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Abstract

The Singular Value Decomposition (SVD) provides a cohesive summary of a handful of topics
introduced in basic linear algebra. SVD may be applied to digital photographs so that they may
be approximated and transmitted with a concise computation.
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1 Introduction

This paper begins with a definition of SVD and instructions on how to compute it, which includes
calculating eigenvalues, singular values, eigenvectors, left and right singular vectors, or, alterna-
tively, orthonormal bases for the four fundamental spaces of a matrix. We present two theorems

*Completed in partial fulfillment of the requirements for MATH 4993 Mathematical Research (3 cr) in spring 2018
under supervision of Dr. R. Ablamowicz.



that result from SVD with corresponding proofs. We provide examples of matrices and their sin-
gular value decompositions. There is also a section involving Maple that includes examples of
photographs. It is demonstrated how the inclusion of more and more information from the SVD
allows one to construct accurate approximations of a color image.

Definition 1. Let A be an m x n real matriz of rank r < min(m,n). A Singular Value Decom-
position (SVD) is a way to factor A as

A=UxvT, (1)

where U and V' are orthogonal matrices such that UTU = I, and VIV = I,,. The ¥ matriz
contains the singular values of A on its pseudo-diagonal, with zeros elsewhere. Thus,

o 0 ... ... 0 ...0
0 . . ol
——
: U2
A=USVT = [ w |ug |- | um ]| ¢ oy — | ®
U(mxm) 0 0 : : T
n
0 0 0 o) ~——
- - VT (nxn)
3(mxmn)
with uy, ..., uy being the orthonormal columns of U, o1,...,0, being the singular values of A
satisfying o1 > o9 > -+ > 0, > 0, and v, ...,v, being the orthonormal columns of VT . Singular

values are defined as the positive square roots of the eigenvalues of AT A.

Note that since ATA of size n x n is real and symmetric of rank r, 7 of its eigenvalues o2,

i =1,...,r, are positive and therefore real, while the remaining n — r eigenvalues are zero. In
particular,

ATA=v(ETo)WWT, ATAvi=c%v;, i=1,...,r, ATAv;=0,i=7r+1,...,n (3)

Thus, the first r vectors v; are the eigenvectors of AT A with the eigenvalues o?. Likewise, we have

AAT = U(ZET)UT, AATy; = oluy, i=1,...,m, AATu; =0, i=r+1,...,m. (4)
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Thus, the first 7 vectors u; are the eigenvectors of AAT with the eigenvalues o?.

Furthermore, it can be shown (see Lemmas 1 and 2) that
Av; =ou;, i=1,...,r, and Av;=0,i=r+1,...,n. (5)

If rank(A) = r < min(m,n), then there are n — r zero columns and rows in X, rendering the



r+1,...,m columns of U and r + 1,...,n rows in VT unnecessary to recover A. Therefore,

(o1 0 0 0] v
0 :
) T
A:UEVT:[M‘---‘ur‘urﬂ‘“"um] : oy *21"7
vr—i—l
0 0 .
[0 0 0 0] | o |
0O ... O
v
~Lul w0 -
~ : .. —7
mxr Ur
0 Op | e
~ rXn
TXT
=U10101 + - - + UpOpUyp. (6)

2 Steps for Calculation of SVD

Here, we provide an algorithm to calculate a singular value decomposition of a matrix.

1.

2.

. Compute the (right singular) vectors vy, ..

Compute AT A of a real m x n matrix A of rank r.

Compute the singular values of AT A.
Solve the characteristic equation A 47 4(\) = |ATA — AI| = 0 of AT A for the eigenvalues

M, .-y A of ATA. These eigenvalues will be positive. Take their square roots to obtain
o1,...,0, which are the singular values of A, that is,
o=+, 1=1,...,r (7)

. Sort the singular values, possibly renaming them, so that 1 > g9 > --- > o,

. Construct the ¥ matrix of size m x n such that ¥;; = o; for ¢ = 1,...,r, and ¥;; = 0 when

i # j.

. Compute the eigenvectors of AT A.

Find a basis for Null(AT A — \;I). That is, solve (AT A — \;I)s; = 0 for s;, an eigenvector
of A corresponding to \;, for each eigenvalue \;. Since AT A is symmetric, its eigenvectors
corresponding to different eigenvalues are already orthogonal (but likely not orthonormal).
See Lemma 1.

., U by normalizing each eigenvector s; by multi-
plying it by HleH That is, let

1

V= ——8;
sl

i=1,...,r (8)



If n > r, the additional n — r vectors v,11,...,v, need to be chosen as an orthonormal
basis in Null(A). Note that since Av; = oyu; for i = 1,..., vectors vy,...,v, provide an
orthonormal basis for Row(A) while the vectors uq,...,u, provide an orthonormal basis for
Col(A). In particular,

R™ = Row(A) L Null(A) = span{vy,...,v.} Lspan{v,41,.. ., Vi (nr)}- 9)

7. Construct the orthogonal matrix V' = [v1]- - - |vy,].

8. Verify VIV = 1.

9. Compute the (left singular) vectors uq, ..., u, as
Av;
Av; = oju; :uiziz,i:l...ﬁ (10)
i
In this method, u1,...,u, are orthogonal by Lemma 5.
Alternatively,

(i) Note that AAT = U(XXT)UT suggests the vectors of U can be calculated as the eigen-
vectors of AAT. In using this method, the vectors need to be normalized first. Namely,
U; = ﬁsi, where s; is an eigenvector of AAT,

(ii) Since Ayrs(A) = Ay y r(A) by Lemma 8, o1,...,0, are also the square roots of the
eigenvalues of AAT.

If m > r, the additional m — r vectors w1, ..., Uy, need to be chosen as an orthonormal
basis in Null(AT). Note that since Av; = oyu; for i = 1,..., vectors uy,...,u, provide an
orthonormal basis for Col(A) while the vectors u,41, .. ., Uy, provide an orthonormal basis for

the left null space Null(AT). In particular,

R™ = Col(A) L Null(AT) = span{u, ..., u,} Lspan{u, .1, ... s Upg-(m—r) } - (11)

10. Construct U = [ug] - - - |um)].

11. Verify UTU = 1.

12. Verify A=UXVT,

13. Construct the dyadic decomposition! of A, as described in Thm. 13:

A=UxvT = alulvlT + Uguy}g 4t urarvTT. (12)

'A dyad is a product of an n x 1 column vector with another 1 x n row vector, e.g., u1v{, resulting in a square
n X n matrix whose rank is 1 by Lemma 6.



3 Theory

In this section, we provide the two theorems related to SVD along with their proofs.

Theorem 1. Let A = UXVT be a singular value decomposition of an m x n real matriz of rank r.
Then,

1. AV =UY and

Av; = oju;, i=1,...,r Row(A) = span{vi,...,v;}
Av; =0, i=r+1,....,r+(n—r) Null(A) = span{vii1,...,Vpy(nr)}
CATA=V(ETD) VT R —» R”
. ATAV = V(2TY) and
AT Av; = otv;, i=1,...,r N Row(ATA) = span{vi,...,v,}
AT Av; =0, i=r+1,...,r+(n—r) Null(ATA) = span{v,41,..., Vi (nr)}
4. UTA=xVT and
WA=l i=1,...,r Col(A) = span{ug,...,u,}
1 7 —
ul' A =0, i=r+1,....r+(m—r) Null(AT) = span{u,41,... s Ut (m—r) }
AAT = Ut UT R — R™
. AATU = U(B2T) and
AATw; = 02wy, i=1,...,r . Row(AAT) = span{ui,...,u.}
AATy; =0, i=r+1,....r+(m—r) Null(AAT) = span{u,41,... s Ut (m—r) }
Proof of (1).
AV = UV V =Us(VIV) =Ux
So,
AV = [ Avp ‘ ‘Avr ‘ Avpgq ‘ ‘Avn ]
(o1 0 0 0]
0 .
=[wn | e furg [ fum ] I
0 0
0 0 0 0)
—[owt |+ o |0] - ]0].
Hence,



1. Avy = oquq, ..., Av, = o,u,, and

2. AUT+1 = 0, ey Avr—l—(n—r) =0.

Proof of (2).

ATA=wzsvhHT(ozsvh) = vyt wosvh) =vlwto)sv? =vefsyT

Proof of (3).
ATAV = (veTuhywosvhv = vyt wto)s(vlv) = v(sTy)
So,
ATAV = [ ATAvy | -+ | ATAv, | AT Avpyy |-+ | AT Awy, |
=[ Mt | [ Ao | A1 | | Apon |
(A 0 ... ... 0]
0 :
—[o | o v |- Jon ]| A
0 0
_0 0 J
(07 0 0]
0
= (o] Jorfoep [ fon ]} o2
0 0
_O 0 J
=[otn |- |ofu-[O] - ]O].
Hence,
1. ATAvy = o?vy, ..., AT Av, = o2v,, and
2. ATAv, 1 =0, ..., ATAv, () = 0.
Proof of (4).

vra=vtwxv?t) = wtu)sv? =xv?



So,

Towl ] [ wlA ]
T T
UTA= o A= u, A
Urt1 U1 A
L um . L umA -
[o1 0 0 o] [ v 1 [ o1
0 : 5
— o v _ s
a ' Uy a 0
0 0 .
0 0 0 of | o« | | o0
Hence,
L ulA=op0f,... ,ul'A=o0.0! and
2. ul ;A=0,... ,uTT+(m_r)A =0.
Proof of (5).
AAT = (uxvhwsvh)T = uxvhwveTu?) = uvsT(vIvsuT = uxtsu”
Proof of (6).

AATU = uxvhwosvhHTu = wxvhwvetuhHu =vsvIvsT(wto) = uzeh)




So,

AATU = [ AATuy | -+ | AATu, | AATu, iy | -+ | AATuy, |
Z[/\lul""‘)\rur‘)\rﬂurﬂ"“‘/\num]
At 0
0
=lw | Jw [ |- fum 1] A
0
0
:0%
0
IR AL TS |
0
|00
Z[O%ul‘---‘U?ur‘O‘---‘O].
Hence,
1. AATuy = o?uy, ..., AATu, = 02u,, and

2. AATu, 1 =0, AA U, () = 0.

Theorem 2. Let A =UXVT be a singular value decomposition of an m x n real matriz of rank .

Then,

r

A=UxvT = g uiaiviT = alulvip + Jguwg + 4 UTUTUTT.

=1

(13)



Proof.

A=UxvT
- - 1T T T
o1u11 o2U12 e Oruiyr U1 Vi - Uiy
o1u21  02U22 e Oru2y vl
O1U(r—1)1
o1y OoUrz ... OpUpe | |l L 0 ol
- T T T T T T\
(o1ur1viy + -+ + opuirvyy)  (O1U11V]g + - -+ OpUirUy) ... (or1urivy, + -+ oruv;,,)
T T
(o1u21vyy + - - - + opu2 V)
T T T T
| (o1urv] + -+ Oy, .. oo (oruprvy, + -+ oruep,,) |
T
= o1uvy +
- T T T T T T\
(0’211,127)21 + -+ Urulrvrl) (0’271,121)22 —+ -+ U,ﬂulﬂ)rz) ... (0'211121)% + -+ arulrvw)
T T
(U2u221121 + -+ Uru2rvr1)
T T T T
| (02U + - - + OpUp3,.) . oo (02uppvy, F - O U, |

T T T
= 01U1V] + 02U2V5 + -+ + OplUpV,

T T T
=uU101V] + U020y + -+ + UrO,V,

T
= E uiaiv;[
i=1

4 Examples

In this section we calculate the singular value decomposition of a few matrices.

10 1 2 ?(1) 150 151 152

Example 1. Let A= |2 1 1 1|, then ATA= , and
492 9 9 1 5 6 7
12 5 7 9




21 — A 10 11 12
10 5-x 5 51 . 5 )
12 5 7 9— A
S VA1+3v149 /82461149 V8246V149 0 0 0
B V2 N 2 — -
_ V/41-3V149 _ /82-6/149 — ¥ 0 &2 26 %0 0
2= Am T 2 0 0 00
7143V149 | 2143V149 —443V149 ] Is1]| = 16,092;5456\/149
50 50 25
. 71-3y149 | 21-3V149 —4-3V149 _1/16,092—456y/149
ST — 50 50 % |[so]| = Y—"—
111 O sl =3
-2 3 0 Lol lsall =14
ST contains the transposed eigenvectors of AT A.
71+3/149 50 21+3/149 —8+61/149
V/16,092+4561/149  1/16,092+4561/149  /16,092+4561/149  1/16,092+4561/149
71—3/149 50 21-3/149 —8—6/149
VT = \/16,092—{156\/149 \/16,092I456\/149 \/16,092I456\/149 \/16,092—456+/149
—Va Vi 0 v
_ -7 /1497
10 1 2 7143 9
wp =4 = —2_ )2 1 1 1 o0 1 —
a1 82-+6+/149 21 + 3v/149 16,092+456+/149
4 2 2 2
: 4 | -8+ 6149
10 1 9 71 — 3v149
up =42 = (2 _ )21 11 50 1 _
o2 82-6V149) |, 5 o 21 — 3/149 | \ 1/16,092—4561/149
. 1| -8 — 6v149]

Since A is 3x 4, U should be a 3 x 3 matriz. However, there is no o3, so we cannot use u;

to find us. Instead, we use the left null space of A.

1 2 410 1
01 2|0 0
Ty
Null(A") = 11210l 710
21 2|0 0
0
y= -2
1
Normalizing y to obtain us :
0 0
_ 1= L] ol = |2
WYV | T
V5

2 4]0
1 20
1 —2/0 |~
3 6|0

10

o O O
O O =N
O O N
o O O O

4143149
2

__ 41-3v149
- 2

r 152+436+/149 7
\/1,727,208+133,944y/149
410+30+/149
/1,727,208+133,944,/149
820-+60+/149
L \/1,727,208+133,944+/149
r 152—361/149 7
V/1,727,208—133,9441/149
410—30+/149
\/1,727,208—133,9441/149
820—60+/149
L \/1,727,208—133,944+/149

_ Avy
P

o O O
o O = O
S O N O
o O O O



152436149 152—-36+/149

0
V/1,727,208+133,944v/149  /1,727,208—133,944,/149
410+301/149 410—301/149 —2
SO, U = \/g .
V/1,727,208+133,944\/149  /1,727,208—133,9441/149
8204-60+/149 820—601/149 1
V/1,727,208+133,944y/149  /1,727,208—133,9441/149 V5
Thus, A =
r 1524-36+/149 152—361/149 0
\/1,727,208+133,944v/149  +/1,727,208—133,944,/149 % V149 0 0 0
410430+/149 410—30+/149 -2 526 V1I0
V/1,727,208+133,944y/149  /1,727,208—133,944,/140 V5 0 =00
820+60+/149 820—60+/149 1 0 0 0 0
[ \/1,727,208+133,9441/149  1/1,727,208—133,944y/149 V5
71431149 50 21431149 —8461/149
V/16,002+4561/149  1/16,092+4561/149  1/16,092+4561/T49  1/16,092+4561/149
71—31/149 50 21—3v/149 —8—61/149
- —456+/ —456+/ — 4564/ =UxvT
/16,092 1456\/@ \/16,0921456 149 \/16,0921456 149 /16,092—4561/149 .
L V14 V14 0 V14 i

Example 2. Let A = E (1)]

Notice that when A is a symmetric matriz, ATA = AAT, so U =V. Less work is required.
1 1(11 1 2 1
T T
AT A = AAY = [1 0} [1 0]— [1 J

rank(A) = rank(AT A) = rank(AAT) = 2

Agra(N) = Aar(A) = |ATA — AT| = [AAT — AT| = 2? 1;'
2 _ 2 A =3/
—(2-N1-N)-12=X2-3\+1 = 2_3_2\/5
- 2
U1=\/x:\/3+2‘/5=\/6§2\/5=1+2\/5 145 0
S _ ik _ 1 | g 1=
o= VR = (3508 = Vo245 _ 1 ;
235 1 o =51 o
T _ T _ _
[A A—)\lf]l‘l—[AA —)\1[]81— 12 1_3+2\/§ 0 = i 715\/5 0 —
1 -1-V5 | 1 =1=v5 | 145
2 2 — 2
1-v5 ol 7lo 0o |o| % 1

1
2
Jsif| = /5205 41 = (102 _ Vioiads
1+5
1 1

[14—2\/5] _ 9 [H-\/g] _ \/102+72\/5

U1 == %0 = Jiosevs

2

1

104+2v/5

11



- - 2 — 345 1 0 S
[ATA = Malsy = [AAT — Nollsy = SRy & O e IR Y o DN B
1 1 7|0 1 5 |0
1 —1+\/5 0 1 *1+\/g 0 17\/‘?’
1+v5 1 0 0 0 0 52 1

2
_ — 10—2v/5
sl = /8205 11 = (/10245 _ V1o,

1-5
1H‘9 _ 1 !12\@] _ 2 [12\/5] _ \/102—2\/5

PERTMLI? T Voes | 1 | T Vieavs | 1 ——
2 vs 10—-2v/5
\/1+\/5 ~ 2 1+v5 1-v5
T _ 104+2v5 104+-2v5 _ 10425 10—2v/5
V= 1—v5 2 7U— \/ 2 \/ 2
V10-2v5  V10-2v5 V10+2v5  V10-2v5
To verify that vi = u1 and vo = usg :
11 [ 1+v5 ] [ 3+v5 7 [ 64+2V5 ] [ 1+v5 ]
an= [ 1] [Viog| = | Ve | = | 2Vie | 2 1 | Vioga | — g = v
[ V/10+2v/5 | L/ 10+2+/5 | L v/10+2v/5 ] | V/10+2v/5 |
L[] [A] [S2A ] [ 1-V5 ]
oy = [1 U] | VIl | = | VI8 VIR | 18 | VIO | — g, = o
| v/ 10—2V/5 | L\/10—2v/5 L v/10—2v/5 ] L v/ 10—2v/5 |

Notice that this implies the eigenvalues of A are equal to the singular values of A. By Lemma 7,
every symmetric matriz has this property. Thus,

11 145 1-5 145 0 1+v5 2
4= [1 0} = | VI0p2v5 Vi02v5 [ "o 1_¢5] VIS Vi | _ eyt — pAvT.
2 V10-2v5  V10-2v5

V10425 V10-2v5

5 Maple

The purpose in subjecting a color photograph to the Singular Value Decomposition is to greatly
reduce the amount of data required to transmit the photograph to or from a satellite, for instance.

A digital image is essentially a matrix comprised of three other matrices of identical size. These
are the red, green, and blue layers that combine to produce the colors in the original image. Obtain
the three layers of the image using the Maple command GetLayers from the ImageTools package.
It is on each of these three layers that we perform the SVD. Define each one as img_r,img_g,
and img_b. Define the singular values of each matrix using the SingularValues command in
the Linear Algebra package. Maple will also calculate U and V'. Simply set the output of
SingularValues=[’U’,’Vt’].

In the argument of the following procedure, the variable n denotes which approximation the pro-
cedure will compute, that is, the number of singular values that it will include. posint indicates
that n must be a positive integer.

approx:=proc(img_r,img_g,img_b,n::posint)local
Singr,Singg,Singb,Ur,Ug,Ub,Vtr,Vtg,Vtb,singr,

12



singg,singb,ur,ug,ub,vr,vg,vb,Mr,Mg,Mb,i,img_rgb;

In place of a ¥ matrix, we create a list of the ¢’s for each red, green and blue layer, as well as the
red, green, and blue U and VT matrices. It is important to note that Maple outputs the transpose
of V. Hence, it does not need to be transposed.

Singr:=SingularValues(img_r,output=’1list’):
Singg:=SingularValues(img_g,output=’1list’):
Singb:=SingularValues(img_b,output=’1list’):
Ur,Vtr:=SingularValues(img_r,output=[’U’,’Vt’]);
Ug,Vtg:=SingularValues(img_g,output=["U’,’Vt’]);
Ub,Vtb:=SingularValues(img_b,output=[’U’,’Vt’]);

Pulling out each individual o;, u;, and v;-f to create the aiuivlT dyads fori=1...7:

for i from 1 to n do
singr[i] :=Singr[i];
singg[i] :=Singg[i];
singb[i] :=Singb[i];
ur[i] :=LinearAlgebra:-Column(Ur,i..1i);
vr[i] :=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtr),i..1i);
ug[i] :=LinearAlgebra:-Column(Ug,i..1i);
vg[i] :=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtg),i..1);
ub[i] :=LinearAlgebra:-Column(Ub,i..1i);
vb[i] :=LinearAlgebra:-Column(LinearAlgebra:-Transpose(Vtb),i..1);
end do;

Note that Maple stores data as floating point numbers, so values that would be 0 otherwise are
stored as a small decimal number very close to 0, yet still greater than 0. This means that, when
working with Maple, rank(A) = r = min(m, n).

Adding the dyads to produce the approximations of each layer:

Mr:=add(singr[i]l*ur[i] .LinearAlgebra:-Transpose(vr[i]),i=1..n);
Mg:=add (singg[il*ug[i] .LinearAlgebra:-Transpose(vg[i]),i=1..n);
Mb:=add(singb[i]*ub[i] .LinearAlgebra:-Transpose(vb[i]),i=1..n);

Combining the approximations of each layer:
img_rgb:=CombineLayers (Mr,Mg,Mb) :
Displaying the result in Maple:

Embed (img_rgb) ;
end proc:

13



Application Suppose we have a color photograph that is 100 x 200 pixels, or entries. That’s
20,000 pixels. When we separate it into its red, green, and blue layers, the number of entries
becomes 100 x 200 x 3, or 60,000 entries. Apply SVD to each of these matrices and take enough of the
dyad decomposition to obtain a meaningful approximation. For the sake of example, suppose two

products from the outer product decomposition suffice. In other words, we have JlulvlT + JQUQU2T .

alul[—vl—]—i—agug[—vz

The o’s are just scalars, the u; column vectors are 100 x 1, and the row vectors viT are 1 x 200.
So, it follows that Jlulvrf + 02u2v2T has 301 + 301 = 602 entries. Multiply this by three to account
for the red, green, and blue layers to obtain 1,806 entries, approximately 3% of the original 60,000
entries that we would have had to send had we not utilized the SVD. Now, when the satellite sends
the photograph down to Earth, it sends those o1 and o3, u; and ug, and ’U{ and UQT separately. All
that needs to be done to recover the approximation is to multiply these together and add them up

back on Earth.

Example 3. Here, we show a progression of approximations of a photograph of a galaxy. The
picture has dimensions 780 x 960, and each approrimation uses n singular values.

14



(b) n = 1. This is merely oyujv{, the first
(a) original image term in the sum of 780 dyads o;u;v] . Thus,
& & it bares very little resemblance to the orig-

inal image.

= 10: T, ... T (d) n = 100; Ul“l”? +---+ 0100U1000{00
(C). n=10; o o T 10ty Notice that with only 22 or 13%, of the infor-
With only === dyads, or 1.28% of all the data, we . . . 807 7 .
can alread 7850ee the shapes in the orieinal imace mation contained in the original image we have
Y P & 8¢ an approximation that is close to being indistin-

starting to come together. guishable from the original.

_ . T T
(e) n = 500; oquivy + -+ -+ T500U500V500

This is 64.1% of all the information in the orig- T T

inal image. The lack of a noticeable difference (f) n = 780; O1Unly o O780UTS0VTR0
L . . When we use all singular values, the approxima-

between this picture and the previous one illus- tion is the same as the orisinal imace

trates the fact that the o; values are getting much & 8e-

smaller as 7 increases.
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6 Conclusions

In summary, the application of singular value decomposition we have detailed provides a method
of calculating very accurate approximations of photographs so that they may be transmitted from
satellites to Earth without requiring large amounts of data. SVD provides bases for the Four
Fundamental Subspaces of a matrix, and it gets its versatility from the ordering of the o values.
SVD is also used in the calculation of pseudoinverses, as illustrated in [3], among other things.

A Appendix

In this appendix, we prove a few results related to symmetric matrices.

Lemma 1. Let A= AT. Then eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let Avy = A\jv1 and Avs = Aove. We show that vy - v = UlTvz = 0. Observe that

M (vlvg) = (Av) e = (Av))Tvg = (vl AT vy = v (Avs) = v (Aawa) = Xa(vi ).
Thus, A\ (v] ve) = A2(vva) = (A1 — A2)(vTvg) =0, so vTvy = 0 since A\; # Aa. [ |
Lemma 2. Let A = AT and A be real. Then, eigenvalues of A are non-negative.

Proof. Suppose A = AT and A = A. Let Av = \v, where v # 0. We show that A = X. Thus,

Av =20 and (A0)Tv =77 (ATv) = 77 (Av) = 77 () = AT ),

and,
W\ = A@ ) = AT ). (14)
Z1
Let v=| :|, where z; € C. So,
Zn
21
o= [z, oy Z] | 3| =Em At Bz = P |l > 0
'ZTZ

From (14) we have A(v7v) — A(@Tv) = 0 since v # 0. Hence, (A — X\)(@Tv) = 0, so A = X\ since
7w > 0. u

Lemma 3. Let A be an m X n matriz.
1. Null(A) = Null(AT A)

Proof of (C). Let € Null(A). Then Az =0 so AT (Ax) = (AT A)x = 0.
-z € Null(AT A).

16



Proof of (2). Let € Null(AT A). Then (AT A)z = 0. Thus AT (Ax) =0, so Az € Null(A”).
On the other hand, Az € Col(A). Since R™ = Col(A) ® Null(AT), we conclude that Az =0
since Col(A) N Null(AT) = {0}. Thus, Null(A” A) C Null(4).

- Null(A) = Null(AT A). [ |

2. rank(A) = rank(AT A)
Proof. Let r = rank(A). Thus,

r=n — dim(Null(4)) = n — dim(Null(ATA)) = rank(ATA) since ATA is nxn.

3. dim(Null(A4)) = n — r = dim(Null(AT A))
dim(Col(A)) = r = dim(Row(A))
dim(Col(AT A)) = rank(AT A) = rank(A) = dim(Col(4)) = r
)

4. Null(AT) = Null(AAT)

Proof of (C). Let z € Null(AT), then ATz =0 so A(ATz) = (AAT)z = 0.
o 2 € Null(AAT),

Proof of (2). Let z € Null(AAT). Then (AAT)z = 0. Thus, A(ATz) =0 so ATz € Null(A).
On the other hand, ATz € Col(A”). Since

R™ = Col(AT) @ Null(A),

we conclude that ATz = 0 since Col(AT) N Null(4) = {0}. Thus, Null(AAT) C Null(AT).
- Null(AT) = Null(AAT). n

5. rank(A”T) = rank(AAT) = rank(A), so rank(A) = rank(AT A) = rank(A”) = rank(AAT).
6. We have the following:

(i) dim(Null(AT)) = m — r = dim(Null(4AT)),
(ii) dim(Col(AT)) = rank(A”) = rank(A) = r = dim(Row(A47T)),
(iii) dim(Col(AAT)) = rank(AAT) = rank(A) = dim(Col(4)) = r.

7. Since AT Av; = 0?v;,i = 1...r, and vectors {vy,...,v,} provide a basis for Row(A), we have
Avﬁéo, 1=1...7r

If AT Av; = 0, then v; would belong to Null(A” A) = Null(A4), which would give Av; = 0 .-.
contradiction. So, AT Av; = o?v; # 0, which implies 02 # 0 so 0; #0,i =1...7.

Lemma 4. 0; #0 fori=1...r.
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Lemma 5. Since the vectors {vi,...,v.} are orthonormal, vectors {u1,...,u,} computed as

Av;
U; = , t=1...7
0j

are also orthonormal.

Proof. We have the following:

(Av;)" (Avy) = o] (AT Avj) = v] oFv; = o3v] v = 036;5 = {0’ i 7 2;

Thus, vectors {u;};_, are orthogonal and orthonormal because:
Av\" [ Av; 1 1 0, i#J;
uj uj = ( Z) <J> = ——(Av)) T (Ayy) = ( )%2'%‘ = { .# ‘
o; 0j 00 0i0; 1, 1=7.

Lemma 6. Let v be a n x 1 vector. Then, the dyad v'v has rank 1.

Proof. We compute the following:

T T T T
V11 V1117 V11V .- V11V1p, — V110 —
T T T T
T V21 T T V21017 UV21Vi9 ... V21V1y, — V210 —
v = [vll V21 vnl] = =
1xn T T T T
Unl Un1V11 UnlVi, --- UnlUi, —  Up1? —
nx1 nxn

Since the rows of vv? are multiples of v”, they are linearly dependent. Therefore, we have
rank(vo?) = 1. [

Lemma 7. Let A be a symmetric matriz. Then, the eigenvalues of A are equal to the singular
values of A.

Proof. Let A be a matrix such that A = AT, let A\ > 0 be an eigenvalue of A, and let v be an
eigenvector of A. Then, Av = Mv, and AT Av = AT v = MATv = MAv = A?v . Hence, A\? is an
eigenvalue of AT A. Therefore, X is a singular value of A.

On the other hand, let & > 0 be a singular value of A. So, ATAv = ¢2v for some nonzero
eigenvector v. A1 4(0?) = det(AT A — 0%1) = det(A% — 0%1) = det((A — oI)(A+ o)) = det(A —
ol)det(A 4+ oI) = 0, which implies that det(4A — oI) = 0,det(A + o) = 0, or det(A — ol) =
det(A+ol)=0. Suppose, det(A+ ol) =0. Then, —o is an eigenvalue of A, a contradiction since
o > 0. Therefore, det(A + ol) = 0, and o is an eigenvalue of A. [ |

Lemma 8. Let A be an m x n matriz. Then, AT A and AAT share the same nonzero eigenvalues
and, therefore, both provide the singular values of A. In the case where m = n, A1 4(t) = A g7 (2).
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Proof. From parts 2 and 5 of Theorem (1), we have ATA = VETSVT = VA,V~!, and AAT =
USYTUT = UA,,U™!, where A, is n x n, and A,, is m x m. Hence, AT A is similar to A,,, and
AAT is similar to A,,.

We cannot show that A, is similar to A,,. However, from Definition (1), we know what ¥ and
7T look like, so we know that when we multiply them together to obtain A, and A,, we get two
square matrices with a%, co.,02 0r A,..., A\, and zeros along the diagonal, and zeros elsewhere.

The only difference between the two is that one is larger, depending on whether m < n or m > n,
and has more zeros on its diagonal.

o2 0 ... 0 0 A0 ... 0 0
0 . 0 0 . 0
Ap = o2 = A :
0 "o 0 0
[0 0 | o o |
nxn
(02 0 0 o] [x o0 0 0]
0 0 0 0
o; : Ar
Ay = 0 = 0
0 0
[0 0 | o o |
mxm

Since the eigenvalues of a diagonal matrix are simply the entries on its diagonal, we know
that A,, and A,, both have A, ..., )\, as eigenvalues. Because they are similar to AT A and AAT,
respectively, we know that A7 A and AA” both must also have \i,...,\, as eigenvalues.

Moreover, an n xn matrix has n entries on its diagonal and hence has a characteristic polynomial

of degree n. Thus,
Apryg(t) =det(Ay —tI) = (A1 —t)( A2 —t) ... (A — ) (=) ... (—1)

~~

r factors n—r factors
— ()" = (A2 — 1) . (A — 1)
= (=0)""h(1),

and

Ayar(t) = det(Ap — 1) = M — )Oa — 1) ... Ar — 1) (=) ... (—1)

r factors m—r factors
— ()™ =) a — 1) .. (A — 1)
= (=t)""h(t),
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where h(t) is a monic polynomial of degree r with only A1, ..., )\, as roots.

Therefore, when A is a square n X n matrix, we have the special case where A r,(t) =
Apqr(t) = (=t)""h(t), and A, = Ay, [ ]
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