have

$$
A v_{i} \neq 0, \quad i=1 \ldots r
$$

If $A^{T} A v_{i}=0$, then v_{i} would belong to $\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A)$, which would give $A v_{i}=0 \therefore$ contradiction. So, $A^{T} A v_{i}=\sigma_{i}^{2} v_{i} \neq 0$, which implies $\sigma_{i}^{2} \neq 0$ so $\sigma_{i} \neq 0, i=1 \ldots r$.

Lemma 4. $\sigma_{i} \neq 0$ for $i=1 \ldots r$.

Lemma 5. Since the vectors $\left\{v_{1}, \ldots, v_{r}\right\}$ are orthonormal, vectors $\left\{u_{1}, \ldots, u_{r}\right\}$ computed as

$$
u_{i}=\frac{A v_{i}}{\sigma_{i}}, \quad i=1 \ldots r
$$

are also orthonormal.
Proof. We have the following:

$$
\left(A v_{i}\right)^{T}\left(A v_{j}\right)=v_{i}^{T}\left(A^{T} A v_{j}\right)=v_{i}^{T} \sigma_{j}^{2} v_{j}=\sigma_{j}^{2} v_{i}^{T} v_{j}=\sigma_{j}^{2} \delta_{i j}= \begin{cases}0, & i \neq j \\ \sigma_{j}^{2}, & i=j\end{cases}
$$

Thus, vectors $\left\{u_{i}\right\}_{i=1}^{r}$ are orthogonal and orthonormal because:

$$
u_{i}^{T} u_{j}=\left(\frac{A v_{i}}{\sigma_{i}}\right)^{T}\left(\frac{A v_{j}}{\sigma_{j}}\right)=\frac{1}{\sigma_{i} \sigma_{j}}\left(A v_{i}\right)^{T}\left(A v_{j}\right)=\left(\frac{1}{\sigma_{i} \sigma_{j}}\right) \sigma_{j}^{2} \delta_{i j}= \begin{cases}0, & i \neq j ; \\ 1, & i=j .\end{cases}
$$

Lemma 6. Let v be a $n \times 1$ vector. Then, the dyad $v^{T} v$ has rank 1.
Proof. We compute the following:

$$
v v^{T}=\underbrace{\left[\begin{array}{c}
v_{11} \\
v_{21} \\
\vdots \\
v_{n 1}
\end{array}\right]}_{n \times 1} \underbrace{\left[\begin{array}{llll}
v_{11}^{T} & v_{21}^{T} & \ldots & v_{n 1}^{T}
\end{array}\right]}_{1 \times n}=\underbrace{\left[\begin{array}{cccc}
v_{11} v_{11}^{T} & v_{11} v_{12}^{T} & \ldots & v_{11} v_{1 n}^{T} \\
v_{21} v_{11}^{T} & v_{21} v_{12}^{T} & \ldots & v_{21} v_{1 n}^{T} \\
\vdots & & \ddots & \vdots \\
v_{n 1} v_{11}^{T} & v_{n 1} v_{1 n}^{T} & \ldots & v_{n 1} v_{1 n}^{T}
\end{array}\right]}_{n \times n}=\left[\begin{array}{ccc}
-v_{11} v^{T} & - \\
-v_{21} v^{T} & - \\
\vdots \\
- & v_{n 1} v^{T} & -
\end{array}\right] .
$$

Since the rows of $v v^{T}$ are multiples of v^{T}, they are linearly dependent. Therefore, we have $\operatorname{rank}\left(v v^{T}\right)=1$.

Lemma 7. Let A be a symmetric matrix. Then, the eigenvalues of A are equal to the singular values of A.

Proof. Let A be a matrix such that $A=A^{T}$, let $\lambda \geq 0$ be an eigenvalue of A, and let v be an eigenvector of A. Then, $A v=\lambda v$, and $A^{T} A v=A^{T} \lambda v=\lambda A^{T} v=\lambda A v=\lambda^{2} v$. Hence, λ^{2} is an eigenvalue of $A^{T} A$. Therefore, λ is a singular value of A.

On the other hand, let $\sigma>0$ be a singular value of A. So, $A^{T} A v=\sigma^{2} v$ for some nonzero eigenvector $v . \Delta_{A^{T} A}\left(\sigma^{2}\right)=\operatorname{det}\left(A^{T} A-\sigma^{2} I\right)=\operatorname{det}\left(A^{2}-\sigma^{2} I\right)=\operatorname{det}((A-\sigma I)(A+\sigma I))=\operatorname{det}(A-$ $\sigma I) \operatorname{det}(A+\sigma I)=0$, which implies that $\operatorname{det}(A-\sigma I)=0, \operatorname{det}(A+\sigma I)=0$, or $\operatorname{det}(A-\sigma I)=$ $\operatorname{det}(A+\sigma I)=0$. Suppose, $\operatorname{det}(A+\sigma I)=0$. Then, $-\sigma$ is an eigenvalue of A, a contradiction since $\sigma>0$. Therefore, $\operatorname{det}(A+\sigma I)=0$, and σ is an eigenvalue of A.

Lemma 8. Let A be an $m \times n$ matrix. Then, $A^{T} A$ and $A A^{T}$ share the same nonzero eigenvalues and, therefore, both provide the singular values of A. In the case where $m=n, \Delta_{A^{T} A}(t)=\Delta_{A A^{T}}(t)$.

Proof. From parts 2 and 5 of Theorem (1), we have $A^{T} A=V \Sigma^{T} \Sigma V^{T}=V \Lambda_{n} V^{-1}$, and $A A^{T}=$ $U \Sigma \Sigma^{T} U^{T}=U \Lambda_{m} U^{-1}$, where Λ_{n} is $n \times n$, and Λ_{m} is $m \times m$. Hence, $A^{T} A$ is similar to Λ_{n}, and $A A^{T}$ is similar to Λ_{m}.

We cannot show that Λ_{n} is similar to Λ_{m}. However, from Definition (1), we know what Σ and Σ^{T} look like, so we know that when we multiply them together to obtain Λ_{n} and Λ_{m} we get two square matrices with $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$, or $\lambda_{1}, \ldots, \lambda_{r}$, and zeros along the diagonal, and zeros elsewhere. The only difference between the two is that one is larger, depending on whether $m<n$ or $m>n$, and has more zeros on its diagonal.

$$
\begin{aligned}
& \Lambda_{n}=\underbrace{\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & \ldots & 0 & 0 \\
0 & \ddots & & & 0 \\
\vdots & & \sigma_{r}^{2} & & \vdots \\
0 & & & 0 & \\
0 & 0 & \ldots & & \ddots
\end{array}\right]}_{n \times n}=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & 0 & 0 \\
0 & \ddots & & & 0 \\
\vdots & & \lambda_{r} & & \vdots \\
0 & & & 0 & \\
0 & 0 & \ldots & & \ddots
\end{array}\right] \\
& \Lambda_{m}=\underbrace{\left[\begin{array}{ccccccc}
\sigma_{1}^{2} & 0 & \ldots & & \ldots & 0 & 0 \\
0 & \ddots & & & & & 0 \\
\vdots & & \sigma_{r}^{2} & & & & \vdots \\
\vdots & & & 0 & & & \\
0 & & & & \ddots & & \\
0 & 0 & \ldots & & & &
\end{array}\right]}=\left[\begin{array}{ccccccc}
\lambda_{1} & 0 & \ldots & & \ldots & 0 & 0 \\
0 & \ddots & & & & & 0 \\
\vdots & & \lambda_{r} & & & & \vdots \\
& & & 0 & & & \\
\vdots & & & & \ddots & & \\
0 & & & & & \ddots & \\
0 & 0 & \ldots & & & &
\end{array}\right]
\end{aligned}
$$

Since the eigenvalues of a diagonal matrix are simply the entries on its diagonal, we know that Λ_{n} and Λ_{m} both have $\lambda_{1}, \ldots, \lambda_{r}$ as eigenvalues. Because they are similar to $A^{T} A$ and $A A^{T}$, respectively, we know that $A^{T} A$ and $A A^{T}$ both must also have $\lambda_{1}, \ldots, \lambda_{r}$ as eigenvalues.

Moreover, an $n \times n$ matrix has n entries on its diagonal and hence has a characteristic polynomial of degree n. Thus,

$$
\begin{aligned}
\Delta_{A^{T} A}(t)=\operatorname{det}\left(\Lambda_{n}-t I\right) & =\underbrace{\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{r}-t\right)}_{r \text { factors }} \underbrace{(-t) \ldots(-t)}_{n-r \text { factors }} \\
& =(-t)^{n-r}\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{r}-t\right) \\
& =(-t)^{n-r} h(t),
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{A A^{T}}(t)=\operatorname{det}\left(\Lambda_{m}-t I\right) & =\underbrace{\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{r}-t\right)}_{r \text { factors }} \underbrace{(-t) \ldots(-t)}_{m-r \text { factors }} \\
& =(-t)^{m-r}\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{r}-t\right) \\
& =(-t)^{m-r} h(t),
\end{aligned}
$$

where $h(t)$ is a monic polynomial of degree r with only $\lambda_{1}, \ldots, \lambda_{r}$ as roots.
Therefore, when A is a square $n \times n$ matrix, we have the special case where $\Delta_{A^{T} A}(t)=$ $\Delta_{A A^{T}}(t)=(-t)^{n-r} h(t)$, and $\Lambda_{m}=\Lambda_{n}$.

References

[1] Maple (2018). Maplesoft, A division of Waterloo Maple Inc., Waterloo, Ontario, http://maplesoft.com.
[2] APOD, 23 April 2018, "The Blue Horsehead Nebula in Infrared." Astronomy Picture of the Day, NASA, April 2018.
[3] D. Poole, Linear Algebra: A Modern Introduction, Stamford, Cengage Learning, 2015.
[4] G. Strang, Introduction to Linear Algebra, Wellesley, Wellesley-Cambridge Press, 2010.

[^0]: *Completed in partial fulfillment of the requirements for MATH 4993 Mathematical Research (3 cr) in spring 2018 under supervision of Dr. R. Ablamowicz.

[^1]: ${ }^{1}$ A dyad is a product of an $n \times 1$ column vector with another $1 \times n$ row vector, e.g., $u_{1} v_{1}^{T}$, resulting in a square $n \times n$ matrix whose rank is 1 by Lemma 6 .

